1. Technical Field
The present invention relates to a driver circuit for a matrix type display device such as a field emission display or a plasma display.
2. Background Description
Flat panel displays are widely used in a variety of applications, including computer displays. One type of flat panel display device that is well suited for such applications is the thin film field emission display device. Such flat panel displays seek to combine the cathodoluminescent-phosphor technology of cathode ray tubes with integrated circuit technology to obtain thin high resolution displays wherein each pixel is activated by its own electron emitter or set of emitters. Such field emission displays in elementary form include a generally planar substrate having an array of integral projecting emitters which are typically conical projections grouped into emitter sets. Depending upon the size and type of display, a conductive extraction grid is positioned above the emitters and driven at a positive voltage with the emitters selectively activated by providing a current path to ground with appropriate voltage differential between the emitters and extraction grid. The resulting electric field extracts electrons from the emitters. Moreover, the field emission display device additionally includes a display screen-anode formed from a glass plate coated with a transparent conductive material forming a relatively high positive voltage differential with respect to the cathode emitters. The display screen additionally includes a cathodoluminescent layer covering the conductive anode surface whereby emitted electrons are attracted by the anode and strike the phosphor layer to thus cause the emission of light at the impact site which in turn passes through the anode and glass plate. The luminescent level of the produced light is dependent upon the magnitude of the current flow to the emitters that is selectively controlled to produce a desired image.
Existing chips for driving field emission displays provide limited logic functionality and therefore offer only limited display resolution. For example, many conventional driver chips comprise transistors having a 3 micron gate length. Using such transistors, it is difficult to provide much logic functionality, particularly 8-bit logic functionality. One way to improve functionality is to provide additional logic circuits on the driver chips. However, the additional circuits unacceptably increase the size of the driver chips, making driver chips that provide 7- or 8-bit logic functionality impractical.
Therefore, it is seen to be desirable to provide an arrangement that provides for high improved logic functionality without a corresponding increase in the size of the driver chip.
In accordance with one aspect of the invention, a driver circuit for driving signal lines of a matrix type display device includes pulsewidth modulation circuitry for generating pulsewidth modulated video data and driver circuitry for driving the signal lines in accordance with the pulsewidth modulated video data.
The pulsewidth modulation circuitry (or pulsewidth modulation generator) provides a very dense logic that is “off chip” relative to the signal line driver circuit. This simplifies the design of the driver circuit and provides for high resolution display.
In accordance with another aspect of the present invention, a matrix type display device includes display elements connected to row lines and column lines. A driver circuit for driving said column lines includes pulsewidth modulation circuitry for generating pulsewidth modulated video data and driver circuitry for driving the column lines in accordance with the pulsewidth modulated video data.
Other features and advantages of the invention will become apparent from the detailed description of embodiments made hereinafter with reference to the accompanying drawings.
The present invention is described in the context of exemplary embodiments. However, the scope of the invention is not limited to the particular examples described in the specification. Rather, the description merely reflects certain practical and preferred embodiments, and serves to illustrate the principles and characteristics of the present invention. Those skilled in the art will recognize that various modifications and refinements may be made without departing from the spirit and scope of the invention.
Conical micro-cathode field emitter tips 10 are constructed over the base 8 at the field emission cathode site. A base electrode resistive layer (not shown) may be provided between the conductive material layer 6 and the field emitter tips 10. The resistive layer may be formed, for example, from silicon that has been doped to provide an appropriate degree of resistance. A low potential anode gate structure or conductive grid 12 formed, for example, of doped polycrystalline silicon is arranged adjacent the field emitters 10. An insulating layer 14 separates the grid 12 from the base electrode conductive material layer 6. The insulating layer 14 may be formed, for example, from silicon dioxide.
Proper functioning of the emitter tips requires operation in a vacuum. Thus, a plurality of columnar supports 16 is provided over the base assembly 4 to support a display screen against atmospheric pressure. The columnar supports 16 may be formed in various ways including those described, for example, in U.S. Pat. No. 5,205,770; U.S. Pat. No. 5,232,549; U.S. Pat. No. 5,484,314; and U.S. Pat. No. 5,486,126. These patents are hereby incorporated by reference in their entirety.
