Driving Circuit And Liquid Ejecting Apparatus

Information

  • Patent Application
  • 20220097364
  • Publication Number
    20220097364
  • Date Filed
    September 29, 2021
    3 years ago
  • Date Published
    March 31, 2022
    2 years ago
Abstract
A driving circuit includes an amplification circuit that outputs an amplified modulation signal and a level shift circuit. In the level shift circuit, when a reference potential of the amplified modulation signal is shifted to a second potential from a first potential, a second gate driver outputs a third gate signal for controlling a third transistor to be nonconductive and a fourth gate signal for controlling a fourth transistor to be conductive, then outputs the third gate signal for controlling the third transistor to be conductive and the fourth gate signal for controlling the fourth transistor to be nonconductive, and thereafter outputs the third gate signal for controlling the third transistor to be nonconductive and the fourth gate signal for controlling the fourth transistor to be conductive.
Description

The present application is based on, and claims priority from JP Application Serial Number 2020-165279, filed Sep. 30, 2020, the disclosure of which is hereby incorporated by reference herein in its entirety.


BACKGROUND
1. Technical Field

The present disclosure relates to a driving circuit and a liquid ejecting apparatus.


2. Related Art

Ink jet printers that include driving elements, such as piezoelectric elements, are known for printing images and documents by ejecting ink. Such piezoelectric elements are disposed so as to correspond to a plurality of nozzles in a head unit and are driven in accordance with driving signals. By this, a predetermined amount of ink (liquid) is ejected at a predetermined timing from the nozzles so as to form dots on a medium. The piezoelectric elements have a capacitive load electrically functioning as a capacitor, and therefore, a sufficient amount of current is required to be supplied to the piezoelectric elements to operate the piezoelectric elements of the nozzles. Therefore, the piezoelectric elements are driven by an amplification circuit amplifying a source signal to obtain a driving signal to be supplied to the head unit.


JP-A-2009-166349 discloses a driving circuit that outputs a driving signal and a liquid discharging apparatus including the driving circuit. The driving circuit includes a modulation circuit that modulates a base driving signal and a plurality of power amplification circuits that perform power amplification on a signal output from the modulation circuit.


However, the driving circuit disclosed in JP-A-2009-166349 has a room for further improvement in terms of enhancement of higher accuracy of a driving signal that is requested in recent years.


SUMMARY

According to an aspect of the present disclosure, a driving circuit that outputs a driving signal for driving a driving section includes a modulation circuit configured to modulate a base driving signal that is a base of the driving signal and output a modulation signal, an amplification circuit configured to output, from a first output point, an amplified modulation signal obtained by amplifying the modulation signal, a level shift circuit configured to output, from a second output point, a level-shift amplified modulation signal obtained by shifting a potential of the amplified modulation signal, and a demodulation circuit configured to demodulate the level-shift amplified modulation signal and output the driving signal. The amplification circuit includes a first gate driver that outputs, based on the modulation signal, a first gate signal and a second gate signal, a first transistor that has one end electrically coupled to the first output point and that operates based on the first gate signal, and a second transistor that has one end electrically coupled to the first output point and that operates based on the second gate signal. The level shift circuit includes a second gate driver that outputs, based on the base driving signal, a third gate signal and a fourth gate signal, a third transistor that has one end electrically coupled to the second output point and the other end to which a signal based on the amplified modulation signal is supplied and that operates based on the third gate signal, a fourth transistor that has one end electrically coupled to the second output point and the other end to which a first power source voltage is supplied and that operates based on the fourth gate signal, and a first capacitance element that has one end to which a signal based on the amplified modulation signal is supplied and the other end electrically coupled to the other end of the fourth transistor. The level shift circuit has a first mode in which a reference potential of the amplified modulation signal is determined as a first potential and a second mode in which a reference potential of the amplified modulation signal is determined as a second potential higher than the first potential. When the level shift circuit enters the second mode from the first mode, the second gate driver outputs the third gate signal for controlling the third transistor to be nonconductive and the fourth gate signal for controlling the fourth transistor to be conductive, then outputs the third gate signal for controlling the third transistor to be conductive and the fourth gate signal for controlling the fourth transistor to be nonconductive, and thereafter outputs the third gate signal for controlling the third transistor to be nonconductive and the fourth gate signal for controlling the fourth transistor to be conductive.


