Driven latch mechanism

Information

  • Patent Grant
  • 9328608
  • Patent Number
    9,328,608
  • Date Filed
    Friday, July 25, 2014
    10 years ago
  • Date Issued
    Tuesday, May 3, 2016
    8 years ago
Abstract
Implementations include a core barrel assembly having a driven latch mechanism. The driven latch mechanism can lock the core barrel assembly axially and rotationally relative to a drill string. The driven latch mechanism can include a plurality of wedge members positioned on a plurality of driving surfaces. Rotation of the drill string can cause the plurality of wedge members to wedge between an inner diameter of the drill string and the plurality of driving surfaces, thereby rotationally locking the core barrel assembly relative to the drill string. Implementations of the present invention also include drilling systems including such driven latch mechanisms, and methods of retrieving a core sample using such drilling systems.
Description
BACKGROUND

1. The Field of the Invention


Implementations of the present invention relate generally to drilling devices and methods that may be used to drill geological and/or manmade formations. In particular, implementations of the present invention relate to core barrel assemblies and to mechanisms for latching core barrel assemblies to a drill string.


2. The Relevant Technology


Exploration drilling can include retrieving a sample of a desired material (core sample) from a formation. Wireline drilling systems are one common type of drilling system for retrieving a core sample. In wireline drilling process, a core drill bit is attached to the leading edge of an outer tube or drill rod. A drill string is then formed by attaching a series of drill rods that are assembled together section by section as the outer tube is lowered deeper into the desired formation. A core barrel assembly is then lowered or pumped into the drill string. The core drill bit is rotated, pushed, and/or vibrated into the formation, thereby causing a sample of the desired material to enter into the core barrel assembly. Once the core sample is obtained, the core barrel assembly is retrieved from the drill string using a wireline. The core sample can then be removed from the core barrel assembly.


Core barrel assemblies commonly include a core barrel for receiving the core, and a head assembly for attaching to the wireline. Typically, the core barrel assembly is lowered into the drill string until the core barrel reaches a portion the outer tube or distal most drill rod. At this point a latch on the head assembly is deployed to restrict the movement of the core barrel assembly with respect to the drill rod. Once latched, the core barrel assembly is then advanced into the formation along with the drill rod, causing material to fill the core barrel.


One potential challenge can arise due to the interaction between the core barrel assembly and the drill string. For example, when the drill string is spinning, the inertia of the core barrel assembly can exceed the frictional resistance between the mating components such that the head assembly rotates at a lower rate than the drill rod or fails to rotate and remains stationary. In such a situation, the mating components can suffer sliding contact, which can result in abrasive wear.


Accordingly, there are a number of disadvantages in conventional wireline systems that can be addressed.


SUMMARY

One or more implementations of the present invention overcome one or more problems in the art with drilling tools, systems, and methods for effectively and efficiently latching a core barrel assembly to a drill string. For example, one or more implementations of the present invention include a core barrel assembly having a driven latch mechanism that can reliably lock the core barrel assembly in a fixed axial position within a drill string. Additionally, the drive latch mechanism can reduce or eliminate wear between mating components of the core barrel assembly and the drill string. In particular, the driven latch mechanism can rotationally lock the core barrel assembly relative to the drill string, thereby reducing or eliminating sliding contact (and associated wear) between mating components of the core barrel assembly and the drill string.


For example, one implementation of a core barrel head assembly includes a sleeve having a plurality of latch openings extending there through. The core barrel head assembly can also include a driving member positioned at least partially within the sleeve. The driving member can include a plurality of planar driving surfaces. Additionally, the core barrel head assembly can include a plurality of wedge members positioned on or against the plurality of planar driving surfaces. The plurality of wedge members can extend within the plurality of latch openings. The driving member can wedge the plurality of wedge members between an inner surface of the drill string and the plurality of planar driving surfaces, thereby preventing rotation of the core barrel head assembly relative to the drill string.


Additionally, another implementation of a core barrel head assembly can include a sleeve, a latch body moveably coupled to the sleeve, and a driving member positioned at least partially within the sleeve. The core barrel head assembly can also include a landing member positioned at least partially within the latch body. Further, the core barrel head assembly can include a plurality of wedge members positioned on the driving member. Axial movement of the driving member relative to the plurality of wedge members can move the plurality of wedge members radially relative to the sleeve between a latched position and a released position. Still further the core barrel head assembly can include a plurality of braking elements positioned on the landing member. Axial movement of the landing member relative to the plurality of braking elements can move the plurality of braking elements radially relative to the latch body between a retracted position and an extended position.


Furthermore, an implementation of a drilling system for retrieving a core sample can include a drill rod including a first annular recess extending into an inner diameter of the drill rod. Also, the drilling system can include a core barrel assembly adapted to be inserted within the drill rod. Additionally, the drilling system can include a driven latch mechanism positioned within the core barrel assembly. The driven latch mechanism can include a driving member including a plurality of planar driving surfaces, and a plurality of wedge members. Axial displacement of the driving member relative to the plurality of wedge members can push or force the plurality of wedge into the first annular recess of the drill rod, thereby axially locking the core barrel head assembly relative to the drill rod. Furthermore, rotation of the drill rod can cause the plurality of wedge members to rotationally lock the core barrel assembly relative to the drill rod.


In addition to the foregoing, a method of drilling can involve inserting a core barrel assembly within a drill string. The core barrel assembly can comprise a driven latch mechanism including a plurality of wedge members positioned on a plurality of planar driving surfaces. The method can further involve moving the core barrel assembly within the drill string to a drilling position. The method can also involve deploying the plurality of wedge members into an annular groove of the drill string. Additionally, the method can involve rotating the drill string thereby causing the plurality of wedge members to wedge between the inner diameter of the drill string and the plurality of planar driving surfaces. The wedging of the plurality of wedge members can rotationally lock the core barrel assembly relative to the drill string.


Additional features and advantages of exemplary implementations of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by the practice of such exemplary implementations. The features and advantages of such implementations may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features will become more fully apparent from the following description and appended claims, or may be learned by the practice of such exemplary implementations as set forth hereinafter.





DESCRIPTION OF THE DRAWINGS

In order to describe the manner in which the above-recited and other advantages and features of the invention can be obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. It should be noted that the figures are not drawn to scale, and that elements of similar structure or function are generally represented by like reference numerals for illustrative purposes throughout the figures. understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:



FIG. 1 illustrates a schematic view of a drilling system including a core barrel assembly having a driven latch mechanism in accordance with an implementation of the present invention;



FIG. 2 illustrates an enlarged view of the core barrel assembly of FIG. 1, further illustrating a head assembly and a core barrel;



FIG. 3 illustrates an exploded view of the head assembly of FIG. 2;



FIG. 4 illustrates a cross-sectional vie of the core barrel assembly of FIG. 2, taken along the line 4-4 of FIG. 2;



FIG. 5 illustrates a cross-sectional view of the core barrel assembly of FIG. 2 similar to FIG. 4, albeit with the driven latch mechanism in position for pumping the core barrel assembly within a drill string;



FIG. 6A illustrates a cross-sectional view of the core barely assembly of FIG. 5 taken along the line 6-6 of FIG. 5 in which a braking mechanism engages a drill rod having a first inner diameter;



FIG. 6B illustrates a cross-sectional view of the core barely assembly of FIG. 5 similar to FIG. 6A, albeit with the braking mechanism engaging a drill rod having a diameter larger than the first diameter;



FIG. 7 illustrates a cross-sectional view of the core barrel assembly similar to FIG. 4, albeit with the driven latch mechanism latched to the drill string;



FIG. 8 illustrates a cross-sectional view of the core barrel assembly of FIG. 7 taken along the line 8-8 of FIG. 7; and



FIG. 9 illustrates a cross-sectional view of the core barrel assembly similar to FIG. 4, albeit with the driven latch mechanism in a released position allowing for retrieval of the core barrel assembly from the drill string.





DETAILED DESCRIPTION

Implementations of the present invention are directed toward drilling tools, systems, and methods for effectively and efficiently latching a core barrel assembly to a drill string. For example, one or more implementations of the present invention include a core barrel assembly having a driven latch mechanism that can reliably lock the core barrel assembly in a fixed axial position within a drill string. Additionally, the drive latch mechanism can reduce or eliminate wear between mating components of the core barrel assembly and the drill string. In particular, the driven latch mechanism can rotationally lock the core barrel assembly relative to the drill string, thereby reducing or eliminating sliding contact (and associated wear) between mating components of the core barrel assembly and the drill string.


Assemblies, systems, and methods of one or more implementations can include or make use of a driven latch mechanism for securing a core barrel assembly at a desired position within a tubular member, such as a drill rod of a drill string. The driven latch mechanism can include a plurality of wedge members, and a driving member having a plurality of driving surfaces. The driving surfaces drive the wedge members to interact with an inner surface of a drill rod to latch or lock the core barrel assembly in a desired position within the drill string. Thereafter, rotation of the drill rod can cause the wedge members to wedge between the drive surfaces and the inner diameter of the drill rod, thereby rotationally locking the core barrel relative to the drill string.


