Information
-
Patent Grant
-
6315538
-
Patent Number
6,315,538
-
Date Filed
Friday, May 26, 200025 years ago
-
Date Issued
Tuesday, November 13, 200124 years ago
-
Inventors
-
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 418 117
- 418 150
- 418 253
- 418 270
-
International Classifications
-
Abstract
A fluid machinery driven equipment such as a rotary pump has a simple structure and high efficiency with a small size and low cost. The driven equipment includes a tubular casing having an inner surface which is substantially elliptical in shape, front and rear covers for covering the tubular casing through fastening means, a rotary shaft provided in the tubular casing and is supported by the front and rear covers, and a rotor provided in the tubular casing and connected to the rotary shaft. The rotor is formed of a first arm, a piston rotatably connected to each end of the first arm through a piston pin where the piston having an outwardly curved surface and each end has an inwardly bent portion, a second arm in perpendicular to the first arm, a rotary plate proved at each end of the second arm and having an outwardly curved surface, and an inner surface at each end of the rotary plate slidably contact an outward surface of the inwardly bent portion of the piston, piston seals elastically formed on the piston for air tightly contacting the inner surface of the tubular casing, and a spring provided between the first arm and the piston for reducing frictional forces between the piston seals and the inner surface of the tubular casing.
Description
FIELD OF THE INVENTION
This invention relates to a fluid machinery driven equipment that performs energy exchange between a rotary fluid machinery and fluid such as gas or liquid, and more particularly, to a driven equipment such as a rotary pump involving piston rotation in which an outer edge of the piston slide along an inner elliptical surface of the rotary pump to perform intake and exhaust actions.
BACKGROUND OF THE INVENTION
With continuing progress in science and technology, various types of fluid machinery driven equipment have been developed with improved performances. This invention is directed to a displacement type rotary driven equipment, such as a rotary pump, a rotary compressor, a gear pump, a scroll pump and the like.
Rotary driven equipment is widely used in industry. However, rotary driven equipment of today is still inefficient in energy exchange and complex in configuration. Further, because of the complexity, the physical size and cost of such rotary driven equipment is not small enough to be widely used in various applications.
SUMMARY OF THE INVENTION
Therefore, it is an object of the present invention to overcome the aforementioned problems and to provide a fluid machinery driven equipment having a simple structure and a high efficiency with a small size and low cost.
In the present invention, the driven equipment for fluid machinery which is driven by an external power includes a tubular casing having an inner surface which is substantially elliptic in shape, front and rear covers for covering the tubular casing through fastening means, a rotary shaft provided in the tubular casing and is supported by the front and rear covers where at least one end of the rotary shaft being projected from the cover to be connected to the external power, and a rotor provided in the tubular casing and connected to the rotary shaft.
The rotor is formed of a first arm extended from a center of the rotor to opposite directions, a piston rotatably connected to each end of the first arm through a piston pin and forming substantially a “T” shape with the first arm where the piston having an outwardly curved surface, and each end of the piston has an inwardly bent portion, a second arm extended from the center of the rotor to opposite directions in perpendicular to the first arm, a rotary plate provided at each end of the second arm and forming substantially a “T” shape where the rotary plate having an outwardly curved surface, and an inner surface at each end of the rotary plate is slidably contact with an outward surface of the inwardly bent portion of the piston, piston seals elastically formed on the piston at around both edges thereof for air tightly contacting the inner surface of the tubular casing, and a spring provided between the first arm and the piston for reducing frictional forces between the piston seals and the inner surface of the tubular casing.
The driven equipment further includes first openings provided on the tubular casing at two positions which are symmetrical with one another relative to the rotation shaft, and second openings provided on the covers at two positions which are symmetrical with one another relative to the rotary shaft and about 90 degrees apart from the first openings relative to the rotation shaft. When the first openings function as intake openings, the second openings function as exhaust openings, and vice versa.
In the driven equipment of the present invention, four spaces are created by the inner surface of the tubular casing and the rotor, two of which are spaces formed by the pistons at both ends of the first arm and the inner surface, and two other spaces are formed by the rotary plates at both ends of the second arm and the inner surface. The sizes of the four spaces change by rotation of the rotor, thereby performing an intake and exhaust actions for fluid.