According to another aspect of the present disclosure, a liquid ejecting apparatus includes an ejection portion configured to eject liquid, and a driving circuit configured to output a driving signal for driving the ejection portion. The driving circuit includes a modulation circuit configured to modulate a base driving signal that is a base of the driving signal and output a modulation signal, an amplification circuit configured to output, from a first output point, an amplified modulation signal obtained by amplifying the modulation signal, a level shift circuit configured to output, from a second output point, a level-shift amplified modulation signal obtained by shifting a potential of the amplified modulation signal, and a demodulation circuit configured to demodulate the level-shift amplified modulation signal and output the driving signal. The amplification circuit includes a first gate driver that outputs, based on the modulation signal, a first gate signal and a second gate signal, a first transistor that has one end electrically coupled to the first output point and that operates based on the first gate signal, and a second transistor that has one end electrically coupled to the first output point and that operates based on the second gate signal. The level shift circuit includes a second gate driver that outputs, based on the base driving signal, a third gate signal and a fourth gate signal, a third transistor that has one end electrically coupled to the second output point and the other end to which a signal based on the amplified modulation signal is supplied and that operates based on the third gate signal, a fourth transistor that has one end electrically coupled to the second output point and the other end to which a first power source voltage is supplied and that operates based on the fourth gate signal, and a first capacitance element that has one end to which a signal based on the amplified modulation signal is supplied and the other end electrically coupled to the other end of the fourth transistor. The level shift circuit has a first mode in which a reference potential of the amplified modulation signal is determined as a first potential and a second mode in which a reference potential of the amplified modulation signal is determined as a second potential higher than the first potential. When the level shift circuit enters the second mode from the first mode, the second gate driver outputs the third gate signal for controlling the third transistor to be nonconductive and the fourth gate signal for controlling the fourth transistor to be conductive, then outputs the third gate signal for controlling the third transistor to be conductive and the fourth gate signal for controlling the fourth transistor to be nonconductive, and thereafter outputs the third gate signal for controlling the third transistor to be nonconductive and the fourth gate signal for controlling the fourth transistor to be conductive.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram illustrating a configuration of a liquid ejecting apparatus.



FIG. 2 is a diagram illustrating a functional configuration of the liquid ejecting apparatus.



FIG. 3 is a diagram illustrating an example of arrangement of a plurality of ejection portions in a head unit.



FIG. 4 is a diagram schematically illustrating a configuration of one of the ejection portions.



FIG. 5 is a diagram illustrating an example of a waveform of a driving signal.



FIGS. 6A and 6B are diagrams illustrating a functional configuration of a driving signal output circuit.



FIG. 7 is a diagram illustrating an operation of the driving signal output circuit.



FIGS. 8A and 8B are diagrams illustrating a functional configuration of a driving signal output circuit according to a second embodiment.



FIG. 9 is a diagram illustrating an operation of the driving signal output circuit according to the second embodiment.





DESCRIPTION OF EXEMPLARY EMBODIMENTS

Hereinafter, preferred embodiments of the present disclosure will be described with reference to the accompanying drawings. The drawings are only used for sake of convenience of description. Note that the embodiments below do not unreasonably limit content of the present disclosure disclosed in the claims. It is not necessarily the case that all components described below are requirements of the present disclosure.


1. First Embodiment
1.1 Outline of Liquid Ejecting Apparatus


FIG. 1 is a diagram illustrating a configuration of a liquid ejecting apparatus 1. As illustrated in FIG. 1, the liquid ejecting apparatus 1 includes a movement unit 3 that causes a movable body 2 to reciprocate in a main scanning direction.


The movement unit 3 includes a carriage motor 31 serving as a driving source of a movement of the movable body 2, a carriage guide shaft 32 having fixed opposite ends, and a timing belt 33 that extends substantially in parallel to the carriage guide shaft 32 and that is driven by the carriage motor 31.


The movable body 2 includes a carriage 24. The carriage 24 is supported by the carriage guide shaft 32 in a reciprocation available manner and fixed to a portion of the timing belt 33. Accordingly, the carriage motor 31 drives the timing belt 33 forward and backward so that the movable body 2 reciprocates while being guided by the carriage guide shaft 32. A head unit 20 is disposed in a portion of the movable body 2 that faces a medium P. A number of nozzles ejecting ink as liquid are located on the surface of the head unit 20 that faces the medium P. Then various control signals for controlling operations of the head unit 20 are supplied to the head unit 20 through a flexible cable 190.


The liquid ejecting apparatus 1 further includes a transport unit 4 that transports the medium P on a platen 40 in a transport direction. The transport unit 4 includes a transport motor 41 serving as a driving source of transport of the medium P and a transport roller 42 that is rotated by the transport motor 41 and that transports the medium P in the transport direction.


In the liquid ejecting apparatus 1 configured as described above, a desired image is formed on a surface of the medium P by ejecting ink on the medium P from the head unit 20 at a timing when the medium P is transported by the transport unit 4.


Next, a functional configuration of the liquid ejecting apparatus 1 will be described. FIG. 2 is a diagram illustrating the functional configuration of the liquid ejecting apparatus 1. As illustrated in FIG. 2, the liquid ejecting apparatus 1 includes a control unit 10, the head unit 20, the movement unit 3, the transport unit 4, and the flexible cable 190 that electrically couples the control unit 10 and the head unit 20 to each other.


