The present disclosure relates to a driver in which an impactor is moved by a pressure of gas refilled in a pressure chamber, and a stopper is then hit by the impactor.
Conventionally, there has been known a driver in which a pressure chamber filled with gas such as air or inert gas, a piston is pressed by the pressure of this gas, and an impactor is then moved by the piston. Such a driver is described in Patent Document 1. The driver includes: a cylinder provided in a housing; a piston movably accommodated in the cylinder; a driver blade fixed to the piston; a pressure chamber formed in the cylinder; and a gas filling valve as a gas pressure adjusting mechanism provided in the housing. The pressure chamber is filled with compressed gas from a nitrogen gas cylinder provided outside the housing through a gas hose and a gas filling valve. A seal member is interposed between the cylinder and the piston, and the seal member is configured to maintain an airtightness of the pressure chamber.
The piston and the driver blade are an impactor. Additionally, the driver includes: a motor provided in the housing; a series of gears to which a rotation force is transmitted from the electric motor; and a cam which is rotated by the rotation force transmitted from the series of gears. The cam has a projection that is engaged with and disengaged from the piston.
In the driver described in Patent Document 1, the rotation force of the electric motor is transmitted to the cam via the series of gears. With the projection engaged with the piston, the piston is moved from a bottom dead center toward a top dead center by the power of the cam. When the piston is moved from the bottom dead center toward the top dead center, the pressure in the pressure chamber rises. When the piston reaches the top dead center, the projection is disengaged from the piston, and the power of the cam is not transmitted to the piston. Then, an impacting force corresponding to the pressure of the pressure chamber is applied to the driver blade, and the driver blade drives a nail into an object material.
Patent Document 1: Japanese Patent Publication No. 5849920
In a driver in which a stopper is driven by such a compressed gas as an elastic body, it is necessary to refill the pressure chamber with gas such as air or inert gas to increase its pressure to a predetermined pressure level when the pressure in the pressure chamber drops. In this case, since the pressure of the gas depends on the volume of the closed space, it is necessary to define the volume of the sealed space in order to define the predetermined pressure. Furthermore, if the pressure chamber can be refilled with gas by relatively low pressure, it is possible to use simple refilling means without using a large apparatus such as a compressor. For example, a small simple compressor, a simple motor pump, a manual compression pump may be used as the refilling means.
It is an object of the present invention to provide a driver in which a pressure chamber can be easily refilled with gas at a predetermined level.
According to one aspect of the present invention, there is provided a driver comprising: an impactor configured to hit a stopper by moving from a first position toward a second position; a pressure chamber to be filled with gas for moving the impactor from the first position toward the second position; a control mechanism configured to move the impactor from the second position toward the first position; and a gas injection portion configured to inject gas into the pressure chamber, wherein the impactor is capable of taking a standby position between the second position and the first position, and the control mechanism is configured to stop the impactor at an adjustment position closer to the second position than the standby position before gas is injected into the pressure chamber.
In the driver according to one embodiment, the pressure chamber can be easily refilled with gas at a predetermined pressure.
Hereinafter, embodiments of a driver will be described in detail with reference to the drawings.
A driver 10 is shown in
The housing 11 has: a main body 16; a cover 17 configured to close an opening of the main body 16; a handle 18 and a motor accommodating portion 19 that are continuous with the main body 16; and a connecting portion 20 configured to connect the handle 18 and the motor accommodating portion 19. A pressure accumulating container 21 and a cylinder 22 are provided in the housing 11, and an annular connector 23 is configured to connect the pressure accumulating container 21 and the cylinder 22. The pressure chamber 13 is formed in the pressure accumulating container 21. The connector 23 is provided with a valve 80. The valve 80 has: a passage connected to the pressure chamber 13; and a valve body configured to open and close the passage. The valve 80 is provided to the main body 16.
A gas compressor 81 and a pressure regulator 94 are provided separately from the driver, and connected to the driver 10 via an air hose 82. The gas compressor 81 and the pressure regulator 94 are not included in the structure of the driver 10. In this embodiment, the pressure regulator 94 is preferably a pressure reduction valve. An adapter 83 is attached to the air hose 82. By detaching the cover 17 from the main body 16, the air hose 82 can be inserted into the main body 16. The adapter 83 is connectable to and detachable from the valve 80. By connecting the adapter 83 to the valve 80, the valve 80 opens the passage. By detaching the adapter 83 from the valve 80, the valve 80 closes the passage.