Furthermore, one or more implementations provide a driven latch mechanism that can maintain a deployed or latched condition despite vibration and inertial loading of mating head assembly components due to drilling operations or abnormal drill string movement. Also, one or more implementations can provide a latch mechanism that does not disengage or retract unintentionally, and thus prevents the core barrel inner tube assembly from rising from the drilling position in a down-angled hole, or falling unannounced from an up-angled drill hole.


Additionally, one or more implementations can include a braking mechanism that can prevent the core barrel assembly from unintentionally sliding out of the drill string in an uncontrolled and possibly unsafe manner. In particular, the braking mechanism can include a landing member and a plurality of brake elements. The landing member can push the plurality of brake elements against an inner surface of a drill string, allowing the braking mechanism to stop axial movement of the core barrel assembly within or relative to the drill string. In one or more implementations, the landing member can include a taper such that varying the axial position of the landing member varies the radial position of the brake elements, thereby allowing the brake elements to maintain engagement with a variable inner diameter of a drill string.


For ease of reference, the driven latch mechanism shall be described with generally planar driving surfaces and spherical or ball-shaped wedge members. It will be appreciated that the driving members can have any number of driving surfaces with any desired shape, including, but not limited to, convex, concave, patterned or any other shape or configuration capable of wedging a wedge member as desired. Further, the wedge members can have any shape and configuration possible. In at least one example, a universal-type joint can replace the generally spherical wedge members, tapered planar drive surfaces, and accompanying sockets. Thus, the present invention can be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive.


In other words, the following description supplies specific details in order to provide a thorough understanding of the invention. Nevertheless, the skilled artisan would understand that the apparatus and associated methods of using the apparatus can be implemented and used without employing these specific details. Indeed, the apparatus and associated methods can be placed into practice by modifying the illustrated apparatus and associated methods and can be used in conjunction with any other apparatus and techniques. For example, while the description below focuses on core sample operations, the apparatus and associated methods could be equally applied in other drilling processes, such as in conventional borehole drilling, and may be used with any number or varieties of drilling systems, such as rotary drill systems, percussive drill systems, etc.


Further, while the Figures show six wedge members in the latching mechanism, any number of latches may be used. In at least one example, five ball-shaped wedge members will be used in a driven latch mechanism. Similarly, the precise configuration of components as illustrated may be modified or rearranged as desired by one of ordinary skill. Additionally, while the illustrated implementations specifically discuss a wireline system, any retrieval system may be used, such as a drill string.


As shown in FIG. 1, a drilling system 100 may be used to retrieve a core sample from a formation 102. The drilling system 100 may include a drill string 104 that may include a drill bit 106 (for example, an open-faced drill bit or other type of drill bit) and/or one or more drill rods 108. The drilling system 100 may also include an in-hole assembly, such as a core barrel assembly 110. The core barrel assembly 110 can include a driven latch mechanism configured to lock the core barrel assembly at least partially within a distal drill rod or outer tube 112, as explained in greater detail below. As used herein the terms “down” and “distal end” refer to the end of the drill string 104 including the drill bit 106, whether the drill string be oriented horizontally, at an upward angle, or a downward angle relative to the horizontal. While the terms “up” or “proximal” refer to the end of the drill string 104 opposite the drill bit 106.


The drilling system 100 may include a drill rig 114 that may rotate and/or push the drill bit 106, the core barrel assembly 110, the drill rods 108 and/or other portions of the drill string 104 into the formation 102. The drill rig 114 may include, for example, a rotary drill head 116, a sled assembly 118, a slide frame 120 and/or a drive assembly 122. The drill head 116 may be coupled to the drill string 104, and can allow the rotary drill head 116 to rotate the drill bit 106, the core barrel assembly 110, the drill rods 108 and/or other portions of the drill string 104. If desired; the rotary drill head 116 may be configured to vary the speed and/or direction that it rotates these components. The drive assembly 122 may be configured to move the sled assembly 118 relative to the slide frame 120. As the sled assembly 118 moves relative to the slide frame 120, the sled assembly 118 may provide a force against the rotary drill head 116, which may push the drill bit 106, the core barrel assembly 110, the drill rods 108 and/or other portions of the drill string 104 further into the formation 102, for example, while they are being rotated.


It will be appreciated, however, that the drill rig 114 does not require a rotary drill head, a sled assembly, a slide frame or a drive assembly and that the drill rig 114 may include other suitable components. It will also be appreciated that the drilling system 100 does not require a drill rig and that the drilling system 100 may include other suitable components that may rotate and/or push the drill bit 106, the core barrel assembly 110, the drill rods 108 and/or other portions of the drill string 104 into the formation 102. For example, sonic, percussive, or down hole motors may be used.


The core barrel assembly 110 may include an inner tube or core barrel 124, and a head assembly 126. The head assembly 126 can include a driven latch mechanism 128. As explained in greater detail below, the driven latch mechanism 128 can lock the core barrel 124 within the drill string 104, and particularly to the outer tube 112. Furthermore, the driven latch mechanism 128 can rotationally lock the core barrel assembly 110 to the drill string 104 thereby preventing wear due to rotation or sliding between the mating components of the driven latch mechanism 128 and the drill string 104.


Once the core barrel 124 is locked to the outer tube 112 via the driven latch mechanism 128, the drill bit 106, the core barrel assembly 110, the drill rods 108 and/or other portions of the drill string 104 may be rotated and/or pushed into the formation 102 to allow a core sample to be collected within the core barrel 124. After the core sample is collected, the core barrel assembly 110 may be unlocked from the outer tube 112 and drill string 104. The core barrel assembly 110 may then be retrieved, for instance using a wireline retrieval system, while the drill bit 106, the outer tube 112, one or more of the drill rods 108 and/or other portions of the drill string 104 remain within the borehole.


The core sample may be removed from core barrel 124 of the retrieved core barrel assembly 110. After the core sample is removed, the core barrel assembly 110 may be sent back and locked to the outer tube 112. With the core barrel assembly 110 once again locked to the outer tube 112, the drill bit 106, the core barrel assembly 110, the drill rods 108 and/or other portions of the drill string 104 may be rotated and/or pushed further into the formation 102 to allow another core sample to be collected within the core barrel 124. The core barrel assembly 110 may be repeatedly retrieved and sent back in this manner to obtain several core samples, while the drill bit 106, the outer tube 11 one or more of the drill rods 108 and/or other portions of the drill string 104 remain within the borehole. This may advantageously reduce the time necessary to obtain core samples because the drill string 104 need not be tripped out of the borehole for each core sample.


During some drilling processes, hydraulic pressure may be used to pump and/or advance core barrel assembly 110 within the drill string 104 to the outer tube 112. In particular, hydraulic pressure may be used to pump the core barrel assembly 110 within the drill string 104 to the outer tube 112 when the drill string 104 is oriented upwardly relative to the horizontal (as shown in FIG. 1), is oriented generally horizontally, or oriented with a slight downward. angle relative to the horizontal. To allow for the core barrel assembly 110 to be pumped to the outer tube 112, the core barrel assembly 110 can further include a sea 130 configured to form a seal with one or more portions of the drill string 104, such as, inner walls of the drill rods 108. The seal 130 may be further configured as a pump-in seal, such that pressurized fluid pumped into the drill string 104 behind the seal 130 may cause hydraulic pressure behind the seal 130 to pump and/or advance the core barrel assembly 110 within and along the drill string 104 until the core barrel assembly 110 reaches a desired position (for instance, a position at which the core barrel assembly 110 can be connected to the outer tube 112 as discussed above).


In one or more implementations, the core barrel assembly 110 can further include a braking mechanism 132. The braking mechanism 132 can help prevent unintended expulsion of the core barrel assembly 110 from the drill string 104. Thus, the braking mechanism 132 can allow wireline retrieval systems to be used in up-hole drilling operations without the danger of the core barrel assembly 110 sliding out of the drill string 104 in an uncontrolled and possibly unsafe manner. Accordingly, the braking mechanism 132 can resist unintended removal or expulsion of the core barrel assembly 110 from the borehole by deploying the braking element into a frictional arrangement between an inner wall of the casing or drill string 104 (or borehole).



FIG. 2 illustrates the core barrel assembly 110 in greater detail. As previously mentioned, the core barrel assembly 110 can include a head assembly 126 and a core barrel 124. The head assembly 126 can include a spear head assembly 200 adapted to couple with an overshot, which in turn can be attached to a wireline. Furthermore, the head assembly 126 can include a first member 202 that can house the braking mechanism 132 and a sleeve 204 that can house the driven latch mechanism 128.



FIGS. 3 and 4 and the corresponding text, illustrate or describe a number of components, details, and features of the core barrel assembly 110 shown in FIGS. 1 and 2. In particular, FIG. 3 illustrates an exploded view of the head assembly 126. While FIG. 4 illustrates a side, cross-sectional view of the core barrel assembly 110 taken along the line 4-4 of FIG. 2. FIG. 4 illustrates the driven latch mechanism 128 and the braking mechanism 132 in a fully deployed state. As shown by FIGS. 3 and 4, the driven latch mechanism 128 can include a plurality of wedge members 300. In one or more implementations, the wedge members 300 can comprise a spherical shape or be roller balls, as shown in FIGS. 3 and 4. The wedge members 300 may be made of steel, or other iron alloys, titanium and titanium alloys, compounds using aramid fibers, lubrication impregnated nylons or plastics, combinations thereof, or other suitable materials.