In the driven equipment of the present invention, the elliptical shape of the inner surface of the tubular casing is determined by the following steps of:
(1) drafting a circuit K with a radius R
1
with respect to a center O, where the center O corresponds to the center of the rotation shaft,
(2) drafting a straight line AC which is tangential to the circuit K at a center E of the line AC,
(3) extending a line EO and drafting an arc ABC with respect to a center J on the line EO with a radius R
2
, where a point B is a cross point of the line EO and the art ABC,
(4) moving the point A of the straight line AC along the arc ABC to the point B in a manner that the center E moves along the circle K, and drafting the trace of the point C of the line AC to form a curve ABCD, and
(5) defining an outer curve which is outwardly apart from the curve ABCD by a distance X,
wherein the outer curve is the inner surface of the tubular casing, and the circle K is a trace of rotation of the piston pin and the curve ABCD is a reference casing curve.
In the further aspect of the present invention, the spring for reducing the friction between the piston seals and the inner surface of the tubular casing is obviated to promote energy conversion efficiency. Both of the intake and exhaust openings are provided on the tubular casing which are about 90 degrees apart from one another with respect to the rotation shaft. Seals are additionally provided between the rotary plates and the pistons.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a front view of the fluid machinery driven equipment in the first embodiment of the present invention.
FIG. 1
includes a partial cut out view showing an inner structure of the fluid machinery driven equipment.
FIG. 2
is a plan view including a partial cut-out view of the fluid machinery driven equipment in the first embodiment of the present invention.
FIG. 3
is a right side view of the fluid machinery driven equipment in the first embodiment of the present invention which also includes a partial cut-out view showing an inner structure.
FIG. 4
is a cross sectional view of the fluid machinery driven equipment of the present invention taken along a line IV—IV of FIG.
1
.
FIG. 5
is a cross sectional view of the fluid machinery driven equipment of the present invention taken along a line V—V of FIG.
1
.
FIG. 6
is a schematic diagram for showing a basic principle of defining the inner shape of the fluid machinery driven equipment of the present invention.
FIG. 7
is a diagram showing an inner state of the fluid machinery driven equipment of the present invention where two pistons are in top and bottom positions and in substantially horizontal directions.
FIG. 8
is a diagram showing an inner state of the fluid machinery driven equipment of the present invention where the driven equipment is rotated by 45 degrees from the condition of FIG.
7
.
FIG. 9
is a diagram showing an inner state of the fluid machinery driven equipment of the present invention where the driven equipment is further rotated by 45 degrees from the condition of FIG.
8
.
FIG. 10
is a front view showing the second embodiment of the fluid machinery driven equipment of the present invention.
FIG. 11
is a front view showing the second embodiment of the present invention where the driven equipment is rotated by 45 degrees from the state of FIG.
10
.
FIG. 12
is a partially cut-out front view showing the second embodiment of the fluid machinery driven equipment of the present invention having a cover.
FIG. 13
is a cross sectional view showing the second embodiment of the fluid machinery driven equipment of the present invention taken along a line XIII—XIII of FIG.
12
.
FIG. 14
is a schematic diagram for showing a basic principle of defining the inner shape of the fluid machinery driven equipment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The preferred embodiments of the present invention are now explained with reference to the accompanying drawings.
FIGS. 1-9
show a rotary driven equipment in the first embodiment of the present invention which is typically a rotary pump.
FIG. 1
is a front view of the rotary equipment
1
(or
17
) having a tubular casing
18
. In the center of the tubular casing
18
, the rotary equipment
17
includes a rotary shaft
2
which is connected to a power transmission device (not shown) such as an engine or a motor. A rotor
3
is formed of a boss
4
fixedly connected to the rotary shaft
2
and two arms
5
a
and
5
b
. The arms
5
a
and
5
b
are projected in such a way as to form a cross shape with right angle at each two adjacent arms. At the ends of the arms
5
a
(up and down of FIG.
1
), tubular supports
6
are respectively provided. A piston
8
is connected to each end of the arm
5
a
through a pin receptacle
10
and a piston pin
14
in a manner rotatable about the piston pin
14
. At the ends of the arm
5
b
(right and left of FIG.