The impactor 12 has: a piston 24 movably arranged in the cylinder 22: and a driver blade 25 fixed to the piston 24. The piston 24 is movable in a direction of the center line A1 of the cylinder 22. The direction of the center line A1 is parallel to the first direction B1 and the second direction B2. A seal member 79 is attached to the outer periphery of the piston 24, and the seal member 79 contacts the inner surface of the cylinder 22 to form a seal surface. The seal member 79 hermetically seals the pressure chamber 13.
The pressure chamber 13 is filled with a compressed gas and sealed. For example, the pressure chamber 13 may be filled with inert gas, nitrogen gas, rare gas, or the like together with air. In this embodiment, as one example, the pressure chamber 13 is filled with dry air.
The driver blade 25 is preferably made of metal, and part of the driver blade 25 may be coated with resin or the like, or may be bonded to a different metal. As shown in
A holder 28 is disposed so as to extend from the inside to the outside of the main body 16. The holder 28 is made of aluminum alloy or synthetic resin. The holder 28 has: a cylindrical load receiving portion 29, an arc-shaped cover 30 continuous with the load receiving portion 29, and a tail portion 31 continuous with the load receiving portion 29. As shown in
The load receiving portion 29 is disposed in the main body 16, and the load receiving portion 29 has an axial hole 32. A bumper 33 is provided to the load receiving portion 29. The bumper 33 is formed of rubber-like elastic material by integral molding. The bumper 33 has an axial bore 34. The axial bores 32 and 34 are arranged about the center line A1, and the driver blade 25 is movable in the axial bores 32 and 34 in the direction of the center line A1. The cover 30 is disposed within the tail portion 31. A nose portion 35 is fixed to the tail portion 31 using a screw member 78, and the nose portion 35 has an injection path 36. The injection path 36 is a space or a passage, and the driver blade 25 is movable in the direction of the center line A1 in the injection path 36.
The electric motor 15 is provided to the motor accommodating portion 19. The electric motor 15 has a motor shaft 37, and the motor shaft 37 is rotatably supported by bearings 38 and 39. The motor shaft 37 is rotatable about an axis A2. As shown in
The secondary battery 40 has: a housing case 41; and a battery cell accommodated in the housing case 41. This battery cell is a rechargeable battery, and any of a lithium ion battery, a nickel metal hydride battery, a lithium ion polymer battery, and a nickel cadmium battery may be used as the battery cell. The secondary battery 40 is a DC power source. A first terminal is provided in the housing case 41, and the first terminal is connected to the battery cell. When the second terminal is fixed to the connecting portion 20 and the secondary battery 40 is attached to the connecting portion 20, the first terminal and the second terminal are electrically connected to each other.
As shown in
The power conversion mechanism 14 is disposed in the cover 30. The power conversion mechanism 14 has: a pin wheel shaft 48; a pin wheel 49 fixed to the pin wheel shaft 48; and a pinion mechanism 77 provided to the pin wheel 49. The pin wheel shaft 48 is rotatably supported by bearings 46 and 47. The pinion mechanism 77 has a plurality of pins 77A spaced from each other in a circumferential direction of the pin wheel 49. The projections 26A constituting the rack 26 is the same in number as the pins 77A constituting the pinion mechanism 77. The bearings 46 and 47 are disposed at respective positions different from each other in a direction of the axis A2, and the bearing 46 is disposed between the speed reducer 43 and the bearing 47. The power conversion mechanism 14 is disposed between the bearings 46 and 47 in the direction of the center line A1. The power conversion mechanism 14 is configured to convert the rotation force of the pin wheel 49 into a moving force of the impactor 12. The speed reducer 43, the power conversion mechanism 14, and the projections 26A form a power transmission route 109.
A rotation restricting mechanism 51 is provided in the gear case 42. The rotation restricting mechanism 51 is disposed in a power transmission route between the motor shaft 37 and the pin wheel 49. The rotation restricting mechanism 51 is disposed between the bearing 46 and the output member 45 in the direction of the axis A2. The rotation restricting mechanism 51 is a mechanism configured to transmit the rotation force of the output member 45 to the pin wheel shaft 48. The rotation restricting mechanism 51 is configured to transmit the rotation force of the output member 45 to the pin wheel shaft 48 regardless of the rotation direction of the output member 45. The rotation restricting mechanism 51 has a function of preventing the pin wheel shaft 48 from being rotated by the force transmitted from the driver blade 25.
