1. Field of the Invention
The invention relates to a driving method for a switching device in which an organic bistable material is disposed between two electrodes, and more particularly to a switching device for driving an organic electroluminescent display panel, or a high-density memory or the like.
2. Description of Related Art
In recent years, there has been remarkable progress in the properties of organic electronic materials. In particular, with regard to so-called organic bistable materials that exhibit a switching phenomenon in which if a voltage is applied to the material then the circuit current suddenly increases at no less than a certain voltage. Studies have been carried out into application to switching devices for driving organic EL (electroluminescent) display panels, high-density memories and so on.
Yang et al., in an article entitled “Organic bistable light-emitting devices” in Applied Physics Letters, Jan. 21, 2002 (Appl. Phys. Lett. 80, (2002) 362) describe a bistable electrical device having two outer electrodes and a core of organic electronic material that contains a thin film of metal. This device has two states, conducting and non-conducting, which are both stable for a long time and within a wide range of applied voltages that do not exceed a write (positive) or erase (negative) voltage. The two states differ in their conductivities by a factor of 107.
The above-mentioned Yang et al. article is entirely incorporated herein by reference.
Yang et al. also describe a bistable electrical device combined with a polymer LED (PLED) to make a memory device that has both an electrical and an optical readout.
Yang et al. do not disclose using the OBLED as a display except where the OBLED's are in either a fully-light-emitting state (at 4 volts after being driven to a conducting state by voltage above 6 volts) or an fully-non-light-emitting state (at 4 volts before being driven to a conducting state by voltage above 6 volts).
International Published Application WO 02/37500 to Yang et al. (the entire subject matter and contents of which are incorporated herein by reference) also describes the use of bistable electrical devices for memory cells. This publication notes that threshold switching and memory phenomena have been demonstrated in both organic and inorganic thin-film semiconductor materials such as amorphous chalcogenide semiconductor, amorphous silicon, organic material and ZnSe—Ge heterostructures, and describes their use in memory devices.
This publication also notes that a number of organic functional materials have attracted attention for potential use in light emitting diodes and triodes (citing J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature, 347, 539 (1990), and Y. Yang et al., U.S. Pat. No. 5,563,424, Oct. 8, 1996, incorporated herein by reference). The publication further notes that electroluminescent polymers are one of the organic functional materials that have been investigated for use in display applications.
Various organic complexes are known for use as organic bistable materials that exhibit such a nonlinear response. For example, R. S. Potember et al. have carried out trial manufacture of a switching device having two stable resistance values to a voltage using a Cu-TCNQ (copper-tetracyanoquinodimethane) complex (R. S. Potember et al., Appl. Phys. Lett. 34, (1979) 405).
Kumai et al. have observed switching behavior due to nonlinear response using a single crystal of a K-TCNQ (potassium-tetracyanoquinodimethane) complex (Kumai et al., Kotai Butsuri (Solid State Physics), 35 (2000) 35).
Adachi et al. have formed a Cu-TCNQ complex thin film using a vacuum deposition method, elucidated the switching behavior thereof, and carried out studies into the possibility of application to an organic EL matrix (Adachi et al., Proceedings of the Japan Society of Applied Physics, Spring 2002, Vol. 3, 1236).
Incorporated herein in their entirely by reference, along with references cited therein, are the following: Yang et al., Organic bistable electrical devices and their applications, Polymer Preprints 2002, 43(2), 512; Yang et al., Nonvolatile bistability of organic/metal-nanocluster/organic system, Appl. Phys. Lett. vol. 82 no. 9, p. 1419 (Mar. 3, 2003); Yang et al., Organic electrical bistable electrical devices and rewritable memory cells, Appl. Phys. Lett. vol. 80 no. 16, p. 2997 (Apr. 22, 2002).
As mentioned above, Yang et al. have shown that bistable behavior can be obtained.
