This U.S. non-provisional patent application claims priority to Korean Patent Application No. 10-2014-0151405, filed on Nov. 3, 2014, and all the benefits accruing therefrom under 35 U.S.C. §119, the entire contents of which are hereby incorporated by reference.
1) Field
The invention relates to a driving circuit and a display device including the same.
2) Background
Typically, a display device includes a display panel for displaying an image and a driving circuit driving the display panel. The display panel includes a plurality of gate lines, a plurality of data lines, and a plurality of pixels. Each of the plurality of pixels includes a thin film transistor (“TFT”), a liquid crystal capacitor, and a storage capacitor. The driving circuit includes a data driver outputting data driving signals to the data lines and a gate driver outputting gate driving signals for driving the gate lines.
Such a display device may apply a gate on voltage to a gate electrode of a TFT desired to display and connected to the gate lines, and then apply a data voltage corresponding to a display image to a source electrode of the TFT to display the image. As the TFT is turned on, the data voltage applied to the liquid crystal capacitor and the storage capacitor is required to be maintained for a predetermined time after the TFT is turned off. However, as the size of the display panel becomes large and a high speed driving scheme is employed, a signal delay may occur on a delivery path of a gate signal output from the gate driver. In this case, since a charge rate of liquid crystal capacitors located near the gate driver gets lowered than a charge rate of the liquid crystal capacitors located distant from the gate driver, there occurs a phenomenon that display quality is not uniform within one display panel.
The invention provides a driving circuit capable of improve display quality and a display device including the same.
Embodiments of the invention provide driving circuits including a receiver configured to receive an image control signal including a data signal and a clock signal, separate the data signal from the clock signal and output the data and clock signals separated from each other, a clock recovery unit generating a reference clock signal based on the clock signal and generating a plurality of multi-phase clock signals having different phases from that of the reference clock signal, an output clock generation unit outputting an output clock signal in synchronization with the clock signal and the plurality of multi-phase clock signals, and a data output unit driving a plurality of data lines with a data driving signal corresponding to the data signal in synchronization with the output clock signal. The plurality of data lines is sequentially arrayed in a first direction, and the output clock generation unit outputs the plurality of multi-phase clock signals and adjusts an output timing of the data driving signal according to positions of the plurality of data lines in the first direction.
In exemplary embodiments, the output clock generation unit may include a plurality of flip-flop arrays respectively receiving the clock signal and corresponding to each of the plurality of multi-phase clock signals, each of the plurality of flip-flop arrays may include a plurality of flip-flops sequentially connected to each other in serial. Each of the flip-flops may output an output clock signal in synchronization with a corresponding multi-phase clock signal among the plurality of multi-phase clock signals.
In other exemplary embodiments, the clock recovery unit may further generate a horizontal start signal, a horizontal clock signal and a load signal based on the clock signal.
In still other exemplary embodiments, the data output unit may include a shift register outputting a plurality of latch clock signals in synchronization with the horizontal start signal and the horizontal clock signal, a latch unit latching the data signal in response to the plurality of latch clock signals and outputting the latched data signal in response to the load signal, a digital-to-analog converter converting the latched data signal into the corresponding data driving signal, and an output buffer unit providing the data driving signal to the plurality of data lines in synchronization with the plurality of output clock signals.
In even other exemplary embodiments, the output buffer unit may include a plurality of buffers respectively corresponding to the plurality of data lines, and each of the plurality of buffers may provide the data driving signal to the corresponding data line in synchronization with a corresponding output clock signal among the plurality of output clock signals,
In yet other exemplary embodiments, the plurality of buffers may be divided into a plurality of buffer groups, and buffers belonged to one buffer group may provide the data driving signal to the corresponding data line in synchronization with an identical output clock signal among the plurality of output clock signals.
In further embodiments, the clock recovery unit may include a phase locked loop,
In other exemplary embodiments of the invention, display devices include a plurality of data lines extended in a first direction, a plurality of gate lines extended in a second direction, a plurality of pixels respectively connected to the plurality of gate lines and the plurality of data lines, a gate driver driving the plurality of gate lines, a source driver driving the plurality of data lines in response to the image control signal, and a timing controller providing the image control signal comprising a data signal and a clock signal to the source driver and controlling the gate driver. The source driver includes a receiver receiving the image control signal comprising the data signal and the clock signal, and separating the data signal from the clock signal to output the data and clock signals separated from each other, a clock recovery unit generating a reference clock signal based on the clock signal and generating a plurality of multi-phase clock signals having different phases from the reference clock signal, an output clock generation unit outputting an output clock signal in synchronization with the clock signal and the plurality of multi-phase clock signals; and a data output unit driving the plurality of data lines with a data driving signal corresponding to the data signal in synchronization with the output clock signal. The plurality of data lines are sequentially arrayed in a first direction, and the output clock generation unit outputs the plurality of multi-phase clock signals to allow an output timing of the data driving signal to be adjusted according to positions of the plurality of data lines in the first direction.