Furthermore, it is provided with a magazine 59 configured to receive nails 58, the magazine 59 being supported by the nose portion 35 and the connecting portion 20. The magazine 59 has a feeding mechanism is configured to feed the nails 58 to the injection path 36.
A motor board 60 is provided in the motor accommodating portion 19, and an inverter circuit 61 shown in
As shown in
As shown in
A push lever 68 is attached to the nose portion 35. The push lever 68 is movable in the direction of the center line A1 with respect to the nose portion 35. As shown in
A push switch 69 shown in
A phase detection sensor 72 is provided and configured to detect the rotation angle, that is, the phase, of the pin wheel 49. The phase detection sensor 72 includes a Hall IC board 84 and permanent magnets 85A and 85B shown in
As shown in
In the driver 10, a display 95 is provided to the housing 11, and the display 95 includes a LCD display and a lamp. The display 95 is connected to the controller 63 and configured to display the use mode of the driver 10. The display 95 functions with the electric power of the secondary battery 40.
An example of the operation in which the operator uses the driver 10 and an example of the control performed by the controller 63 are as follows. The controller 63 is configured to determine whether a condition for hitting the nail 58 is satisfied. When the trigger switch 67 is turned off and the push switch 69 is turned off, the controller 63 determines that the condition for hitting the nail 58 is not satisfied, and turns off all the switching elements of the inverter circuit 61. Therefore, the electric power of the secondary battery 40 is not supplied to the electric motor 15, and the electric motor 15 is stopped.
Furthermore, the pin 77A of the pinion mechanism 77 is engaged with the projections 26A of the rack 26, and the piston 24 stops away from the bumper 33 as shown in
As shown in
The bottom dead center of the piston 24 is a position where the piston 24 is pressed against the bumper 33 in the direction of the center line A1, as shown in
Furthermore, the controller 63 is configured to detect that the piston 24 is in the standby position based on the voltage of the signal output from the Hall IC board 84, and the controller 63 stops the electric motor 15. When the relative position between the Hall IC board 84 and the permanent magnets 85A and 85B is in the state shown in
When the electric motor 15 is stopped, the rotation restricting mechanism 51 holds the piston 24 at the standby position. The piston 24 and the driver blade 25 receive the urging force of the pressure chamber 13, and the urging force received by the driver blade 25 is transmitted to the pin wheel shaft 48 via the pin wheel 49. When the pin wheel shaft 48 receives a rotation force in
When the trigger switch 67 is turned on and the push switch 69 is turned on, the controller 63 determines that the condition for hitting the nail 58 is satisfied, repeats the control of turning on and off the switching element of the inverter circuit 61, and supplies the electric power of the secondary battery 40 to the electric motor 15. Then, the motor shaft 37 of the electric motor 15 is rotated in a forward direction. The rotation force of the motor shaft 37 is transmitted to the pin wheel shaft 48 via the speed reducer 43.
The rotational directions of the motor shaft 37 and the output member 45 are the same as each other, and when the output member 45 is rotated, the rotation force of the output member 45 is transmitted to the pin wheel 49, and the pin wheel 49 is rotated in a counterclockwise direction in
When the pin wheel 49 is rotated in the counterclockwise in
When the piston 24 reaches the top dead center, the tip 25A of the driver blade 25 is positioned above the head 58A of the nail 58. When the piston 24 reaches the top dead center, the pin 77A of the pinion mechanism 77 is released from the projections 26A of the rack 26. Therefore, the piston 24 and the driver blade 25 are moved toward the bottom dead center by the air pressure of the pressure chamber 13. As a result, the driver blade 25 hits a head portion 58A of the nail 58 in the injection path 36, and the nail 58 is driven into the object material 70.
Furthermore, when the entire nail 58 is caught in the object material 70 and the nail 58 stops, its reaction force causes the tip 25A of the driver blade 25 to leave the head 58A of the nail 58. Then, the piston 24 collides with the bumper 33, and the bumper 33 is elastically deformed to absorb kinetic energy of the piston 24 and the driver blade 25.