This behavior can be obtained by forming a thin film of, or dispersing fine particles of, a material having a high electrical conductance such as gold, silver, aluminum, copper, nickel, magnesium, indium, calcium or lithium in a material having a low electrical conductance such as aminoimidazole dicarbonitrile (AIDCN), aluminum quinoline, polystyrene or polymethyl methacrylate (PMMA).
The invention relates to a driving method for such devices, or other bistable devices, and to a switching device in which an organic bistable material is disposed between two electrodes and is used as a switching device for driving an organic EL display panel, preferably in a high-density memory or the like.
That is, a “switching” operation can be carried out by applying to the organic bistable material a voltage not less than Vth2 (switching on) or not more than Vth1 (switching off). The voltage of no more than Vth1 or no less than Vth2 can be applied as a voltage pulse.
The invention contemplates that the switching device is connected in series with an organic light emitting diode. By holding the voltage at the bias voltage Vb, the organic light emitting diode can be held in an ON or OFF state, and by applying a voltage no less than Vth2 or no more than Vth1, a switching operation can be carried out.
However, if such a constitution is adopted for each of the pixels of a passive matrix display, then whether the emission of light is on or off for each pixel is set within the duty time, and then subsequently that state is held during the frame period. As a result, the need for emission of light with high brightness within the duty time, which was a shortcoming of conventional passive matrixes, is eliminated, and the light emission efficiency and the lifetime of the panel can be improved.
The above-described switching has the following drawbacks. There are only two states, ON and OFF, and hence only two light emission states are possible; it is thus not possible to achieve, with a single pixel, gradation of light levels, which is required for many displays. Moreover, the electrical resistance of the light emitter increases with the operating time, and hence the current is not constant with an applied voltage. In order to make the light emission lifetime long, it would be desirable to have the driving current, not the voltage, constant, but with the driving method described above this cannot be achieved.
One object of the invention is to drive the pixels with constant current, and another is to achieve a gradation of the instantaneous luminosity of each pixel.
Preferably in the invention a switching device includes an organic bistable material disposed between two electrodes, with means for controlling the value of the current flowing through the device, whereby pixel light emission state gradation and constant current control become possible. More specifically, the invention contemplates a driving method for a switching device that includes at least two electrodes and an organic bistable material that is disposed between the electrodes and, graduated electrical resistance, with switching a steady bias voltage Vb to the bistable electrical device, to which are added voltage pulses according to at least one of the following methods: In the first, a pulse of constant width (for example, a fixed 30 μs in duration) is applied in addition to the bias voltage. This results, after the end of the pulse, in a conductance of the bistable material for the duration of the period in which the bias voltage is applied, which depends upon the voltage level of the pulse. Therefore, by varying the voltage level of the pulse, the conductance and therefore the current, during the time after the pulse ends but while the bias voltage is still being applied, are varied. This of course leads to a gradation of the light emitted by an individual LED during a frame.
In the second method, a pulse is applied that has a fixed voltage (for example, 2 volts above the bias voltage) but is of variable width (for example, between 20 and 50 μs). This results in a variable device conductance (after the end of the pulse, while the bias voltage is still being applied) that is a function of the pulse width.
There are no particular limitations on the substrate 10. It is preferable to use a conventional publicly-known glass substrate or the like.
There are no particular limitations on the electrode layers 21a and 21b. It is possible in general to select a metallic material such as aluminum, gold, silver, nickel, iron or copper, an inorganic material such as ITO or carbon, an organic material such as a conjugated organic material or a liquid crystal, a semiconductor material such as silicon, or the like as appropriate.
In the invention there are many examples of the organic bistable material that may be used in the organic bistable material layer 32. These include aminoimidazole compounds, dicyano compounds, pyridone compounds, styryl compounds, stilbene compounds, butadiene compounds, and so on.
Moreover, it is preferable for these organic bistable materials to contain an electron-donating functional group and an electron-accepting functional group in a single molecule. Examples of electron-donating functional groups are —SCH3, —OCH3, —NH2, —NHCH3, —N(CH3)2 and so on, and examples of electron-accepting functional groups are —CN, —NO2, —CHO, —COCH3, —COOC2H5, —COOH, —Br, —Cl, —I, —OH, —F, —O, and so on.