The wedge members 300 can be positioned on or against a driving member 302. More particularly, the wedge members 300 can be positioned on generally planar or flat driving surfaces 304. As explained in greater detail below, the generally planar configuration of the driving surfaces 304 can allow the wedge members 300 to be wedged between the driving member 302 and the inner diameter of a drill string to rotationally lock the core barrel assembly 110 to the drill string.



FIGS. 3 and 4 further illustrate that the wedge members 300 can extend through latch openings 306 extending through the generally hollow sleeve 204. The latch openings 306 can help hold or maintain the wedge members 300 in contact with the driving surfaces 304, which in turn can ensure that axial movement of the driving member 302 relative to the sleeve 204 results in radial displacement of the wedge members 300. As explained in greater detail below, as the driving member 302 moves axially toward or farther into the sleeve 204, the driving surfaces 304 can force the wedge members 300 radially outward of the sleeve 204 to a deployed or latched position (FIG. 7). Along similar lines, as the driving member 302 moves axially away from, or out of the sleeve 204, the wedge members 300 can radially retract at least partially into the sleeve 204 into a released position (FIG. 5).


In one or more implementations, the driving member 302, and more particularly the planar driving surfaces 304 can have a taper, as shown in FIGS. 3 and 4. The taper can allow the driving member 302 to force the wedge balls 300 radially outward as the driving member 302 moves axially closer to, or within, the sleeve 204. Also, the taper of the driving member 302 can allow the wedge members 300 to radially retract at least partially into the sleeve 204 when the driving member 302 moves axially away from the sleeve 204. One will appreciate that the driving member 302 (and driving surfaces 304) need not be tapered. For example, in alternative implementations, the driving member 302 can include a first portion have a smaller diameter, a transition portion, and a second portion with a larger diameter. In other words, the driving member 302 can include a step between a smaller diameter and a larger diameter instead of a taper along its length. The smaller diameter portion of the driving member 302 of such implementations can allow the wedge balls 300 to retract at least partially into the sleeve 204, and the larger diameter of the driving member 302 can force the wedge balls 300 radially outward in order to lock or latch to the drill string.



FIGS. 3 and 4 further illustrate that in addition to the driving member 302, the first member 202 can include a latch body 308. The latch body 308 can be generally hollow and can house the braking mechanism 132. As shown by FIGS. 3 and 4, the braking mechanism 132 can include a plurality of braking elements 310. In one or more implementations, the braking element 310 can comprise a spherical shape or be roller balls, as shown in FIGS. 3 and 4. In other examples, the braking elements 310 may be flat, may have a cylindrical shape, or may have a wedge shape, to increase the braking surface area of the braking elements 310 against a casing and/or a conical surface. In other embodiments, the braking elements 310 may be of any shape and design desired to accomplish any desired braking characteristics.


The braking elements 310 may be made of any material suitable for being used as a compressive friction braking element. For example, the braking elements 310 may be made of steel, or other iron alloys, titanium and titanium alloys, compounds using aramid fibers, lubrication impregnated nylons or plastics, or combinations thereof. The material used for any braking element 310 can be the same or different than any other braking element 310.


The braking elements 310 can be positioned on a landing member 312. More particularly, the braking elements 310 can be positioned on generally conical or tapered landing member 312. As explained in greater detail below, the generally conical or tapered shape of the landing member 312 can allow the braking elements 310 to engage or maintain contact with an inner diameter of a drill rod that varies along its length. For example, some drill rods or casing have a first smaller inner diameter at their ends (near couplings) and a larger inner diameter near their center. The larger inner diameter can allow for increase fluid flow around a core barrel assembly, and thus, faster tripping in and tripping out of a core barrel assembly. The tapered or conical configuration of the landing member 312 can allow axial translation of the landing member 312 to result in radial displacement of the braking element 310, which in turn allow the braking elements 310 to move in and out of contact with the inner surface of an associated drill rod to prevent unintended or unwanted expulsion, as will be discussed in more detail below.



FIGS. 3 and 4 further illustrate that the braking elements 310 can extend through brake openings 314 extending through the generally first member 308. The brake openings 314 can help hold or maintain the braking elements 310 in contact with the tapered surface of the landing member 312, which in turn can ensure that axial movement of the landing member 312 relative to the latch body 308 results in radial displacement of the braking elements 310. As explained in greater detail below, as the landing member 312 moves axially out of or away from the latch body 308, the tapered surface(s) of the landing member 312 can force the braking elements 310 radially outward of the latch body 308 to an extended position. Along similar lines, as the landing member 312 moves axially toward or farther into the latch body 308, the braking element 310 can radially refract at least partially into the latch body 308 into a retracted position.


One will appreciate hat the sleeve 204, first member 202, and landing member 312 can all be coupled together. In particular, as shown by FIGS. 3 and 4, in at least one implementation a first pin 320 can extend through a mounting channel 322 in the landing member 312. The first pin 320 can then extend through mounting slots 324 of the first member 202 (and more particularly the driving member 302). From the mounting slots 324, the first pin 320 can extend into mounting holes 326 in the sleeve 204. Thus, the landing member 312 and the sleeve 204 can be axially fixed relative to each other. On the other hand, the mounting slots 324 can allow the landing member 312 and the sleeve 204 to move axially relative to the first member 202 or vice versa. Axial movement between the first member 202 and the sleeve 204 can cause the driving surfaces 304 to move the wedge members 300 radially outward and inward. While axial movement between the landing member 312 and the first member 202 can cause the landing member 312 to move the braking elements 310 radially outward and inward.



FIGS. 3 and 4 further illustrate that the head assembly 126 can include a biasing member 330. The biasing member 330 can bias the landing member 312 axially away from the driving member 302. The biasing of the landing member 312 away from the driving member 302 can tend to force the landing member 312 against the braking elements 310, thereby biasing the braking elements 310 radially outward. Similarly, in one or more implementations, the biasing member 330 can bias the driving member 302 against the wedge members 300, thereby biasing the wedge members 300 radially outward. The biasing member 330 can comprise a mechanical (e.g., spring), magnetic, or other mechanism configured to bias the landing member 312 axially away from the driving member 302. For example, FIGS. 3 and 4 illustrate that the biasing member 330 can comprise a coil spring.


The head assembly 126 can further include a brake head 340. The brake head 340 can be coupled to the landing member 312. In one or more implementations, the brake head 340 can comprise a stop configured to prevent the brake elements 310 from leaving the tapered surface of the landing member 312.


Still further, FIGS. 3 and 4 illustrate that the head assembly 126 can include a fluid control member 342. The fluid control member 342 can include a piston 344 and a shaft 345. The shaft 345 can include a channel 346 defined therein. A piston pin 348 can extend within the channel 346 and be coupled to pin holes 350 within the first member 202 (and particularly the driving member 302). The channel 346 can thus allow the piston 344 to move axially relative to the driving member 302. In particular, as explained in greater detail below, piston can move axially relative to the first member 202 in and out of engagement with a seal or bushing 352 forming a valve. The interaction of the fluid control member 342 will be discussed in more detail hereinafter.


In conjunction with the fluid control member 342 and seal 130, the core barrel assembly 110 can include various additional features to aid in pumping the core barrel assembly 110 down a drill string 104. In particular, the sleeve 204 can include one or more fluid ports 370 extending through the sleeve 204. Additionally, the sleeve 204 can include one or more axial grooves 372 extending at least partially along the length thereof. Similarly, first member 202 can include one or more fluid ports 376 extending through the first member 202. Furthermore, the first member 202 can include one or more axial grooves 378 extending at least partially along the length thereof.


One will appreciate in light of the disclosure herein that the fluid ports 372, 376 can allow fluid to flow from the outside diameter of the head assembly 126 into the center or bore of the head assembly 126. The axial grooves 378 on the other hand can allow fluid to flow axially along the head assembly 126 between the outer diameter of the head assembly 126 and the inner diameter of a drill string 104. In addition to the fluid ports and axial grooves, the core barrel assembly 110 can include a central bore 380 that can allow fluid to flow internally through the core barrel assembly 110, past the seals 130.


As previously mentioned, the head assembly 126 can include a spearhead assembly 200. The spear head assembly 200 can be coupled to the first member 202 via a spearhead pin 360. The spearhead pin 360 can extend within a mounting channel 362 in the spearhead assembly 200, thereby allowing the spearhead assembly 200 to move axially relative to the first member 202.


Referring now to FIGS. 5-9, operation of the core barrel assembly 110, driven latch mechanism 128, and braking mechanism 132 will now be described in greater detail. As previously mentioned, in one or more implementations of the present invention the core barrel assembly 110 can be pumped into a drill string 104 using hydraulic pressure. For example, FIG. 5 illustrates the core barrel assembly 110 as it is tripped into or down a drill string 104.