Furthermore, the motor shaft 37 of the electric motor 15 is rotated in the forward direction even after the driver blade 25 hits the nail 58. Then, when the pin 77A of the pinion mechanism 77 is engaged with the projections 26A of the rack 26, the piston 24 rises again in
When the electric motor 15 stops, the rotation regulating mechanism 51 holds the piston 24 at the standby position. That is, the piston 24 stops before reaching the top dead center in the process of moving from the bottom dead center toward the top dead center. The standby position of the piston 24 shown in
In the driver 10, the standby position of the piston 24 is set between the top dead center and the bottom dead center. Therefore, a time required for driving one nail 58 can be reduced, thereby improving its workability. Note that the required time is a time from when the trigger switch 67 is turned on and the push switch 69 is turned on to start the movement of the piston 24 toward the top dead center to when the driver blade 25 drives the nail 58 into the object material 70.
In the driver 10, when the air pressure in the pressure chamber 13 drops or when the actual driving force of the driver 10 is lower than the target driving force, the operator can inject air into the pressure chamber 13. The actual driving force of the driver 10 is determined by the maximum pressure of the pressure chamber 13 and the pressure receiving area of the piston 24 with the piston 24 positioned the top dead center. The pressure receiving area of the piston 24 is defined by the area of the piston 24 that receives the pressure of the pressure chamber 13 in a plan view perpendicular to the center line A1.
The maximum pressure of the pressure chamber 13 is determined from the compression ratio corresponding to the stroke volume of the piston 24. The compression ratio is a value obtained by dividing the maximum volume of the pressure chamber 13 by the minimum volume of the pressure chamber 13. The minimum volume of the pressure chamber 13 is the volume of the pressure chamber 13 with the piston 24 positioned at the top dead center. The maximum volume of the pressure chamber 13 in this embodiment is recognized as the volume of the pressure chamber 13 with the piston 24 stopped in order to inject compressed air into the pressure chamber 13.
Since the pressure receiving area of the piston 24 is constant in the single driver 10, the actual driving force of the driver 10 can be adjusted by adjusting the maximum pressure of the pressure chamber 13. The pressure defining the driving force is determined by conditions, for example, the length of the nail 58 and the hardness of the object material 70, within a predetermined maximum defined by the main body 16 of the driver 10. The greater the length of the nail 58, the greater the hardness of the object material 70, the greater the required target driving force.
The operation of injecting air into the pressure chamber 13 by the operator and the control example performed by the controller 63 will be described with reference to the first control example of
If the determination in step S11 is affirmative “YES”, the controller 63 moves the piston 24 from the standby position toward the bottom dead center in step S12. Specifically, the electric motor 15 is rotated in a reverse direction. Then, the pin wheel 49 is rotated in a clockwise direction in
Additionally, when the controller 63 detects that the piston 24 has been moved to the lower dead center shown in
With the piston 24 stopped at the bottom dead center, the operator performs an air refilling operation in step S13. In step S13, the adapter 83 is connected to the valve 80, and the pressure of compressed air supplied from the gas compressor 81 is reduced by the pressure regulator 94 and supplied to the pressure chamber 13. The pressure of compressed air supplied to the pressure chamber 13 is set in accordance with a target driving force for each model of the driver 10.
When the air refilling operation is completed, the operator turns off the air refilling button 71. When the controller 63 detects that the air refilling button 71 is turned off in step S14, the controller 63 rotates the electric motor 15 in the reverse direction to move the piston 24 toward the top dead center and stops the piston 24 at the standby position in step S15. The controller 63 then selects the nailing mode in step S16, and ends the first control example of
Note that when a negative determination is made by the controller 63 in step S11, it proceeds to step S16. When the trigger switch 67 is turned on and the push switch 69 is turned on while the nail driving mode is selected, the controller 63 drives the nail 58 by rotating the electric motor 15 forward, and then moves the piston 24 to the standby position to stop the electric motor 15. When at least one of the trigger switch and the push switch 69 is off when the nailing mode is selected, the controller 63 stops the electric motor 15 and stops the piston 24 at the standby position.
As described above, when compressed air is injected into the pressure chamber 13, the piston 24 is stopped at the bottom dead center. Therefore, the air pressure to be injected into the pressure chamber 13 can be set low.