The fine metal particle dispersion layer 33 is formed by dispersing fine metal particles in the same organic material as that used for the organic bistable material layer 32 or a different organic material. There are no particular limitations on the fine metal particles, with is being possible to select aluminum, gold, silver, nickel, iron, copper or the like as appropriate.
The electrode layer 21a, the organic bistable material layer 32, and the electrode layer 21b are preferably formed in this order as thin films on the substrate 10. As the method of forming these thin films, a vacuum process such as a vacuum deposition method or a sputtering method can be used. Alternatively an organic thin film formation method such as a spin coating method, a dipping method, a bar coating method, an ink jet method, a monomolecular film accumulation method (LB method), or a screen printing method can be used.
As the method of forming the fine metal particle dispersion layer 33, multiple vacuum deposition of an organic material and a metallic material can be used. Alternatively, an organic thin film formation method such as a spin coating method, a bar coating method, an ink jet method, a monomolecular film accumulation method (LB method) or a screen printing method can be used with a coating liquid having fine metal particles dispersed therein.
The substrate temperature during the vapor deposition in the case of using vapor deposition to form the electrode layers 21a and 21b, the organic bistable material layer 32, and the fine metal particle dispersion layer 33 can be selected as appropriate in accordance with the electrode material used, with 0° to 150° C. being preferable.
The thickness of each of the electrode layers 21a and 21b is preferably 50 to 200 nm, the thickness of the organic bistable material layer 32 is preferably 20 to 150 nm, and the thickness of the fine metal particle dispersion layer 33 is preferably 5 to 100 nm.
The reason that the resistance value in the ON state can be controlled through the driving method of the invention described above is still not clear, but a hypothetical explanation is presented below.
It is presumed that the mechanism of transfer from the high resistance state to the low resistance state is broadly speaking as follows. As shown in
The current value in the ON state depends on the amount of increase in the electric field and the amount of charge injected, and these things are determined by the amount of charge accumulated on the fine metal particles or at the organic/metal interface. The switch-over from the high resistance state to the low resistance state in the switching device is carried out by applying a voltage pulse no less than a threshold value; the above-mentioned accumulated charge depends on the tunnel current, which depends on the switching voltage pulse, and hence the current value in the ON state can be controlled via the amount of accumulated charge through the value of the switching voltage or the pulse width.
The invention contemplates controlling the amount of the accumulated charge, which in turn controls the current through the device when a bias voltage is applied.
Several specific examples are described below.
A switching device having a constitution as shown in
Using a glass substrate as a substrate 10, films were formed including aluminum as an electrode layer 21a, an organic, bistable material layer 32, a fine metal particle dispersion layer 33, an organic bistable material layer 34, and aluminum as an electrode layer 21b. These were formed as thin films, in this order, using a vacuum deposition method, thus forming the switching device of Example 1. A carbonitrile compound of structural formula (I), shown below, was used for the organic bistable material layers 32 and 34, and the fine metal particle dispersion layer 33 was formed by dispersing fine aluminum particles in the carbonitrile compound of below-mentioned structural formula (I).
The electrode layer 21a and the electrode layer 21b were formed orthogonal to one another, each to a width of 0.5 mm, and the organic bistable material layer 32, the fine metal particle dispersion layer 33, and the organic bistable material layer 34 were formed over the whole of the substrate.
Electrical measurements were carried out at the part of area, measuring 0.5 mm×0.5 mm, where the electrode layer 21a and the electrode layer 21b intersected one another. Moreover, the electrode layer 21a, the organic bistable material layer 32, the fine metal particle dispersion layer 33, the organic bistable material layer 34, and the electrode layer 21b were deposited to thicknesses of 100 nm, 40 nm, 30 nm, 40 nm, and 100 nm respectively. The deposition was carried out under a vacuum of 3×10−6 torr, with exhaustion being carried out using a diffusion pump. The deposition of the carbonitrile compound was carried out at a deposition rate of 0.2 □/s using a resistive heating method, and the deposition of the aluminum was carried out at a deposition rate of 1.5 A/s using a resistive heating method.