In operation, the display screen 18 acts as an anode so that field emissions from the emitter tips 10, represented by arrows 20, strike phosphor coating 22 on the screen 18. The field emissions excite the phosphor coating 22 to generate light. A field emission is produced from an emitter tip when a voltage differential is established between the emitter tip and the anode structures. The emitters are two terminal devices behaving similar to a diode, conducting when forward biased beyond a positive threshold and not conducting under reverse bias. This drive scheme is useful for any passive matrix display.
In one arrangement, the conductive material 6 that forms the base electrodes forms a matrix of addressable nodes and the field emitters are addressed using both row and column driving circuits. In this arrangement, the patterned conductive material layer 6 preferably provides a matrix of base electrodes under the individual picture segments. The conductive grid 12 is maintained at a constant potential VGRID. The present invention is applicable to a column driving circuit for such an arrangement.
The brightness of the light produced in response to the emitted electrons depends, in part, upon the rate at which electrons strike the cathodoluminescent layer. The light intensity of each pixel is controlled by controlling the current available to the corresponding emitters. To allow individual control of each of the pixels, the electric potential between each emitter set and the extraction gird is selectively controlled by a column line control signal and a row line control signal from corresponding driver circuits. To create an image, the driver circuits separately establish current to each of the emitter sets.
The XGA RGB data from first video circuitry 302 is supplied to second video circuitry 304 for converting the XGA RGB data to field emission display (FED) video data. The output of second video circuitry 304 is supplied to pulsewidth modulation circuitry 306 for converting the FED video data to pulsewidth modulated (PWM) video data. The PWM video data is supplied to FED column driver circuitry 308 for driving the column lines of FED 310. Outputs from second video circuitry 304 are also supplied to row scan driver circuitry 312 for driving the row lines of FED 310.
Each of the column circuits 506, 508 includes programmable logic circuitry 510 and output (level-shifting) circuitry 512. The programmable logic circuitry 510 of the column circuits 506, 508 make up pulsewidth modulation circuitry 306 (see
Output circuitry 512 for each of the column circuits 506, 508 is shown in greater detail in
In accordance with the arrangement described above, the latch/driver circuits 606a, 606b, 606c and 606d are loaded with data processed by programmable logic circuitry 510 via data bus 602. More specifically, programmable logic circuitry 510 of the column circuits 506, 508 output PWM video data that is loaded into the latch/driver circuits such that the latch/driver circuits 606a of all the output circuits are loaded in parallel with PWM video data in accordance with an enable signal from latch enable buffers 608a; the latch/driver circuits 606b of all the output circuits are loaded in parallel with PWM video data in accordance with an enable signal from latch enable buffers 608b; the latch/driver circuits 606c of all the output circuits are loaded in parallel with PWM video data in accordance with an enable signal from latch enable buffers 608c; and the latch driver circuits 606d of all the output circuits are loaded in parallel with PWM video data in accordance with an enable signal from latch enable buffers 608d.
The use of programmable logic circuitry 510 (i.e., pulsewidth modulation circuitry 306) permits the utilization of very dense logic circuitry that is “off-chip” relative to the driving circuitry. The above-described arrangement permits seven-(7) or eight-(8) bit logic processing to be performed off-chip in pulsewidth modulation circuitry 306 and this processed data is then loaded in parallel into driver circuits 606a, 606b, 606c, and 606d via data bus 602 as set forth above. The four sequences of 48 bits for each column circuit are clocked in series using the “staircase” pulses LE0, LE1, LE2 and LE3 shown in
Programmable logic circuitry 510 enables high resolution (e.g., 8-bit resolution) to be obtained in a practical manner. With 8-bit resolution, 256 different brightness levels for the field emission display can be achieved and these different levels are outputted as different pulsewidths by programmable logic circuitry 510. For example, if each row signal of the field emission display is ON for 25.6 microseconds, programmable logic circuitry 510 can “resolve” up to 256 100-nanosecond time segments. For RGB data indicative of full brightness, programmable logic circuitry 510 generates PWM video data comprising a 255×100-nanosecond pulsewidth. For RGB data indicative of minimum brightness (other than dark), programmable logic circuitry generates PWM video data comprising a 1×100-nanosecond pulsewidth. In summary, programmable logic circuitry 510 converts video data supplied from second video circuitry 304 to a corresponding pulsewidth and then outputs the pulsewidth to the output circuitry 512. Output circuitry 512 level shifts the PWM video data and drives the corresponding column lines for a time that corresponds to the length of outputted pulsewidth.