The operation of injecting air into the pressure chamber 13 by the operator and the control example performed by the controller 63 will be described with reference to the second control example of
That is, the electric motor 15 is rotated in the reverse direction, the pin wheel 49 is rotated in the clockwise direction in
The adjustment position of the piston 24 shown in
When the air refilling operation is performed in step S13 next to step S20, and the controller 63 detects that the air refilling button 71 is turned off in step S14, it proceeds to step S16. When a negative determination is made in step S11, it proceeds to step S16.
In the second control example of
Therefore, when the second control example of
Furthermore, when the piston 24 stops at the adjustment position as shown in
As described above, when compressed air is injected into the pressure chamber 13, the piston 24 can be stopped at a position other than the top dead center, for example, at an adjustment position such as the bottom dead center. The adjustment position of the piston 24 can be arbitrarily changed. The refilling pressure can be reduced by bring the stop position of the piston 24 closer to the bottom dead center. In other words, in the case of refilling the pressure chamber 13 with compressed gas from the pressure regulator 94 of a type in which the supply pressure value is adjusted to one or a multiple of predetermined pressure values instead of an arbitrary pressure or a pressure supply means having a fixed supply pressure value, the predetermined pressure of the pressure chamber 13 to be filled can be arbitrarily set by changing the stop position of the piston 24. Therefore, it is possible to set the actual driving force of the driver 10 to a value corresponding to the target driving force.
Additionally, if the actual driving force is adjusted for each model of the driver 10 by changing the stop position of the piston 24, the pressure regulator 94 can be shared even when the model of the driver 10 is different. That is, even when the target driving force differs for each model of the driver 10, the pressure regulator 94 does not require to be changed, and the workability is improved.
Next, another example of the phase detection sensor 72 will be described with reference to
The Hall element 84A detects a magnetic field formed by the permanent magnet 85A and outputs a signal. The Hall element 84B detects a magnetic field formed by the permanent magnet 85B and outputs a signal. The Hall element 84A is separated from the permanent magnet 85A, and the Hall element 84B is separated from the permanent magnet 85B. That is, the phase detection sensor 72 is a non-contact sensor. An example of the voltage of the signals of the Hall elements 84A and 84B is shown in the diagram of
When the signal of the Hall element 84A rises from the voltage V2 to the voltage V4 as shown in
As shown in
Another example of the phase detection sensor 72 is shown in
An example of the voltage of the signal output from the phase detection sensor 72 of
As shown in
Another example of the phase detection sensor 72 is shown in
The contact switches 91 and 92 are arranged at respective positions different from each other in the direction of the axis A2. The contact switch 91 has a contact piece 91A, and the contact piece 91A contacts the cam 89 to detect the rotation angle of the pin wheel 49. The contact switch 92 has a contact piece 92A, and the contact piece 92A contacts the cam 90 to detect the rotation angle of the pin wheel 49. The phase detection sensor 72 shown in
An example of the voltage of the signal output from the phase detection sensor 72 of
When the pin wheel 49 is rotated in the clockwise direction to lower the piston 24 from the standby position, the contact piece 92A comes in contact with the cam 90, and rises from the voltage V1 to the voltage V3 as shown in
The operation of injecting air into the pressure chamber 13 by the operator and the control example performed by the controller 63 will be described with reference to the third control example of
In step S21, the controller 63 stops the impactor 12 at the standby position. That is, the piston 24 is in the standby position. When the air refilling button 71 is turned on in step S22, the controller 63 displays on the display 95 that the maintenance mode has been selected. In step S23, the operator applies an operation force to the trigger 66 and presses the push lever 68 against the object material 70. When the controller 63 detects that the trigger switch 67 has been turned on and the push switch 69 has been turned on, the electric motor 15 is stopped after the forward rotation of the electric motor 15 at a predetermined angle in step S24.
After the impactor 12 reaches the top dead center, the pin 77A and the projections 26A are released, and the impactor is moved from the top dead center toward the bottom dead center, the operator determines whether the impactor 12 reaches the bottom dead center in step S25. The operator can determine whether the impactor 12 has reached the bottom dead center by the vibration of the handle 18.