The switching device of Example 2 was obtained under the same conditions as in Example 1, except that an aluminum quinoline compound of structural formula (II) was used as the organic bistable material in the layer 32, 33, 34.
The switching device of Example 3 was obtained under the same conditions as in Example 1, except for the following: A quinomethane compound of structural formula (III) was formed to a thickness of 80 nm as the organic bistable material layer 32, the fine metal particle dispersion layer 33 and the organic bistable material layer 34 were not formed, and gold was used as the material of the electrode layer 21b. This example is illustrated in
The chemical materials of Examples I and II were purchased from the Aldrich chemical company, and the material of Example III can be synthesized by a person skilled in the art.
Testing
For each of the switching devices of Examples 1 to 3 described above, the current-voltage characteristic was measured at room temperature using the following procedure. First, the voltage was raised at a rate of 0.1 V/s from zero to the voltage Vth2 at which transfer from the OFF state to the ON state was observed, whereby the static Vth2 was measured. The results are shown in Table 1. Next, for each of the devices, a voltage of 80% of the respective Vth2 was applied as a bias voltage Vb, and a voltage pulse was superimposed (or added) on this, thus bringing about transfer from the high resistance state to the low resistance state. Taking the superimposed voltage of the voltage pulse and the temporal pulse width of the voltage pulse as parameters, the current value at a voltage of Vb in the low resistance state was measured.
The results are shown in
As noted, the usable range of the value of Vb is between Vth1 and Vth2 in the viewpoint of “switching”. However, in practical use, a high value of Vb is preferred to obtain high current. At a value of Vb too close to Vth2, however, the behavior might be unstable because of the variance of Vth2 value. Therefore, from this standpoint, a preferred range of Vb would appear to be from (0.5*Vth1+0.5*Vth2) to (0.1*Vth1+0.9Vth2).
In the case of Example 3, the quinomethane materials, the morphology of the gold of the electrode may be important because its appears to play an important role for the bistable behavior. In
Further testing results are disclosed in a paper entitled “Organic Bistable Devices with High Switching Voltage,” presented by Haruo Kawakami et al., Fuji Electric Advanced Technology Corporate Ltd., Hino-city, Japan at “The International Symposium on Optical Science and Technology SPIE's 49th Annual Meeting,” Denver, Colo., August 2004, in which bistable behavior of the quinomethane material of Example 3 is further described. Further results were presented by the applicant at the proceeding of “The International Symposium on Super-Functionality Organic Devices” Chiba, Japan, October 2004. The latter shows the behavior of several kinds of quinomethane compounds, with various A or R groups, and show that compounds with a dipole moment more than 6 Debye have bistable behavior. Thus, a high molecular dipole moment promotes the bistable behavior. Both of these disclosures are incorporated herein by reference.
As described above, according to the invention, in the case of a switching device in which an organic bistable material is disposed between two electrodes, means can be provided that enables the value of the current flowing through the device to be controlled, whereby pixel light emission state gradation and constant current control become possible. This switching device can thus be favorably used as a switching device for driving an organic light emitting diode display panel.
Incorporated herein in its entirely by reference, along with references cited therein, is Bozano et al., Mechanism for bistability in organic memory elements, Appl. Phys. Lett. vol. 84 no. 4, p. 607 (Jan. 26, 2004).
All references that are cited in any and all of the references explicitly incorporated herein by reference also are incorporated herein by reference.
This application claims benefit of the applicants' Provisional Application 60/553,574, filed on Mar. 15, 2004, the entire disclosure of which is incorporated herein be reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US05/08478 | 3/15/2005 | WO | 6/7/2007 |
Number | Date | Country | |
---|---|---|---|
60553574 | Mar 2004 | US |