Specifically, FIG. 5 illustrates that the piston 344 is positioned against the bushing 352, thereby sealing off the central bore 380. Furthermore, the seal 130 seals the core barrel assembly 110 to the drill string 104. Thus, in the pump-in configuration shown by FIG. 5, fluid cannot pass through past the bushing 352 and piston 344 through the central bore 380 or past the seal 130 between in an annulus between the core drill barrel assembly 110 and the inner diameter 502 of the drill string 104. As such, as fluid is pumped into the drill string 344, the hydraulic pressure acts on the core barrel assembly 110 (piston 344 etc.) and pushes the core barrel assembly 110 down the drill string 104.


As the core barrel assembly 110 is pumped down the drill string 104, the pump-in force can act on the piston 344, causing the proximal end of the piston channel 346 to engage the piston pin 344. Thus, the pump in force can exert a distally directed force on the piston 344 and the first member 202 (as the first member 202 is secured to the piston pin 348). At the first member 202 is pushed distally by the pump in force, it can cause the braking elements 310 to ride distally along the tapered surface of the landing member 312. This is at least in part because the biasing member 330 exerts a proximal force on the landing member 312. The axial movement of the braking elements 310 (in the distal direction) relative to the tapered surface of the landing member 312 can force the braking elements radially outward until the braking elements 310 ride on the inner diameter 502 of the drill string 104 as shown by FIG. 5. Thus, the biasing member 330 can help retain the braking elements 310 in an extended position as the core barrel assembly 110 is pumped down the drill string 104.


With the braking elements 310 riding on the inner diameter 502 of the drill string 104, any further distal movement of the braking elements 310, piston pin 348, and piston 344 relative to the landing member 312 and sleeve 204 can be prevented. Thus, the piston 344 can be prevented from being pushed through the bushing 152 by the pump in force. Additionally, the driving member 302 can be prevented from moving axially in the distal direction relative to the sleeve 204, which can retain in a radially retracted portion. Maintaining the wedge members 300 at least partially retracted within the sleeve 204 can reduce friction between the drill string 104 and the latch mechanism 128, thereby increasing the speed with which the core barrel assembly 110 can be tripped down the drill string 104.


One will appreciate in light of the disclosure herein that the braking mechanism 132 can help prevent unintentional proximal movement of the core barrel assembly 110. For example, if proximal force were to act on the core barrel assembly 110 (such as gravity overcoming pump in force due to a hydraulic problem), the landing member 312 can be urged proximally relative the braking elements 310 thereby forcing the braking elements 310 radially outward against the drill string 104 and braking or stopping proximal movement of the core barrel assembly 110. Thus, the braking mechanism 132 can act as a safety feature to prevent unintentional or undesired falling of the core barrel assembly 110.


Additionally, as previously mentioned, the braking mechanism 132 can allow for variation in the inner diameter of the drill string 104, such as that associate with quick decent casings and drill rods. In particular, FIG. 6A illustrates a cross-sectional view of the head assembly 126 taken along the line 6-6 of FIG. 5 (i.e., through the braking elements 310). As shown by FIG. 6A, the landing member 312 can force the braking elements 310 radially outward into contact with the inner diameter 502 of the drill string 104. In at least one implementation, the landing member 312 can have a generally circular cross-section as shown by FIG. 6A, this call allow the braking elements 310 to roll along the drill string 104 as the core barrel assembly 110 is pumped down the drill sting 104.


As previously mentioned, in one or more implementations, the landing member 312 can include a taper such that varying the diameter of the landing member 312 varies along its length. This in combination with the biasing member 330 can ensure that the barking elements 310 maintain engagement with the inner diameter of the drill string 104 even if it varies. For example, FIG. 6B illustrates a cross-sectional view similar to that of FIG. 6A albeit with the braking mechanism positioned at a point in the drill string 104 having an inner diameter 02 larger that the inner diameter D1 of the drill string 104 shown in FIG. 6A. As shown, despite the change in inner diameter 502 of the drill string 104, the landing member 312 can ensure that the braking elements 310 maintain engagement with the inner diameter 502 of the drill string 104.


Referring now to FIG. 7, once the in-hole assembly or core barrel assembly 110 has reached its desired location within the drill string 104; the distal end of the core barrel assembly 110 can pass through the last drill rod and land on a landing ring that sits on the top of outer tube 112. At this point, the braking elements 310 can be axially aligned with a first annular groove 700 in the drill string 104. At this point the biasing member 330 can more fully deploy, pushing the landing member 312 proximally thereby pushing the braking elements 310 radially outward into the first annular groove 700.


Furthermore, once the core barrel assembly 110 has landed on the landing ring of the outer tube 112, the first member 202 can move distally toward (and in some implementations at least partially into) the sleeve 204. This movement can cause the driving surfaces 304 drive the wedge members 300 radially outward (through the latch openings 306) and into engagement with the inner diameter 104 of the drill string 104. In particular, the wedge members 300 can be driven into engagement with a second annular groove 702 formed in the inner surface 502 of the drill string 104.


With the wedge members 300 deployed in the second groove 702, the driven latch mechanism 128 can lock the core barrel assembly 110 axially in the drilling position. In other words, the wedge members 300 and the annular groove 702 can prevent axial movement of the core barrel assembly 110 relative to the outer tube 112. In particular, the driven latch mechanism 128 can withstand the drilling loads as a sample enters the core barrel 124. Additionally, the drive latch mechanism 128 can maintain a deployed or latched condition despite vibration and inertial loading of mating head assembly components, due to drilling operations or abnormal drill string movement.


One will appreciate that the when in the drilling position, the biasing member 330 can force the driving member 302 distally, thereby forcing the wedge members 300 radially outward into the deployed position. Thus, the driven latch mechanism 128 can help ensure that the wedge members 300 do not disengage or retract unintentionally such that the core barrel inner tube assembly rises from the drilling position in a down-angled hole, preventing drilling, or falls un-announced from an up-angled drill hole. At the same time, the biasing member 330 can force the landing member 312 proximately, thereby forcing the braking members 310 radially outward into the extended position.


In addition to the foregoing, FIG. 7 further illustrates that when e drilling position, the piston 344 can pass distally beyond the bushing 352. This can allow fluid to flow within the central bore 380, past the seal 130. Thus, the fluid control member 342 can allow drilling fluid to reach the drill bit 106 to provide flushing and cooling as desired or needed during a drilling process. One will appreciate in light of the disclosure herein that a pressure spike can be created and then released as the core barrel reaches the drilling position and the piston 344 passes beyond the bushing 352. This pressure spike can provide an indication to a drill operator that the core barrel assembly 110 has reached the drilling position, and is latched to the drill string 104.


In addition to axially locking or latching the core barrel assembly 110 in a drilling position, the driven latch mechanism 128 can rotationally lock the core barrel assembly 110 relative to the drill string 104 such that the core barrel assembly 110 rotates in tandem with the drill string 104. As previously mentioned, this can prevent wear between the mating components of the core barrel assembly 110 and the drill string 104 (i.e., the wedge members 300, the braking elements 310, the inner diameter 502 of the drills string 104, landing shoulder at the distal end of the core barrel, landing ring at the proximal end of the outer tube 112).


In particular, referring to FIG. 8 as the drill string 104 rotates (indicated by arrow 800), the core barrel assembly 110 and the driving member 302 can have an inertia (indicated by arrow 804) that without out the driven latch mechanism 128 may tend to cause the core barrel assembly 110 not to rotate or rotate a slow rate then the drill string 104. As shown by FIG. 8, however, rotation of the drill string 104 causes the wedge members 300 to wedge in between the driving surfaces 304 of the driving member 302 and the inner diameter 502 of the drill string 104 as the rotation of the drill string 104 tries to rotate the wedge members 300 relative to the driving member 302 (indicated by arrow 802). The wedging or pinching of the wedge members 300 in between the driving surfaces 304 and the inner diameter 502 of the drill string 104 and rotationally lock the driving member 302 (and thus the core barrel assembly 110) relative to the drill string 104. Thus, the driven latch mechanism 128 can ensure that the core barrel assembly 110 rotates together with the drill string 104.


One will appreciate in light of the disclosure herein that configuration of the driving surfaces 304 and the inner diameter 502 of the drill string 104 can create a circumferential taper as shown by FIG. 8. In other words, the distance between the inner diameter 502 of the drill string 104 and the driving member 302 can vary circumferentially. This circumferential taper causes the wedge members 300 to wedge in between or become pinched between the drill string 104 and the driving member 302, thereby rotationally locking the core barrel assembly 110 to the drill string 104.


As shown by FIG. 8, in at least one implementation, the circumferential taper between the drill string 104 and the driving surfaces can be created by the planar configuration of the driving surfaces 304. In alternative implementations, the driving surfaces 304 may not have a planar surface. For example, the driving surfaces 304 can have a concave, convex, rounded, v-shape, or other configuration as desired. In any event, one will appreciate that the configuration of the driving surfaces 304 can create a circumferential taper between the driving member 302 and the inner diameter 502 of the drill string 104. In yet further implementations, the driving member 302 can have a generally circular cross-section, and the inner diameter 502 of the drill string 104 can include a configuration to create a circumferential taper between the inner diameter 502 of the drill string 104 and the driving surfaces 304 or driving member 302.