In exemplary embodiments, the output clock generation unit may include a plurality of flip-flop arrays respectively receiving the clock signal and corresponding to the plurality of multi-phase clock signals. Each of the plurality of flip-fop arrays may include a plurality of flip-flops sequentially connected to each other in series and each of the plurality of flip-flops may output an output clock signal in synchronization with a corresponding multi-phase clock signal among the plurality of multi-phase clock signals.
In other exemplary embodiments, the plurality of output clock signals may output from the plurality of flip-flops have different phases.
In other exemplary embodiments, the clock recovery unit may further generate a horizontal start signal, a horizontal clock signal and a load signal necessary for the data output unit based on the clock signal.
In other exemplary embodiments, the data output unit may include a shift register outputting a plurality of latch clock signals in synchronization with the clock signal and the horizontal clock signal, a latch unit latching the data signal in response to the plurality of latch clock signals and outputting the latched data signal in response to the load signal, a digital-to-analog converter converting the latched data signal into the corresponding data driving signal, and an output buffer unit providing the data driving signal to the plurality of data lines in synchronization with the plurality of output clock signals.
In other exemplary embodiments, the output buffer unit may include a plurality of buffers respectively corresponding to the plurality of data lines, and each of the plurality of buffers may provide the data driving signal to the corresponding data line in synchronization with a corresponding output clock signal among the plurality of output clock signals,
In further exemplary embodiments, the plurality of buffers may be divided into a plurality of buffer groups, and buffers belonged to one buffer group may provide the data driving signal to a corresponding data line in synchronization with an identical output clock signal among the plurality of output clock signals.
In still further embodiments, the clock recovery unit may include a phase locked loop,
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate exemplary embodiments of the invention and, together with the description, serve to explain principles of the invention. In the drawings:
Exemplary embodiments of the invention will be described below in more detail with reference to the accompanying drawings. The invention may, however, be embodied in different forms and should not be construed as limited to the exemplary embodiments set forth herein. Rather, these embodiments are provided so that this invention will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
It will be understood that, although the terms “first,” “second,” “third” etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, “a first element,” “component,” “region,” “layer” or “section” discussed below could be termed a second element, component, region, layer or section without departing from the teachings herein.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms, including “at least one,” unless the content clearly indicates otherwise. “Or” means “and/or.” As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” or “includes” and/or “including” when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof
Furthermore, relative terms, such as “lower” or “bottom” and “upper” or “top,” may be used herein to describe one element's relationship to another element as illustrated in the Figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures. For example, if the device in one of the figures is turned over, elements described as being on the “lower” side of other elements would then be oriented on “upper” sides of the other elements. The exemplary term “lower,” can therefore, encompasses both an orientation of “lower” and “upper,” depending on the particular orientation of the figure. Similarly, if the device in one of the figures is turned over, elements described as “below” or “beneath” other elements would then be oriented “above” the other elements. The exemplary terms “below” or “beneath” can, therefore, encompass both an orientation of above and below.
“About” or “approximately” as used herein is inclusive of the stated value and means within an acceptable range of deviation for the particular value as determined by one of ordinary skill in the art, considering the measurement in question and the error associated with measurement of the particular quantity (i.e., the limitations of the measurement system). For example, “about” can mean within one or more standard deviations, or within ±30%, 20%, 10%, 5% of the stated value.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and the present disclosure, and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Exemplary embodiments are described herein with reference to cross section illustrations that are schematic illustrations of idealized embodiments. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments described herein should not be construed as limited to the particular shapes of regions as illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, a region illustrated or described as flat may, typically, have rough and/or nonlinear features. Moreover, sharp angles that are illustrated may be rounded. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region and are not intended to limit the scope of the present claims.
Hereinafter, exemplary embodiments of the invention will be described in detail with reference to the accompanying drawings.
Referring to
The display panel 110 includes a plurality of data lines DL1 to DLm, and a plurality of gate lines GL1 to GLn intersected with the plurality of data lines DL1 to DLm, and a plurality of pixels PX1 to PXm arrayed on the intersection regions thereof. The plurality of gate lines GL1 to GLn are extended in a first direction X1 from the gate driver 122 and sequentially arrayed in a second direction X2. The plurality of data lines DL1 to DLm are extended in the second direction X2 from the source driver 123 and sequentially arrayed in the first direction X1. The plurality of data lines DL1 to DLm and the plurality of gate lines GL1 to GLn are insulated from each other.