When the operator determines “NO” in step S25, the operation of pushing the trigger 66 and pushing the push lever against the object material 70 is repeated. When the operator determines “YES” in step S25, it performs an air refilling operation in step S26. The air refilling operation in step S26 is the same as the air refilling operation in step S13. As described above, in the third control example of
After the air refilling operation in step S26, the operator turns off the air refilling button 71 and cancels the maintenance mode. When detecting that the trigger switch 67 is turned on and the push switch 69 is turned on in step S28, in step S29, the controller 63 rotates the electric motor 15 in the forward direction to move the piston 24 from the lower dead center to the standby position, stops the electric motor 15, and terminates the third control example. Therefore, the fourth control is to move the piston 24 from the bottom dead center to the standby position after compressed air is supplied to the pressure chamber 13.
In the third control example, the rotation and stop of the electric motor 15 are repeated before compressed air is injected into the pressure chamber 13. Then, the piston 24 reaches the top dead center, the projections 26A is released from the pin 77A, the piston 24 is moved from the top dead center toward the bottom dead center by the air pressure of the pressure chamber 13, and the air refilling operation is performed with the piston 24 stopped by colliding with the bumper 33. Therefore, the air pressure to be injected into the pressure chamber 13 can be set low.
Note that in step S25 of
Furthermore, it is possible to perform an interrupt step between step S25 and step S26. In this interrupting step, the electric motor 15 is rotated in the forward direction to move the piston 24 away from the bumper 33, and the piston 24 is stopped at the adjustment position between the standby position and the bottom dead center.
Another example of the driver 10 will be described with reference to
The driver 10 shown in
A cylinder 100 is fixed to the outer surface of the motor accommodating portion 19. A plunger 101 is provided to the cylinder 100, and a spring 102 configured to urge the plunger 101 is provided. A hole 103 is provided in the motor accommodating portion 19, and a hole 104 is provided in the gear case 42. Part of the plunger 101 is disposed in the holes 103 and 104, and the tip of the plunger 101 is disposed in the gear case 42. The spring 102 is a compression spring made of metal, and the spring 102 is configured to urge the plunger 101 toward the rotational element 96. The plunger 101 has a flange 105 which is disposed within the cylinder 100. The lever 106 is movable in the radial direction of the rotational element 96.
A lever 106 is attached to the cylinder 100. The lever 106 can be operated within a predetermined angle range with the support shaft 107 as a fulcrum. A first end of the lever 106 is disposed outside the cylinder 100 and a second end of the lever 106 is disposed within the cylinder 100. The flange 105 is biased by the force of the spring 102 and is pressed against the second end of the lever 106. The lever 106, the plunger 101, the spring 102, and the engaging portion 97 constitute a rotation restricting mechanism 108. The rotation restricting mechanism 108 has a function of allowing the rotational element 96 to rotate counterclockwise in
The rotation restricting mechanism 108 has: a first state preventing the rotational element 96 being rotated in the clockwise direction in
Next, the function and action of the rotation restricting mechanism 108 when the nail 58 is driven by the driver 10 will be described. When the operator does not apply an operation force to the lever 106, the first end of the plunger 101, which is biased by the force of the spring 102, is located in the gear case 42. When the electric motor 15 rotates in the forward direction and the rotational element 96 is rotated in the counterclockwise direction in
Therefore, the plunger 101 is actuated against the force of the spring 102 in a direction away from the rotational element 96. When the first end of the plunger 101 rides over the engaging portion 97, the plunger 101 is moved in a direction approaching the rotational element 96 by the urging force of the spring 102. While the electric motor 15 is rotated in the normal direction, the above operation is repeated, and the rotational element 96 is rotated in the counterclockwise direction in
Furthermore, when the piston 24 reaches the standby position and the electric motor 15 stops, the piston 24 is urged by the pressure in the pressure chamber 13, and the pin wheel 49 receives a rotation force. Then, the rotation force received by the pin wheel 49 is transmitted to the rotational element 96, and the rotational element 96 receives the rotation force in the clockwise direction in
Furthermore, the function and operation of the rotation regulating mechanism 108 when performing maintenance of the driver 10 will be described. Maintenance includes air refill works. When performing maintenance of the driver 10, the electric motor 15 is stopped, and as shown in
Note that when the operator applies an operation force to the lever 106 and operates the lever 106 at a predetermined angle as shown in
As described above, when doing maintenance of the driver 10, the rotational element 96 is rotatable in the clockwise direction in
In the driver 10 having the rotation restricting mechanism 108, if the controller 63 is configured to detect whether the operation force is applied to the lever 106, any of the controls shown in
A meaning of matters explained in the above embodiment will be described below. The controller 63, the inverter circuit 61, the electric motor 15, and the power transmission route 109 are examples of the control mechanism 110 shown in
As in the third control example, the second control is to stop the electric motor 15 with the pinion mechanism 77 and the projections 26A released after the electric motor 15 is rotated in the forward direction, and to allow the piston 24 to stop in contact with the bumper 33.