One will appreciate in light of the disclosure herein that the braking mechanism 132 can act to prevent proximal acting forces from moving the core barrel assembly 110 out of the drilling position, thereby preventing unintended or unwanted expulsion. For example, during drilling a pressure pocket or other anomaly in the formation 102 may be encountered that creates a proximately directed force during the drilling process. Such a force could force the piston 344 and driving member 302 proximately, which could potentially release the driven latch mechanism 128 (i.e., cause the wedge members 300 to radially retract out of the annular groove 702). This in turn could allow the proximal force to potentially shoot the core barrel assembly proximally up the drill string 104, or blow out the core barrel assembly 110. The braking mechanism can prevent such an occurrence.


In particular, if a proximally acting or disturbance force, acts to move the first member proximately relative to the sleeve 204 it will force the landing member 312 proximately. This in turn can force the tapered surface(s) of the landing member 312 to drive the braking elements 310 radially outward through the brake openings 314 and into engagement with the associated drill rod. The engagement between the braking elements 310 and the drill string 104 can act to counter the proximally acting or disturbance force thereby braking or stopping the head assembly 126 and preventing unwanted or unintended expulsion. The braking mechanism 132 can deployed by a proximally acting force, while the driven latch mechanism 128 is deployed or retracted, and/or during pumping in or retracting of the core barrel assembly 110.


At some point is may be desirable to retrieve the core barrel assembly 110, such as when a core sample has been captured. Referring to FIG. 9, in order to retrieve the core barrel assembly 110, a wireline 145 can be used to lower an overshot assembly 900 into engagement with the spearhead assembly 200. The wireline can then be used to pull the overshot 900 and spearhead assembly 200 proximally. This in turn can act to draw the first member 202 proximately away from the sleeve 204. Proximal movement of the first member 202 can cause the braking elements 310 to retract within the latch body 308, as the move along the landing member 312. Furthermore, proximal movement of the first member 202 can cause the wedge members 300 to radially retract as they move along the driving member 302. Once the first member 202 has been pulled proximately sufficiently to retract the braking mechanism 132 and the driven latch mechanism 128, the distal end of the mounting slots 324 can engage the pin 320, thereby pulling the sleeve 204 proximately.


As previously alluded to, numerous variations and alternative arrangements may be devised by those skilled in the art without departing from the spirit and scope of this description. For example, core barrel assembly in accordance with the present invention can include a conventional latching mechanism (such as spring-driven pivoting latches or mechanical link latches) to provide axial locking, and a driven latch mechanism to provide rotational locking. For example, this could be done by modifying a head assembly component such as a lower latch body to include roller elements that engage the inner diameter of the landing ring which sits in the outer tube. In such a configuration, the lower latch body can include driving surfaces and a retainer member that allows the roller elements to become wedged between the driving surfaces and the outer tube, thereby rotationally locking the lower latch body to the inner diameter of the landing ring. Thus, the present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims
  • 1. A core barrel head assembly, comprising: a sleeve;a latch body moveably coupled to the sleeve;a driving member positioned at least partially within the sleeve;a landing member positioned at least partially within the latch body;a plurality of wedge members positioned on the driving member, wherein axial movement of the driving member relative to the plurality of wedge members moves the plurality of wedge members radially relative to the sleeve between a latched position and a released position, wherein the plurality of wedge members rotationally and axially lock the core barrel head assembly relative to a drill string when in the latched position; anda plurality of braking elements positioned on the landing member, wherein axial movement of the landing member relative to the plurality of braking elements moves the plurality of braking elements radially relative to the latch body between a retracted position and an extended position.
  • 2. The core barrel head assembly as recited in claim 1, wherein the wedge members of the plurality of wedge members are generally spherical.
  • 3. The core barrel head assembly as recited in claim 2, further comprising a plurality of generally planar driving surfaces extending along the driving member, wherein the plurality of wedge members are positioned on the plurality of generally planar driving surfaces.
  • 4. The core barrel head assembly as recited in claim 3, further comprising a biasing member, wherein the biasing member biases the planar driving surfaces against the plurality of wedge members.
  • 5. The core barrel head assembly as recited in claim 4, wherein the biasing member biases the landing member against the braking elements.
  • 6. The core barrel head assembly as recited in claim 1, wherein the landing member has a generally conical shape, such that the landing member is configured to push the braking elements into a plurality of extended positions, thereby allowing the braking elements to maintain engagement with an inner diameter of a drill rod that varies along the length of the drill rod.
  • 7. The core barrel head assembly as recited in claim 1, wherein the sleeve has a plurality of latch openings extending there through, wherein the plurality of wedge members radially extend within the plurality of latch openings.
  • 8. A drilling system for retrieving a core sample, comprising: a drill rod including a first annular recess extending into an inner diameter of the drill rod;a core barrel assembly adapted to be inserted within the drill rod; anda driven latch mechanism positioned within the core barrel assembly, the driven latch mechanism comprising a driving member including a plurality of planar driving surfaces and a plurality of wedge members positioned on the plurality of planar driving surfaces; anda biasing member configured to bias the plurality of planar driving surfaces against the plurality of wedge members;wherein the axial displacement of the driving member relative to the plurality of wedge members moves the plurality of wedge members radially between a latched position and a released position, wherein, in the latched position, the plurality of wedge members are received within the first annular recess to axially lock the core barrel head assembly relative to the drill rod, and wherein when the plurality of wedge members are in the latched position, rotation of the drill rod causes the plurality of wedge members to rotationally lock the core barrel assembly relative to the drill rod.
  • 9. The drilling system as recited in claim 8, further comprising a braking mechanism including a plurality of braking elements biased toward the inner diameter of the drill rod whereby the plurality of braking elements engage the inner diameter of the drill rod as the core barrel assembly travels within the drill rod.
  • 10. The drilling system as recited in claim 9, further comprising a generally conical landing member adapted to bias the braking elements radially outward and maintain the braking elements in contact with a variable inner diameter of a drill string as the core barrel assembly travels down the drill string.
  • 11. The drilling system as recited in claim 9, wherein the wedge members of the plurality of wedge members comprise generally spherical balls.
  • 12. The drilling system as recited in claim 9, wherein the braking elements of the plurality of braking elements comprise generally spherical balls.
  • 13. The drilling system as recited in claim 8, further comprising a second annular groove extending into the inner diameter, the second annular groove being configured to receive the plurality of braking elements.
  • 14. The drilling system as recited in claim 13, wherein movement of the plurality of braking elements into the second annular groove causes the driving member to force the wedge members from a retracted position radially outward into the first annular groove.
  • 15. A method of drilling comprising: inserting a core barrel assembly within a drill string, the core barrel assembly comprising a driven latch mechanism including a plurality of wedge members positioned on a plurality of planar driving surfaces of a driving member;moving the core barrel assembly within the drill string to a drilling position;axially moving the driving member to deploy the plurality of wedge members from a released position to a latched position within an annular groove of the dril string, wherein deployment of the plurality of wedge members to the latched position axially locks the core barrel assembly relative to the drill string;deploying a plurality of braking elements into a second annular groove extending into the inner diameter of the drill string; andwith the plurality of wedge members in the latched position, rotating the drill string to cause the plurality of wedge members to wedge between the inner diameter of the drill string and the plurality of planar driving surfaces, thereby rotationally locking the core barrel assembly relative to the drill string.
  • 16. The method as recited in claim 15, further comprising: lowering an overshot onto a spearhead of the core barrel assembly; andpulling on the overshot to retract the core barrel assembly;wherein the pulling retracts the plurality of planar driving surfaces thereby allowing the wedge members to at least partially retract into the core barrel assembly.
  • 17. The method as recited in claim 15, further comprising advancing the drill string into a formation thereby causing a core sample to enter the core barrel assembly.
  • 18. A core barrel head assembly, comprising: a sleeve;a latch body moveably coupled to the sleeve;a driving member positioned at least partially within the sleeve and having a plurality of generally planar driving surfaces;a landing member positioned at least partially within the latch body;a plurality of generally spherical wedge members positioned on the plurality of generally planar driving surfaces of the driving member, wherein axial movement of the driving member relative to the plurality of wedge members moves the plurality of wedge members radially relative to the sleeve between a latched position and a released position; anda plurality of braking elements positioned on the landing member, wherein axial movement of the landing member relative to the plurality of braking elements moves the plurality of braking elements radially relative to the latch body between a retracted position and an extended position.
  • 19. The core barrel head assembly as recited in claim 18, further comprising a biasing member, wherein the biasing member biases the planar driving surfaces against the plurality of wedge members.
  • 20. The core barrel head assembly as recited in claim 19, wherein the biasing member biases the landing member against the braking elements.
  • 21. The core barrel head assembly as recited in claim 18, wherein the landing member has a generally conical shape, such that the landing member is configured to push the braking elements into a plurality of extended positions, thereby allowing the braking elements to maintain engagement with an inner diameter of a drill rod that varies along the length of the drill rod.
  • 22. The core barrel head assembly as recited in claim 18, wherein the plurality of wedge members rotationally and axially lock the core barrel head assembly relative to a drill string when in the latched position.
  • 23. The core barrel head assembly as recited in claim 18, wherein the sleeve has a plurality of latch openings extending there through, wherein the plurality of wedge members radially extend within the plurality of latch openings.
  • 24. A method of drilling comprising: inserting a core barrel assembly within a drill string, the core barrel assembly comprising a driven latch mechanism including a plurality of generally spherical wedge members positioned on a plurality of planar driving surfaces of a driving member;moving the core barrel assembly within the drill string to a drilling position;axially moving the driving member to deploy the plurality of wedge members from a released position to a latched position within an annular groove of the drill string;deploying a plurality of braking elements into a second annular groove extending into the inner diameter of the drill string; andwith the plurality of wedge members in the latched position, rotating the drill string to cause the plurality of wedge members to wedge between the inner diameter of the drill string and the plurality of planar driving surfaces, thereby rotationally locking the core barrel assembly relative to the drill string.
  • 25. The method as recited in claim 24, further comprising; lowering an overshot onto a spearhead of the core barrel assembly; andpulling on the overshot to retract the core barrel assembly;wherein the pulling retracts the plurality of planar driving surfaces thereby allowing the plurality of wedge members to at least partially retract into the core barrel assembly.
  • 26. The method as recited in claim 24, further comprising advancing the drill string into a formation thereby causing a core sample to enter the core barrel assembly.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. Utility patent application Ser. No. 12/898,878, filed Oct. 6, 2010, entitled “Driven Latch Mechanism” which claims priority to and the benefit of U.S. Provisional Application No. 61/249,544, filed Oct. 7, 2009, entitled “Driven Latch Mechanism.” This application also claims priority to and the benefit of U.S. Provisional Application No. 61/287,106, filed Dec. 16, 2009, entitled “Driven Latch Mechanism for High Productivity Core Drilling.” The contents of the above-referenced patent application are hereby incorporated by reference in their entirety.