1
), rotary plates
7
are respectively provided.
As shown in
FIG. 1
, the arm
5
a
and the piston
8
form a “T” shape. Similarly, the arm
5
b
and the rotary plate
7
also form a “T” shape. The surface
9
a
of the piston
8
and the surface
7
a
of the rotary plate
7
are outwardly curved in a small degree. Both ends of the piston
8
are inwardly bent to form curved outer surfaces (slide surfaces
11
a
). Each of the slide surfaces
11
a
contacts a respective end (slide surface
7
b
) of the rotary plate
7
. Thus, the pistons
8
and the rotary plates
7
form a closed square space around the rotary shaft
2
. Since the piston
8
is rotatable about the piston pin
14
in the tubular support
6
, the slide surface
11
a
of the piston
8
and the slide surface
7
b
of the rotary plate
7
slide with each other as will be explained later.
A groove
12
is provided at each end of curved surface
9
a
of the piston
8
, i.e, at about the corner of the bent portion of the piston
8
. An elastic member
16
is inserted in the groove
16
over which a piston seal
15
is further inserted in the groove
16
. Because of the spring force of the elastic member
16
, the piston seal
15
is pressed outwardly to keep contacting the inner surface
18
a
of the tubular casing
18
. The groove
12
is extended in a direction perpendicular to the paper of
FIG. 1
, i.e., from front to rear. Thus, the piston seal
15
is mounted on the piston
8
in a manner shown in the plan view of FIG.
2
and right side view of FIG.
3
.
As shown in
FIG. 1
, the tubular casing
18
and the inner surface
18
a
thereof have an oval shape so that the diameter in the right/left direction is larger than that of the up/down direction. Therefore, the inner spaces Q in the right and left positions in the rotary pump are greater than the spaces P in the up and down positions.
In this example, as best shown in
FIGS. 7-9
, the tubular casing
18
has intake openings (or exhaust openings)
19
at two symmetrical locations relative to the rotary shaft
2
. Also seen in FIGS.
1
and
2
-
5
, in this example, exhaust openings (intake openings)
22
are provided on caps or covers
20
of the rotary pump
17
. Thus, when the openings
19
are used as intake ports, the openings
22
are used as exhaust ports, and vise versa.
The covers
20
are attached to the tubular casing
18
at the front and rear, respectively, so that inner surfaces of the covers
20
and the inner surface
18
a
of the tubular body create a cavity in the rotary pump
17
. As best shown in the cross sectional views of
FIGS. 4 and 5
, each of the covers
20
has a shaft hole
21
so as to support the rotary shaft
2
which penetrates through the covers
20
at the front and back thereof. The covers
20
are attached to the tubular casing
18
through fastening members
23
. The inner surfaces of the covers
20
and the pistons
8
and the rotary plates
7
contact with one another in a slidable and airtight manner. Although not shown, air seals may be provided between the inner surfaces of the covers
20
and the pistons
8
and rotary plates
7
in case where the higher degree of airtightness is desired.
As noted above, in the example of
FIGS. 1-9
, the openings
22
to be used as either intake or exhaust ports are provided on the covers
20
. As shown in
FIG. 1
, the positional relationship between the openings
22
and the openings
19
are, for example, substantially right angle with each other with respect to the rotary shaft
2
.
In
FIG. 1
, a spring
24
is provided between the arm
5
b
and the piston
8
. The spring
24
exerts a relatively small spring force for functioning as a retaining spring. The purpose of the spring
24
is to assist the piston
8
to slide along the inner surface
18
a
when the rotor
3
rotates. Namely, in the high speed rotation of the driven equipment, a relatively large force of inertia is produced by the rotation of the piston, which results in the friction between the piston seals
15
and the inner surface
18
a
of the tubular casing
18
. Therefore, the spring
24
is provided to reduce the friction by reducing the force of inertia by the small spring force.
FIG. 6
is a schematic diagram showing an dimensional relationship within the rotary pump of the present invention. The curve of the inner surface
18
a
of the tubular casing
18
is determined by the following procedure. First, a circle K having a radius R
1
is illustrated. A tangential line AC having twice the length of the radius R
1
, i.e, the diameter L of the circle K is illustrated on the top point E of the circle K in a manner that the top point E and the center of the line AC contact each other.