As in the first control example, it is the third control that the electric motor 15 is rotated in the reverse direction to move the piston 24 from the standby position to the bottom dead center to allow the piston 24 to stop in contact with the bumper 33. As in the second control example, the third control is to reverse-rotate the electric motor 15 to move the piston 24 from the standby position to the adjustment position and allow the piston 24 to stop at a position away from the bumper 33. The nose portion 35 is an injection portion, and the nail 58 is an example of a stopper.
The air refilling button 71 is an example of the first operating portion, the second operating portion, and the third operating portion. That is, a physically identical element, i.e., a single air refilling button 71 serve as the first operating portion, the second operating portion, and the third operating portion. The push lever 68 is a pressing member. The trigger 66 and the push switch 69 are press sensors, and the pin wheel 49 is a rotational element. The electric motor 15 is a motor, and the phase detection sensor 72 and the controller 63 are detection mechanisms. In the above embodiment, the top dead center, the bottom dead center, the standby position, and the adjustment position of the impactor 12 are described with reference to the piston 24, but the top dead center, the bottom dead center, the standby position, and the adjustment position of the impactor 12 can be grasped with respect to the driver blade 25.
Furthermore, an engagement between the pinion mechanism 77 and the projections 26A corresponds to a connection of the power transmission route. A disengagement between the pinion mechanism 77 and the projections 26A corresponds to an interruption of the power transmission route. When the pin wheel 49 is rotated by the power of the electric motor 15, in
Furthermore, a state where the plunger 101 is in engagement with the engaging portion 97 as shown in
Additionally, the bumper 33 is one example of the stopper. Furthermore, the adjustment position of the percussion element 12 includes: a case where the piston 24 is positioned between the standby position and the bottom dead center; and a case where the piston 24 is stopped at the bottom dead center. Furthermore, when the piston 24 stops at the adjustment position, the tip 25A of the driver blade 25 may project from the tip 35A of the nose portion 35 in the direction of the center line A1 which is the moving direction of the impactor 12. Furthermore, the rotational element 96, the engaging portion 97, and the plunger 101 are one example of a clutch mechanism, and the lever 106 is one example of a cancel mechanism.
When the rotational element 96 is rotated by the rotation force of the electric motor 15 in the counterclockwise direction in
The driver is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. For example, bellows may be connected to the piston so that a pneumatic chamber is formed in the bellows. In the case of using the bellows, a rail may be used in place of a cylinder as a guide member for guiding the movement of the impactor.
The control mechanism and the condition determination units include a processor, a circuit, a storing device, a module and a unit. In place of the electric motor, an oil-hydraulic motor and a pneumatic motor may be included as a motor configured to move the impactor from the second position toward the first position. The electric motor may be either a brushed motor or a brushless motor. The power source of the electric motor may be either a DC power supply or an alternating current power source.
The detection mechanism includes a contact sensor and a non-contact sensor. The non-contact sensor includes a magnetic sensor and an optical sensor. In place of the mechanism configured to detect the rotation angle or phase of the pin wheel and indirectly detect the position of the impactor on the basis of the detection result, a mechanism configured to directly detect the position of the impactor may be included. The mechanism configured to directly detect the position of the impactor includes: a magnetic member attached to the impactor; and a magnetic sensor configured to detect the magnetic member. The power conversion mechanism includes a cam mechanism and a rack and pinion mechanism. In place of the pin wheel 49, As the rotational element to which a rotation force is transmitted from the motor, and the rotational element, a gear, a pulley, and a rotation shaft.
Additionally, with reference to
Number | Date | Country | Kind |
---|---|---|---|
2016-150460 | Jul 2016 | JP | national |
2017-035065 | Feb 2017 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/024120 | 6/30/2017 | WO | 00 |