Even though not shown in the drawing, each of the plurality of pixels PX1 to PXm may include a switching transistor connected to a corresponding data line and a corresponding gate line, and a liquid crystal capacitor and a storage capacitor which are connected to the switching transistor.
The timing controller 121 receives an image signal RGB and a control signal CTRL provided from outside. The timing controller 121 provides an image control signal CONT1 to the source driver 123 and a gate control signal CONT2 to the gate driver 122. The timing controller 121 provides the image control signal CONT1 serialized in a clock embedded interface scheme to the source driver 123. In an exemplary embodiment, the image control signal CONT1 includes a data signal and a clock signal, for example. In an exemplary embodiment, the image control signal CONT1 may further include a polarity control signal and a load signal, for example.
The source driver 123 drives the plurality of data lines DL1 to DLm in response to the image control signal CONT1 from the timing controller 121. The source driver 123 may be implemented with an independent integrated circuit to be electrically connected to one side of the display panel 110 or to be directly mounted on the display panel 110. In an exemplary embodiment, the source driver 123 may be implemented with a single chip and include a plurality of chips. In the exemplary embodiment, the source driver 123 may change output timings of the data driving signals provided to the data lines DL1 to DLm.
The gate driver 122 drives the plurality of gate lines GL1 to GLn in response to the gate control signal CONT2 from the timing controller 121. In an exemplary embodiment, the gate driver 122 may be implemented with an independent integrated chip (“IC”) to be electrically connected to one side of the display panel 110. In an exemplary embodiment, the gate driver 122 may include a circuit using an amorphous silicon gate (“ASG”) using an amorphous silicon thin film transistor (a-Si TFT), an oxide semiconductor, a crystalline semiconductor, or a polycrystalline semiconductor to be integrated at a predetermined region on the display panel 110, for example. In another exemplary embodiment, the gate driver 122 may be implemented with a tape carrier package (“TCP”) or a chip on film (“COF”), for example.
While a gate on voltage is applied to one gate line, respective switching transistors in a row of pixels connected to the one gate line may be turned on. At this point, the source driver 123 provides data driving signals corresponding to the data signals included in the image control signal CONT1 to the data lines DL1 to DLm. The data driving signals provided to the data lines DL1 to DLm are applied to corresponding pixels through the turned-on switching transistors. Here, a time period when a row of switching transistors are being turned on is referred to as ‘one horizontal period’ or ‘1H’.
Referring to
It may be seen that the gate signal Gi output from the gate driver 122 is delayed by a predetermined time when provided to the pixel PXm farther from the gate driver 122 in a first direction X1 than when provided to the pixel PX1.
Even though the source driver 123 provides the data driving signal D1 to Dm at the same timing, namely, simultaneously to the data lines DL1 to DLm, a charge rate of the second pixel PXm, which is farther from the gate driver 122 in the first direction X1 becomes lowered due to the delay of the gate signal Gi than that of the first pixel PX1 adjacent to the gate driver 122.
Referring to
The receiver 210 receives the image control signal CONT1 from the timing controller 121 (shown in
The clock recovery unit 230 outputs the horizontal clock signal HCLK and the plurality of multi-phase clock signals MCLK1 to MCLK10 in synchronization with the clock signal CLK. The plurality of multi-phase clock signals MCLK1 to MCLK10 respectively has phases different from each other during one period of the reference clock signal RCLK. The clock recovery unit 230 provides the clock signal CLK and the plurality of multi-phases clock signals MCLK1 to MCLK10 to the output clock generation unit 240. Although not illustrated in the drawing, the clock recovery unit 230 may further generate the reference clock signal RCLK. The clock recovery unit 230 may be implemented with a phase locked loop PLL.
The data recovery unit 220 recovers the data signal DATA in synchronization with the horizontal clock signal HCLK and outputs a recovery data signal DATAR. In an exemplary embodiment, the data recovery unit 220 may convert the data signal DATA, which is a serial signal, into the recovery data signal DATAR corresponding respectively to the pixels PX1 to PMm, for example.
The output clock generation unit 240 outputs a plurality of output clock signals OCLK1 to OCLKk in synchronization with the clock signal CLK and the plurality of multi-phase clock signals MCLK1 to MCLK10.
The data output unit 250 drives the plurality of data lines DL1 to DLm with the data driving signals D1 to Dm corresponding to the recovery data signal from the data recovery unit 220 in response to the horizontal clock signal from the clock recovery unit 230, the plurality of output clock signals OCLK1 to OCLKk from the output clock generation unit 240, and the polarity control signal POL and the load signal LOAD from the receiver 210.