A center point J is set on the line extended from the center point O of the circle K and the point E. An arc AC is illustrated from point A and point C with an arbitrary radius R
2
where the crossing point of the arc AC and the extension of the line OE is denoted as a point B. Then, the point A of the line AB is moved along the arc AC to the point B so that the point C is moved to the point D. The inner surface
18
a
of the tubular casing
18
is defined by the two dotted line which is outwardly apart from the curve ABCD by a distance X. The circle K is a trace of the center of the piston pin
14
while the curve ABCD is a trace of the piston reference points as will be explained later with respect to the second embodiment of the present invention. In the preferred embodiment, the radius R
1
is 50 mm, the length of line AC is 100 mm, and the distance X is 10 mm.
Based on the configuration in the foregoing, the rotary pump
17
of the present invention operate in the manner shown in
FIG. 7
,
8
and
9
. As shown in
FIGS. 1
,
7
-
9
, the space P is formed by the piston
8
and the inner surface
18
a
and the space Q is formed by the rotary plate
7
and the inner surface
18
a
. Because the inner surface
18
a
of the tubular casing has the oval shape, the inner spaces P and Q are different from one another. The degree of differences in the spaces Q and P varies when the rotary pump
17
rotates about the rotary shaft
2
. It is assumed that the rotary pump rotates in the counter-clockwise direction.
When the rotary pump rotates to the position shown in
FIG. 7
, the space P is contracted to the minimum size, thereby exhausting the air through the exhaust opening
19
. On the other hand, the space Q is expanded to the maximum size, thereby intaking the air through the intake opening
22
. This condition is identical to that shown in FIG.
1
.
Next,
FIG. 8
shows the situation where the rotary pump further rotates by 45 degrees in counter-clockwise from the condition shown in FIG.
7
. In this condition, the space P increases from the minimum size of
FIG. 7
, thereby intaking the air through the intake opening
22
. On the other hand, the space Q decreases form the maximum size of
FIG. 7
, thereby exhausting the air through the exhaust opening
19
. As shown in
FIG. 8
, the inner shape of the rotary pump changes by the rotation of the piston
8
about the pin
14
to accommodate the elliptical shape of the inner surface
18
a
. The coil spring
24
retains the piston
8
inwardly for reducing the friction between the seal
15
on the piston
8
and the inner surface
18
a.
The positional relationship between the rotary plate
7
and the piston
8
changes by the rotation of the piston
8
to accommodate to the elliptical shape of the inner surface
18
a
. In
FIG. 8
, because of the rotation of the piston
8
about the piston pin
14
, the contact position of the slide surface
11
a
of the piston
8
and the slide surface
7
b
of the rotary plate
7
changes significantly from that of FIG.
7
. The seals
15
maintain the airtight contact with the inner surface
18
a
of the tubular casing
18
.
FIG. 9
shows the situation where the rotary pump of the present invention further rotates in the counter-clockwise direction by 45 degrees from the condition shown in FIG.
8
. In this condition, the space P increases to the maximum to inhale the air from the intake opening
22
, while exhausting the air through the exhaust opening
19
. On the other hand, the space Q decreases to the minimum to exhale the air through the exhaust opening
19
, while intaking the air through the intake opening
22
.
Thus, since the intake and exhaust cycle is performed in the two inner spaces of the rotary pump during a quarter rotation, the rotary pump can achieve eight cycles of the intake and exhaust operations in one rotation.
As noted above, the seal
15
moves along with the inner surface
18
a
of the rotary pump. The up and down motion of the seal
15
is controlled by the elastic member
16
so as to maintain airtight contact between the piston
8
and the inner surface
18
a
of the tubular casing
18
. The coil spring
24
with the small spring force assists the smooth rotation of the piston
8
so that the seal
15
at the edge of the piston
8
slides along the inner surface
18
a.
Thus, the rotary pump of the present invention can intake and exhaust a large volume of air since one rotation thereof can perform eight cycles of the intake and exhaust operations. Moreover, the rotary pump of the present invention has a simple structure, which allows decrease in the size and reduction of the cost. Further, the rotary pump of the present invention can be used for any type of fluid such as liquid or gas.