US Referenced Citations (89)
Number Name Date Kind
1643730 Wild Sep 1927 A
2510865 Cooper Jun 1950 A
2521886 Walker Sep 1950 A
2829868 Pickard Apr 1958 A
3092191 Austin Jun 1963 A
3103981 Harper Sep 1963 A
3115188 Cochran Dec 1963 A
3126064 Miller Mar 1964 A
3225845 Koontz Dec 1965 A
3333647 Karich Aug 1967 A
3340939 Lindelof Sep 1967 A
3004614 De Witt Oct 1967 A
3346059 Svendsen Oct 1967 A
3363705 Jensen Jan 1968 A
3461981 Casper Aug 1969 A
3494418 Young Feb 1970 A
3543870 Martinsen Dec 1970 A
3667558 Lambot Jun 1972 A
3977482 Reed et al. Aug 1976 A
3990524 Sweeney Nov 1976 A
4418770 Lambot Dec 1983 A
4466497 Soinski et al. Aug 1984 A
4664204 Nenkov et al. May 1987 A
4800969 Thompson Jan 1989 A
4823872 Hopmann Apr 1989 A
4832138 Hallez May 1989 A
4834198 Thompson May 1989 A
4930587 Young et al. Jun 1990 A
5020612 Williams Jun 1991 A
5253720 Radford et al. Oct 1993 A
5267620 Lee Dec 1993 A
5311950 Spektor May 1994 A
5325930 Harrison Jul 1994 A
5339915 Laporte et al. Aug 1994 A
5662182 McLeod et al. Sep 1997 A
5785134 McLeod et al. Jul 1998 A
5799742 Soinski et al. Sep 1998 A
5934393 Marshall Aug 1999 A
5992543 Soinski et al. Nov 1999 A
D420013 Warren et al. Feb 2000 S
6019181 Soinski et al. Feb 2000 A
6029758 Novacovicci et al. Feb 2000 A
6039129 McLeod Mar 2000 A
6059053 McLeod May 2000 A
6089335 Able Jul 2000 A
6206114 McLeod Mar 2001 B1
6371205 Langan et al. Apr 2002 B1
6425449 Marshall Jul 2002 B1
6564885 Attwater May 2003 B2
6708784 Borg Mar 2004 B1
7296638 Beach et al. Nov 2007 B2
7314101 Beach Jan 2008 B2
7363967 Burris, II et al. Apr 2008 B2
7730965 Jordan et al. Jun 2010 B2
D622293 Drenth et al. Aug 2010 S
D622294 Drenth et al. Aug 2010 S
D622741 Drenth et al. Aug 2010 S
D624564 Drenth et al. Sep 2010 S
7841400 Wells et al. Nov 2010 B2
D632309 Coyle, Jr. Feb 2011 S
7900716 Ibrahim et al. Mar 2011 B2
7967085 Drenth Jun 2011 B2
D644668 Drenth Sep 2011 S
D649167 Drenth Nov 2011 S
8051924 Drenth Nov 2011 B2
8051925 Drenth Nov 2011 B2
8261857 Able et al. Sep 2012 B2
8333255 Drenth Dec 2012 B2
8485280 Drenth et al. Jul 2013 B2
8794355 Drenth et al. Aug 2014 B2
8869918 Drenth Oct 2014 B2
20040216927 Beach Nov 2004 A1
20050034894 Beach et al. Feb 2005 A1
20050241825 Burris et al. Nov 2005 A1
20080246273 Anderson Oct 2008 A1
20090032256 Sun et al. Feb 2009 A1
20090173542 Ibrahim et al. Jul 2009 A1
20090260882 Drenth Oct 2009 A1
20090283328 Drivdahl et al. Nov 2009 A1
20110079435 Drenth et al. Apr 2011 A1
20110079436 Drenth et al. Apr 2011 A1
20110100719 Mildren et al. May 2011 A1
20120261132 Wilson Oct 2012 A1
20130105227 Drenth May 2013 A1
20130192901 Iondov Aug 2013 A1
20130313024 Drenth et al. Nov 2013 A1
20140174828 Muntz et al. Jun 2014 A1
20140193136 Nishizawa et al. Jul 2014 A1
20150014064 Drenth Jan 2015 A1
Foreign Referenced Citations (67)
Number Date Country
2008222974 Sep 2008 AU
2009240632 Oct 2009 AU
336334 May 2011 AU
336335 May 2011 AU
2011253774 Dec 2011 AU
2011253777 Dec 2011 AU
2010303446 May 2012 AU
2010339878 Jul 2012 AU
2010339959 Jul 2012 AU
2012203543 Jul 2012 AU
11 2012 008034 2 Apr 2011 BR
11 2012 0147870 Jul 2011 BR
DI 7102188-4 Dec 2012 BR
DI 7102187-6 Jan 2013 BR
2679933 Sep 2008 CA
2720917 Oct 2009 CA
2776923 Apr 2011 CA
2784532 Jul 2011 CA
140072 May 2013 CA
140075 May 2013 CA
88412 Apr 2011 CL
00762-2011 Jul 2011 CL
2012-01618 Jul 2011 CL
7023 Jun 2014 CL
101675205 Mar 2010 CN
10278224 Apr 2011 CN
201130069118.7 Feb 2012 CN
102770618 Nov 2012 CN
102791954 Nov 2012 CN
ZL200980112769 Dec 2014 CN
104563933 Apr 2015 CN
201080057031 Apr 2015 CN
001846866-01 Apr 2011 EM
1757770 Feb 2007 EP
2132395 Dec 2009 EP
2271818 Jan 2011 EP
2486223 Aug 2012 EP
2513412 Oct 2012 EP
2513413 Oct 2012 EP
992246 May 1965 GB
414771 Jun 2011 NZ
414773 Jun 2011 NZ
600697 Jul 2011 NZ
588411 Jul 2013 NZ
599635 Sep 2013 NZ
607376 Oct 2014 NZ
446.2012 Apr 2011 PE
823.2012 Jul 2011 PE
851.2011 Oct 2011 PE
2989 Apr 2012 PE
WO-9503475 Feb 1995 WO
WO-03038232 May 2003 WO
WO-2008109522 Sep 2008 WO
WO-2009108113 Sep 2009 WO
WO-2009132125 Oct 2009 WO
WO-2010096860 Sep 2010 WO
WO-2011044314 Apr 2011 WO
WO-2011084587 Jul 2011 WO
WO-2011084589 Jul 2011 WO
WO-2014159395 Oct 2014 WO
200905921 Sep 2008 ZA
201203285 Apr 2011 ZA
201205268 Jul 2011 ZA
201007050 Dec 2011 ZA
F201100523 Mar 2012 ZA
F201100524 Mar 2012 ZA
201205269 Sep 2013 ZA
Non-Patent Literature Citations (77)
Entry
Non-Final Office Action issued by the U.S. Patent & Trademark Office on Jun. 5, 2015 for U.S. Appl. No. 13/943,460, filed Jul. 16, 2013 and published as US-2013-0313024-A1 on Nov. 28, 2013 (Inventor—Drenth, et al. // Applicant—Boart Longyear) (7 pages).
Extended European Search Report issued by the European Patent Office on Jun. 26, 2015 for application EP 08731246.8, filed on Mar. 3, 2008 (Applicant—Boart Longyear // Inventor—Drenth) (5 pages).
Non-Final Office Action dated Aug. 1, 2011 from U.S. Appl. No. 12/528,949, filed Aug. 27, 2009 and issued as U.S. Pat. No. 8,333,255 on Dec. 18, 2012 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (8 pages).
Amendment “A” and Response to Office Action filed Oct. 27, 2011 for U.S. Appl. No. 12/528,949, filed Aug. 27, 2009 and issued as U.S. Pat. No. 8,333,255 on Dec. 18, 2012 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (28 pages).
Applicant Initiated Interview Summary issued Nov. 1, 2011 for U.S. Appl. No. 12/528,949, filed Aug. 27, 2009 and issued as U.S. Pat. No. 8,333,255 on Dec. 18, 2012 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (3 pages).
Final Office Action issued Apr. 5, 2012 for U.S. Appl. No. 12/528,949, filed Aug. 27, 2009 and issued as U.S. Pat. No. 8,333,255 on Dec. 18, 2012 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (9 pages).
Amendment and Response to Final Office Action filed Jun. 14, 2012 for U.S. Appl. No. 12/528,949, filed Aug. 27, 2009 and issued as U.S. Pat. No. 8,333,255 on Dec. 18, 2012 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (21 pages).
Applicant Initiated Interview Summary issued Jun. 20, 2012 for U.S. Appl. No. 12/528,949, filed Aug. 27, 2009 and issued as U.S. Pat. No. 8,333,255 on Dec. 18, 2012 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (3 pages).
Notice of Allowance issued Oct. 3, 2012 for U.S. Appl. No. 12/528,949, filed Aug. 27, 2009 and issued as U.S. Pat. No. 8,333,255 on Dec. 18, 2012 (Inventor—Drenth; Applicant—Lonqyear TM, Inc.) (5 pages).
Notice of Allowance issued Nov. 6, 2012 for U.S. Appl. No. 12/528,949, filed Aug. 27, 2009 and issued as U.S. Pat. No. 8,333,255 on Dec. 18, 2012 (Inventor—Drenth; Applicant—Lon!=)year TM, Inc.) (2 pages).
Issue Notification issued Nov. 28, 2012 for U.S. Appl. No. 12/528,949, filed Aug. 27, 2009 and issued as U.S. Pat. No. 8,333,255 on Dec. 18, 2012 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (1 page).
Preliminary Amendment filed Apr. 23, 2013 for U.S. Appl. No. 13/717,421, filed Dec. 17, 2012 and published as U.S. 2013/0105227 on May 2, 2013 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (3 pages).
Non-Final Office Action issued Apr. 16, 2015 for U.S. Appl. No. 13/717,421, filed Dec. 17, 2012 and published as US 2013/0105227 on May 2, 2013 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (7 pages).