This arrangement is superior to conventional arrangements because conventional arrangements are slow and have a large footprint (i.e., use much die space). It is difficult for prior systems using high voltage driver chips still using older (less expensive) 3 micrometer lithography semiconductor fabrication equipment to operate at high speeds. For example, the 100-nanosecond pulsewidths discussed above correspond to a 10 MHz clock speed. This clock speed is at the upper limit of the speeds that can be obtained from conventional processing on a driver chip. Even more significantly, if such a clock speed could be obtained, it would be very difficult to fit the necessary logic circuitry on the chip for providing high resolution (e.g., 7- and 8-bit resolution) displays.
The above-described arrangement permits the use of a simplified output circuitry wherein the output circuitry for the column circuits comprises level-shifters. More specifically, with reference to
The arrangement of
48-bit buffer 604 may comprise buffers as shown in
Of course, while inverters and downcounters are described above, it is also possible to use upcounters loaded with the 8-bit values that count up to a predetermined value (e.g., 11111111) to control the levels of the PWM video data.
Multiplexer 1308 provides 48 outputs at a time from the comparators 1306a-d to the driver circuits 606a-d via buffer 604 (not shown in
In accordance with the above-described embodiment of the present invention, a high-resolution, high voltage driver for an FED is provided. The system of the invention uses programmable logic circuitry (e.g., a FPGA) having very fine line widths and gate lengths that permits high resolution displays. The function of converting RGB data into pulsewidth modulated data is programmed into the FPGA and the output of the FPGA (e.g., a pulsewidth that is an integer multiple of 100 nanoseconds) is provided to level shifters.
The above description mentions RGB data as the video source. However, the present invention is not limited to any particular video standard and is applicable to, for example, tmds, lvds, firewire, usb, and the like.
While the above description is provided with respect to a FED, the present invention is also applicable to other types of matrix type display devices such as plasma displays.
While the invention has been described in connection with certain embodiments, it is to be understood that the invention is not to be limited to these disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
| Number | Name | Date | Kind |
|---|---|---|---|
| 5202674 | Takemori et al. | Apr 1993 | A |
| 5205770 | Lowrey et al. | Apr 1993 | A |
| 5232549 | Cathey et al. | Aug 1993 | A |
| 5357172 | Lee et al. | Oct 1994 | A |
| 5459480 | Browning et al. | Oct 1995 | A |
| 5484314 | Farnworth | Jan 1996 | A |
| 5486126 | Cathey et al. | Jan 1996 | A |
| 5656892 | Zimlich et al. | Aug 1997 | A |
| 5773927 | Zimlich | Jun 1998 | A |
| 5796375 | Holloman | Aug 1998 | A |
| 5814946 | Hall et al. | Sep 1998 | A |
| 5838097 | Kasanuki et al. | Nov 1998 | A |
| 5844370 | Cathey et al. | Dec 1998 | A |
| 5857884 | Zimlich | Jan 1999 | A |
| 5867136 | Zimlich | Feb 1999 | A |
| 5894235 | Zimlich | Apr 1999 | A |
| 5898428 | Zimlich et al. | Apr 1999 | A |
| 5910791 | Zimlich et al. | Jun 1999 | A |
| 6014122 | Hashimoto | Jan 2000 | A |
| 6094689 | Embry et al. | Jul 2000 | A |
| 6107999 | Zimlich et al. | Aug 2000 | A |
| 6130106 | Zimlich | Oct 2000 | A |
| 6144351 | Zimlich | Nov 2000 | A |
| 6144374 | Hyun | Nov 2000 | A |
| 6169371 | Zimlich et al. | Jan 2001 | B1 |
| 6169528 | Oguchi et al. | Jan 2001 | B1 |
| 6195076 | Sakuragi et al. | Feb 2001 | B1 |
| 6201529 | Shimizu | Mar 2001 | B1 |
| 6288695 | Wood | Sep 2001 | B1 |
| 6294876 | Ando et al. | Sep 2001 | B1 |
| 6353425 | Mosier | Mar 2002 | B1 |
| 6498592 | Matthies | Dec 2002 | B1 |
| 6580407 | Suzuki et al. | Jun 2003 | B1 |
| 6597335 | Yasunishi et al. | Jul 2003 | B2 |
| 20020154101 | Abe et al. | Oct 2002 | A1 |