FIGS. 10-14
show the second embodiment of the present invention with improved efficiency in the energy conversion. In the driven equipment of the first embodiment, the spring
24
is incorporated as shown in FIGS.
1
and
7
-
9
. However, the resistance caused by the spring produces an energy loss in the driven equipment. To reduce the energy loss, the driven equipment of the second embodiment no longer uses the spring. The size and shape of the inner surface of the driven equipment is carefully designed to reduce the friction between the piston seal and the inner surface in the high speed rotation.
Further, in the second embodiment, both intake openings and exhaust openings are provided on the tubular casing. As seen in
FIG. 1
, in the first embodiment, either intake or exhaust openings are provided on the tubular casing while the other openings are provided on the cover. The inventor found that the efficiency of the driven equipment is improved when both the intake and exhaust openings are formed on the tubular casing. To further improve the efficiency, in the second embodiment, rotary plate seals are additionally provided on the rotary plates.
FIG. 10
is a front view of the fluid machinery driven equipment having a tubular casing
118
. Typically, the driven equipment is a rotary pump. In the center of the tubular casing
118
, the rotary pump includes a rotary shaft
102
which is connected to a power transmission device (not shown). A rotor
103
is connected to the rotary shaft
102
. The rotor
103
has rotary plates
107
and pistons
108
at ends of arms in the same manner as described with reference to the first embodiment. The piston
108
is connected to each of the arms in a manner rotatable about a piston pin
114
.
Outer surface of the piston
108
and an outer surface of the rotary plate
107
are outwardly curved in a small degree. Both ends of the piston
108
are inwardly bent to form curved outer surfaces. Inner surfaces of the rotary plates
107
and the outer surfaces of the piston
108
slidably contact with one another. To maintain the airtightness between the piston
8
and the rotary plate
107
, as shown in
FIG. 10
, rotary plate seals
128
are provided on the rotary plate
107
. The rotary plate seals
128
are elastic seals formed in the grooves on the rotary plate in a similar manner described with respect to the piston seals
15
in the first embodiment. Further, in the same manner as described in the first embodiment, piston seals
115
are provided on the pistons
108
as shown in FIG.
10
.
The tubular casing
118
and the inner surface
118
a
thereof have an oval shape so that the diameter in the right/left direction is larger than that of the up/down direction. Therefore, the inner spaces in the right and left positions in the rotary pump of
FIG. 10
are greater than the spaces in the up and down positions. The tubular casing
118
has exhaust openings (or intake openings)
119
at two symmetrical locations relative to the rotary shaft
102
and intake openings (or exhaust openings)
122
at two symmetrical locations relative to the rotation shaft. The openings
119
and openings
122
are about 90 degrees apart from one another with respect to the rotation shaft
102
.
In
FIG. 10
, a curve
127
indicates a trace of the piston pin
114
, and a curve
124
indicates a reference casing curve which is a trace of reference points of the piston
108
. The reference points of the piston
108
are determined by the corners of a square in which each side of the square has a length equal to the distance between the piston pins
114
.
When the rotor
103
rotates by 45 degrees in the counter-clockwise, the rotary plates
107
and the pistons
108
are positioned in the manner shown in FIG.
11
. As shown in
FIGS. 12 and 13
, covers
120
are attached to the tubular casing
118
at the front and rear, respectively, so that inner surfaces of the covers
120
and the inner surface
118
a
of the tubular body create a cavity in the rotary pump. The covers
120
are attached to the tubular casing
118
through fastening members
123
. Although not shown, air seals may be provided between the inner surfaces of the covers
120
and the pistons
108
and rotary plates
107
.
FIG. 14
is a schematic diagram for showing a basic principle of defining the inner shape of the rotary pump of the present invention. The curve of the inner surface
118
a
of the tubular casing
118
is determined by the following procedure. First, a circle K having a radius R
1
is illustrate. The circle K corresponds to the curve
127
of
FIGS. 10 and 11
which is the trace of the piston pin
114
. A tangential line AC having twice the length of the radius R
1
, i.e, the diameter L of the circle K is illustrated on the top point E of the circle K in a manner that the top point E and the center of the line AC contact each other. A center point J is set on the line extended from the center point O of the circle K and the point E. An arc AC is illustrated from point A and point C with an arbitrary radius R
2
where the crossing point of the arc AC and the extension of the line OE is denoted as a point B.