Referring to
Referring to
Each of the plurality of flip-flop arrays 241 to 2410 includes a plurality of flip-flops. In other words, the flip-flop array 241 includes flip-flops F11 to F1f connected serially to each other. The flip-flops F11 to F1f deliver the clock signal CLK to an output in synchronization with the corresponding multi-phase clock signal MCLK1. The outputs of the flip-flops F11 to F1f are the output clock signals OCLK1 to OCLKk-9.
The flip-flop array 242 includes flip-flops F21 to F2f connected serially. The flip-flops F21 to F2f deliver the clock signal CLK to an output in synchronization with the corresponding multi-phase clock signal MCLK2. The outputs of the flip-flops F21 to F2f are the output clock signals OCLK2 to OCLKk-8.
The flip-flop array 243 includes flip-flops F31 to F3f connected serially. The flip-flops F31 to F3f deliver the clock signal CLK to an output in synchronization with the corresponding multi-phase clock signal MCLK3. The outputs of the flip-flops F31 to F3f are the output clock signals OCLK3 to OCLKk-7.
The flip-flop array 2410 includes flip-flops F101 to F10f connected serially. The flip-flops F101 to F10f deliver the clock signal CLK to an output in synchronization with the corresponding multi-phase clock signal MCLK10. The outputs of the flip-flops F101 to F10f are the output clock signals OCLK10 to OCLKk.
When waveforms of the clock signal CLK and the multi-phase clock signals MCLK1 to MCLK10 are the same as those illustrated in
Referring to
Referring to
The shift register 310 shifts the clock signal CLK in synchronization with the horizontal clock signal HCLK. The shift register 310 outputs a plurality of latch clock signals CK1 to CKm. The plurality of latch clock signals CK1 to CKm may be sequentially activated. The latch unit 320 sequentially latches the recovery data signal DATAR in synchronization with the latch clock signals CK1 to CKm from the shift register 310, and simultaneously provides the latch data signals DA1 to DAm to the digital-to-analog converter 330 in response to the load signal LOAD.
The digital-to-analog converter (“DAC”) 330 outputs, to the output buffer unit 340, gradation voltages Y1 to Ym corresponding to latch data signals DA to DAm from the latch unit 320 in response to the polarity control signal POL provided from the receiver 210 illustrated in
Referring to
In an exemplary embodiment, each of the plurality of buffer groups 341 to 34k includes 6 buffers, for example. In other words, the buffer group 341 includes buffers B1 to B6, the buffer group 342 includes buffers B7 to B12, and the buffer group 34k includes buffers Bm-5 to Bm. The buffers B1 to Bm respectively correspond to the data lines DL1 to DLm. In the exemplary embodiment, when each of the plurality of buffer groups 31 to 34k includes 6 buffers, k is the number of data lines divided by six, namely, m/6.
As described above in relation to
In the exemplary embodiment, each of the plurality of buffer groups 341 to 34k includes 6 buffers, but the number of buffers belonged to each of the plurality of buffer groups 341 to 34k may be any number greater than one. According to the number of buffers belonged to each of the plurality of buffer groups 341 to 34k, the number of the output clock signals OCLK1 to OCLKk and the number of the multi-phase clock signals MCLK1 to MCLK10 may be changed.
Referring to
The gate signal Gi output from the gate driver 122 is delayed by a predetermined time when provided to the pixel PXm farther from the gate driver 122 in the first direction X1 than when provided to the pixel PX1.
A charge time of the second pixel PXm may be secured by delaying an output timing of the data driving signal Dm by the delay time of the gate signal Gi. In an exemplary embodiment, the output delay time td of the data driving signal Dm may be set by considering the delay time of the gate signal Gi transmitted through the gate line GLi.
In such a way, the delay of the gate signal Gi transmitted to the gate line GLi may be compensated by providing, to the second pixel PXm, the data driving signal DM delayed by the delay time td than providing the data driving signal D1 to the first pixel PX1.
Referring to
Referring to
Referring to
Referring to
Referring to
In such a way, display quality of the display device 500 can be improved by adjusting an output timing of the data driving signal according to a distance between the gate driver and the data line.
A display device including a driving circuit having the above-described configuration may control output timings of data driving signals according to a distance between a gate driver and data lines. Accordingly, display quality of the display device can be improved.
The above-disclosed subject matter is to be considered illustrative and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other exemplary embodiments, which fall within the true spirit and scope of the invention. Thus, to the maximum extent allowed by law, the scope of the invention is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.
Number | Date | Country | Kind |
---|---|---|---|
10-2014-0151405 | Nov 2014 | KR | national |