International Search Report and Written Opinion issued Aug. 8, 2008 for International Patent Application No. PCT/US2008/055656, which was filed Mar. 3, 2008 and published as WO 2008/109522 on Sep. 12, 2008 (Inventor—Drenth; Applicant—Boart Longyear) (6 pages).
International Preliminary Report on Patentability issued Sep. 8, 2009 for International Patent Application PCT/US2008/055656, which was filed on Mar. 3, 2008 and published as WO 2008/109522 on Sep. 12, 2008 (Inventor—Drenth; Applicant—Boart Longyear) (4 pages).
Non-Final Office Action issued Jan. 6, 2011 for U.S. Appl. No. 12/427,586, filed Apr. 21, 2009 and issued as U.S. Pat. No. 7,967,085 on Jun. 28, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (13 pages).
Notice of Allowance issued Feb. 25, 2011 for U.S. Appl. No. 12/427,586, filed Apr. 21, 2009 and issued as U.S. Pat. No. 7,967,085 on Jun. 28, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (7 pages).
Issue Notification issued Jun. 28, 2011 for U.S. Appl. No. 12/427,586, filed Apr. 21, 2009 and issued as U.S. Pat. No. 7,967,085 on Jun. 28, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (1 page).
First Action Interview Pilot Program Pre-Interview Communication dated Jul. 8, 2011 from U.S. Appl. No. 13/094,581, filed Apr. 26, 2011 (Inventor—Drenth; Applicant—Longyear Tm, Inc.)(4 pages).
Notice of Allowance and Examiner's Amendment issued Aug. 25, 2011 for U.S. Appl. No. 13/094,581, filed Apr. 26, 2011 and issued as U.S. Pat. No. 8,051,925 on Nov. 8, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (8 pages).
Issue Notification issued Oct. 19, 2011 for U.S. Appl. No. 13/094,581, filed Apr. 26, 2011 and issued as U.S. Pat. No. 8,051,925 on Nov. 8, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (1 page).
First Action Interview Pilot Program Pre-Interview Communication dated Jul. 1, 2011 from U.S. Appl. No. 13/094,674, filed Apr. 26, 2011 and issued as U.S. Pat. No. 8,051,924 on Nov. 8, 2011 (Inventor—Drenth; Applicant—Longyear Tm, Inc.) (4 pages).
Notice of Allowance issued Aug. 19, 2011 for U.S. Appl. No. 13/094,674, filed Apr. 26, 2011 and issued as U.S. Pat. No. 8,051,924 on Nov. 8, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (4 pages).
Issue Notification issued Nov. 8, 2011 for U.S. Appl. No. 13/094,674, filed Apr. 26, 2011 and issued as U.S. Pat. No. 8,051,924 on Nov. 8, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (1 page).
International Search Report and Written Opinion issued Oct. 28, 2009 for International Patent Application PCT/US2009/041435, which was filed on Apr. 22, 2009 and published as WO 2009/132125 on Oct. 29, 2009 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (6 pages).
International Preliminary Report on Patentability issued Oct. 26, 2010 by the International Searching Authority for International Patent Application PCT/US2009/041435, which was filed on Apr. 22, 2009 and published as WO 2009/132125 on Oct. 29, 2009 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (4 pages).
Preliminary Amendment filed Sep. 27, 2011 for U.S. Appl. No. 12/898,878, filed Oct. 6, 2010 and published as U.S. 2011/0079435 on Apr. 7, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (10 pages).
Restriction Requirement issued Dec. 21, 2012 for U.S. Appl. No. 12/898,878, filed Oct. 6, 2010 and published as U.S. 2011/0079435 on Apr. 7, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (6 pages).
Response to Restriction Requirement filed Jan. 22, 2013 for U.S. Appl. No. 12/898,878, filed Oct. 6, 2010 and published as U.S. 2011/0079435 on Apr. 7, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (10 pages).
Non-Final Office Action issued Apr. 26, 2013 for U.S. Appl. No. 12/898,878, filed Oct. 6, 2010 and published as U.S. 2011/0079435 on Apr. 7, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (7 pages).
Amendment and Response to Non-Final Office Action filed Jul. 26, 2013 for U.S. Appl. No. 12/898,878, filed Oct. 6, 2010 and published as U.S. 2011/0079435 on Apr. 7, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (17 pages).
Final Office Action issued Sep. 26, 2013 for U.S. Appl. No. 12/898,878, filed Oct. 6, 2010 and published as U.S. 2011/0079435 on Apr. 7, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (7 pages).
Amendment and Response to Final Office Action filed Jan. 27, 2014 for U.S. Appl. No. 12/898,878, filed Oct. 6, 2010 and published as U.S. 2011/0079435 on Apr. 7, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (14 pages).
Notice of Allowance issued Mar. 31, 2014 for U.S. Appl. No. 12/898,878, filed Oct. 6, 2010 and published as U.S. 2011/0079435 on Apr. 7, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (5 pages).
Issue Notification issued Aug. 5, 2014 for U.S. Appl. No. 12/898,878, filed Oct. 6, 2010 and published as US 2011/0079435 on Apr. 7, 2011 (Inventor—Drenth; Applicant—Boart Longyear) (1 page).
International Search Report and Written Opinion issued Jun. 10, 2011 for International Patent Application PCT/US2010/051747, which was filed Oct. 7, 2010 and published as WO 2011/044314 on April 14, 2014 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (7 pages).
International Preliminary Report on Patentability issued Apr. 11, 2012 for International Patent Application PCT/US2010/051747, which was filed Oct. 7, 2010 and published as WO 2011/044314 on April 14, 2014 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (5 pages).
International Search Report mailed Jun. 20, 2014 by the International Searching Authority for International Patent Application No. PCT/US2014/023405, which was filed Mar. 11, 2014 and published as WO 2014/159395 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (4 pages).
Notice of Allowance and Examiner's Amendment issued Aug. 1, 2011 for U.S. Appl. No. 29/383,554, filed Jan. 19, 2011 and issued as U.S. Pat. No. D649,167 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-7).
Notice of Allowance issued Sep. 20, 2011 for U.S. Appl. No. 29/383,554, filed Jan. 19, 2011 and issued as U.S. Pat. No. D649,167 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (7 pages).
Notice of Allowance issued Oct. 17, 2011 for U.S. Appl. No. 29/383,554, filed Jan. 19, 2011 and issued as U.S. Pat. No. D649,167 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (2 pages).
Issue Notification issued Nov. 22, 2011 for U.S. Appl. No. 29/383,554, filed Jan. 19, 2011 and issued as U.S. Pat. No. D649,167 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (1 page).
Notice of Allowance issued Apr. 6, 2011 for U.S. Appl. No. 29/383,340, filed Jan. 14, 2011 and issued as U.S. Pat. No. D644,668 on Sep. 6, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (7 pages).
Response to Notice of Allowance filed Jul. 1, 2011 for U.S. Appl. No. 29/383,340, filed Jan. 14, 2011 and issued as U.S. Pat. No. D644,668 on Sep. 6, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (3 pages).
Supplemental Notice of Allowance issued Jul. 11, 2011 for U.S. Appl. No. 29/383,340, filed Jan. 14, 2011 and issued as U.S. Pat. No. D644,668 on Sep. 6, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (2 pages).