Then, the point A of the line AB is moved along the arc AC to the point B so that the point C is moved to the point D, thereby forming a curve ABCD. The curve ABCD corresponds to the curve
124
of
FIG. 10
which is the reference casing curve. As noted above, the reference casing curve is the trace of reference points of the piston
108
. The reference points of the piston
108
are determined by the corners of the square where each side of square has a length equal to the distance between the piston pins
114
. The inner surface
118
a
of the tubular casing
118
is defined by the outermost curve L which is apart from the curve ABCD by a distance X.
Although only a preferred embodiment is specifically illustrated and described herein, it will be appreciated that many modifications and variations of the present invention are possible in light of the above teachings and within the purview of the appended claims without departing the spirit and intended scope of the invention.
Claims
- 1. A driven equipment for fluid machinery which is driven by an external power, comprising:a tubular casing having an inner surface which is substantially elliptic in shape; front and rear covers for covering the tubular casing through fastening means; a rotary shaft provided in the tubular casing and is supported by the front and rear covers, at least one end of the rotary shaft being projected from the cover to be connected to the external power; a rotor provided in the tubular casing and connected to the rotary shaft, the rotor comprising: a first arm extended from a center of the rotor to opposite directions; a piston rotatably connected to each end of the first arm through a piston pin and forming substantially a “T” shape with the first arm, the piston having an outwardly curved surface, and each end of the piston having an inwardly bent portion; a second arm extended from the center of the rotor to opposite directions in perpendicular to the first arm; a rotary plate provided at each end of the second arm and forming substantially a “T” shape, the rotary plate having an outwardly curved surface, and an inner surface at each end of the rotary plate slidably contacting an outward surface of the inwardly bent portion of the piston; piston seals elastically formed on the piston at around both edges thereof for air tightly contacting the inner surface of the tubular casing; and a spring provided between the second arm and the piston for reducing frictional forces between the piston seals and the inner surface of the tubular casing.
- 2. A driven equipment for fluid machinery as defined in claim 1, further comprising:first openings provided on the tubular casing at two positions which are symmetrical with one another relative to the rotation shaft; and second openings provided on the covers at two positions which are symmetrical with one another relative to the rotary shaft and about 90 degrees apart from the first openings; wherein when the first openings function as intake openings, the second openings function as exhaust openings, and vice versa.
- 3. A driven equipment for fluid machinery as defined in claim 1, wherein four spaces are created by the inner surface of the tubular casing and the rotor, two of which are spaces formed by the pistons at both ends of the first arm and the inner surface, and two other spaces are formed by the rotary plates at both ends of the second arm and the inner surface, wherein the sizes of the four spaces change by rotation of the rotor, thereby performing intake and exhaust actions for fluid.
- 4. A driven equipment for fluid machinery as defined in claim 1, wherein the elliptical shape of the inner surface of the tubular casing is determined by the following steps of:(1) drafting a circuit K with a radius R1 with respect to a center O, where the center C corresponds to the center of the rotation shaft, (2) drafting a straight line AC which is tangential to the circuit K at a center E of the line AC, (3) extending a line EO and drafting an arc ABC with respect to a center J on the line EO with a radius R2, where a point B is a cross point of the line EO and the art ABC, (4) moving the point A of the straight line AC along the arc ABC to the point B in a manner that the center E moves along the circle K, and drafting the trace of the point C of the line AC to form a curve ABCD, and (5) defining an outer curve which is a distance X outwardly apart from the curve ABCD, wherein the outer curve is the inner surface of the tubular casing, and the circle K is a trace of rotation of the piston pin and the curve ABCD is a reference casing curve.
US Referenced Citations (3)
Foreign Referenced Citations (2)
| Number |
Date |
Country |
| 2336292 |
Feb 1975 |
DE |
| 8803601 |
May 1988 |
WO |