Amendment “A” and Response to Office Action filed Jul. 14, 2011 for U.S. Appl. No. 29/383,340, filed Jan. 14, 2011 and issued as U.S. Pat. No. D644,668 on Sep. 6, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (5 pages).
Issue Notification issued Sep. 6, 2011 for U.S. Appl. No. 29/383,340, filed Jan. 14, 2011 and issued as U.S. Pat. No. D644,668 on Sep. 6, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (1 page).
Non-Final Office Action issued Aug. 6, 2012 for U.S. Appl. No. No. 12/968,127, filed Dec. 14, 2010 and issued as U.S. Pat. No. 8,485,280 on Jul. 16, 2013 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (10 pages).
Amendment in Response to Non-Final Office Action filed Nov. 5, 2012 for U.S. Appl. No. 12/968,127, filed Dec. 14, 2010 and issues as U.S. Pat. No. 8,485,280 on Jul. 16, 2013 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (13 pages).
Final Office Action issued Dec. 21, 2012 for U.S. Appl. No. 12/968,127, filed Dec. 14, 2010 and issued as U.S. Pat. No. 8,485,280 on Jul. 16, 2013 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (11 pages).
Amendment in Response to Final Office Action filed Feb. 21, 2013 for U.S. Appl. No. 12/968,127, filed Dec. 14, 2010 and issued as U.S. Pat. No. 8,485,280 on Jul. 16, 2013 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (16 pages).
Supplemental Amendment filed Mar. 1, 2013 for U.S. Appl. No. 12/968,127, filed Dec. 14, 2010 and issued as U.S. Pat. No. 8,485,280 on Jul. 16, 2013 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (9 pages).
Notice of Allowance, Examiner Interview Summary, and Examiner's Amendment filed Mar. 15, 2013 for U.S. Appl. No. 12/968,127, filed Dec. 14, 2010 and issued as U.S. Pat. No. 8,485,280 on Jul. 16, 2013 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (8 pages).
Issue Notification issued Jul. 16, 2013 for U.S. Appl. No. 12/968,127, filed Dec. 14, 2010 and issued as U.S. Pat. No. 8,485,280 on Jul. 16, 2013 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (1 page).
Preliminary Amendment filed May 5, 2014 for U.S. Appl. No. 13/943,460, filed Jul. 16, 2013 and published as US 2013/0313024 on Nov. 28, 2013 (Inventor—Drenth; Applicant—Boart Longyear) (7 pages).
Non-Final Office Action issued Jun. 5, 2015 for U.S. Appl. No. 13/943,460, filed Jul. 16, 2013 and published as US 2013/0313024 on Nov. 28, 2013 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (8 pages).
International Search Report and Written Opinion issued Jul. 27, 2011 for International Patent Application PCT/US2010/060744, which was filed on Dec. 16, 2010 and published as WO 2011/084589 on Jul. 14, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (6 pages).
International Preliminary Report on Patentability issued Jun. 19, 2012 for International Patent Application PCT/US2010/060744, which was filed on Dec. 16, 2010 and published as WO 2011/084589 on Jul. 14, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (4 pages).
Non-Final Office Action issued Jul. 18, 2013 for U.S. Appl. No. 12/968,994, filed Dec. 15, 2010 and issued as U.S. Pat. No. 8,859,918 on Oct. 28, 2014 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (9 pages).
Response to Non-Final Office Action filed Oct. 17, 2013 for U.S. Appl. No. 12/968,994, filed Dec. 15, 2010 and issued as U.S. Pat. No. 8,859,918 on Oct. 28, 2014 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (10 pages).
Non-Final Office Action issued Apr. 1, 2014 for U.S. Appl. No. 12/968,994, filed Dec. 15, 2010 and issued as U.S. Pat. No. 8,859,918 on Oct. 28, 2014 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (8 pages).
Response to Non-Final Office Action filed May 5, 2014 for U.S. Appl. No. 12/968,994, filed Dec. 15, 2010 and issued as U.S. Pat. No. 8,859,918 on Oct. 28, 2014 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (8 pages).
Notice of Allowance issued Jul. 7, 2014 for U.S. Appl. No. 12/968,994, filed Dec. 15, 2010 and issued as U.S. Pat. No. 8,859,918 on Oct. 28, 2014 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (5 pages).
Issue Notification issued Oct. 28, 2014 for U.S. Appl. No. 12/968,994, filed Dec. 15, 2010 and issued as U.S. Pat. No. 8,859,918 on Oct. 28, 2014 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (1 page).
International Search Report and Written Opinion issued Jul. 27, 2011 for International Patent Application PCT/US2010/060742, which was filed on Dec. 16, 2010 and published as WO 2011/084587 on Jul. 14, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (6 pages).
International Preliminary Report on Patentability issued Jun. 19, 2012 by the International Searching Authority for International Patent Application No. PCT/US2010/060742, which was filed on Dec. 16, 2010 and published as WO 2011/084587 on Jul. 14, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (4 pages).
Notice of Allowance issued Apr. 6, 2011 for U.S. Appl. No. 29/383,561, filed Jan. 19, 2011 and issued as U.S. Pat. No. D643,859 on Aug. 23, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (7 pages).
Supplemental Notice of Allowance issued Jul. 11, 2011 for U.S. Appl. No. 29/383,561, filed Jan. 19, 2011 and issued as U.S. Pat. No. D643,859 on Aug. 23, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (2 pages).
Issue Notification issued Aug. 3, 2011 for U.S. Appl. No. 29/383,561, filed Jan. 19, 2011 and issued as U.S. Pat. No. D643,859 on Aug. 23, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (1 page).
Notice of Allowance issued Apr. 8, 2011 for U.S. Appl. No. 29/383,572, filed Jan. 19, 2011 and issued as U.S. Pat. No. D643,443 on Aug. 16, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (7 pages).
Issue Notification issued Jul. 27, 2011 for U.S. Appl. No. 29/383,572, filed Jan. 19, 2011 and issued as U.S. Pat. No. D643,443 on Aug. 16, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (1 page).
Notice of Allowance and Examiner's Amendment issued May 26, 2011 for U.S. Appl. No. 29/383,623, filed Jan. 20, 2011 and issued as U.S. Pat. No. D647,540 on Oct. 25, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (7 pages).
Notice of Allowance issued Aug. 4, 2011 for U.S. Appl. No. 29/383,623, filed Jan. 20, 2011 and issued as U.S. Pat. No. D647,540 on Oct. 25, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (7 pages).
Issue Notification issued Oct. 5, 2011 for U.S. Appl. No. 29/383,623, filed Jan. 20, 2011 and issued as U.S. Pat. No. D647,540 on Oct. 25, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (1 page).
Non Final Office Action issued Jul. 17, 2015 for U.S. Appl. No. 13/803,820, filed Mar. 14, 2013 (Inventor—Drenth; Applicant—Lonyear TM, Inc.) (8 pages).
Final Office Action issued on Nov. 17, 2015 for U.S. Appl. No. 13/717,421, filed Dec. 17, 2012 and published as US-2013-0105227-A1 on May 2, 2013 (Applicant—Boart Longyear // Inventor—Drenth) (7 pages).
Final Office Action issued on Jan. 29, 2016 for U.S. Appl. No. 13/803,820, filed Mar. 14, 2013 and published as US-2013-0192901-A1 on Aug. 1, 2013 (Applicant—Boart Longyear // Inventor—Iondov) (8 pages).
Related Publications (1)
Number Date Country
20140332279 A1 Nov 2014 US
Provisional Applications (2)
Number Date Country
61249544 Oct 2009 US
61287106 Dec 2009 US
Continuations (1)
Number Date Country
Parent 12898878 Oct 2010 US
Child 14341128 US