The control unit 10 includes a controller 100, a driving signal output circuit 50, and a power source circuit 70.


The power source circuit 70 generates voltages VHV, VMV, and VDD having predetermined voltage values using commercial AC power supplied from an outside of the liquid ejecting apparatus 1 and outputs the voltages VHV, VMV, and VDD to the corresponding components of the liquid ejecting apparatus 1. Here, in this embodiment, the voltage VHV is a direct current voltage of 42V, the voltage VMV is a direct current voltage of 21V, and the voltage VDD is a direct current voltage of 5V. Note that the power source circuit 70 may output signals of different voltage values instead of or in addition to the voltages VHV, VMV, and VDD. Furthermore, the power source circuit 70 may include an AC/DC converter that generates the voltage VHV using commercial AC power and a DC/DC converter that generates the voltages VMV and VDD using the voltage VHV.


Image data is supplied to the controller 100 from an external apparatus, not illustrated, installed outside the liquid ejecting apparatus 1, an example of the external apparatus being a host computer. Thereafter, the controller 100 performs various image processes on the supplied image data so as to generate various control signals for controlling the units included in the liquid ejecting apparatus 1 and output the control signals to the corresponding components.


Specifically, the controller 100 generates a control signal Ctrl1 for controlling the reciprocation of the movable body 2 performed by the movement unit 3 and outputs the generated control signal Ctrl1 to the carriage motor 31 included in the movement unit 3. Furthermore, the controller 100 generates a control signal Ctrl2 for controlling transport of the medium P performed by the transport unit 4 and outputs the generated control signal Ctrl2 to the transport motor 41 included in the transport unit 4. By this, the reciprocation of the movable body 2 in a main scanning direction and transport of the medium P in the transport direction are controlled so that the head unit 20 may eject ink to a desired position of the medium P. Note that the controller 100 may supply the control signal Ctrl1 to the movement unit 3 through a carriage motor driver not illustrated, or may supply the control signal Ctrl2 to the transport unit 4 through a transport motor driver not illustrated.


Furthermore, the controller 100 outputs base driving data dA to the driving signal output circuit 50. Here, the base driving data dA is a digital signal including data for specifying a waveform of a driving signal COM to be supplied to the head unit 20. Then the driving signal output circuit 50 converts the supplied base driving data dA into an analog signal before generating the driving signal COM by amplifying the converted signal and supplying the driving signal COM to the head unit 20. Note that a configuration and operation of the driving signal output circuit 50 will be described hereinafter in detail.


Furthermore, the controller 100 generates a driving data signal DATA for controlling an operation of the head unit 20 and outputs the driving data signal DATA to the head unit 20. The head unit 20 includes a selection controller 210, a plurality of selection sections 230, and an ejection head 21. Furthermore, the ejection head 21 includes a plurality of ejection portions 600 including corresponding piezoelectric elements 60. Here, the plurality of selection sections 230 are disposed so as to correspond to the respective piezoelectric elements 60 included in the corresponding ejecting portions 600 included in the ejection head 21.


The driving data signal DATA is input to the selection controller 210. The selection controller 210 generates selection control signals indicating whether the driving signal COM is to be selected or not to be selected for the respective selection sections 230 based on the supplied driving data signal DATA and outputs the generated selection control signals to the respective selection sections 230. Each of the plurality of selection sections 230 selects or does not select the driving signal COM as a driving signal VOUT based on the supplied selection control signal. By this, each of the selection sections 230 generates a driving signal VOUT based on the driving signal COM and supplies the driving signal VOUT to one end of a corresponding one of the piezoelectric elements 60 included in the corresponding ejection portions 600 included in the ejection head 21. Furthermore, a reference voltage signal VBS serving as a reference for driving the piezoelectric element 60 is supplied to the other end of the piezoelectric element 60. Note that the reference voltage signal VBS may be a signal having a DC voltage of 5V or having a ground potential.


The piezoelectric elements 60 are disposed so as to correspond to a plurality of nozzles included in the head unit 20. Then each of the piezoelectric elements 60 is driven in accordance with a potential difference between the driving signal VOUT supplied to the one end and the reference voltage signal VBS supplied to the other end so that ink is ejected from a corresponding one of the nozzles.


Note that, although the head unit 20 has the one ejection head 21 in FIG. 2, the liquid ejecting apparatus 1 may include a plurality of ejection heads 21 corresponding to the number of types of ink to be ejected or the like.


1.2 Configuration of Ejection Portions


FIG. 3 is a diagram illustrating an example of arrangement of the plurality of ejection portions 600 in the head unit 20. Note that, in FIG. 3, the head unit 20 includes four ejection heads 21, for example.


As illustrated in FIG. 3, each of the ejection heads 21 includes the plurality of ejection portions 600 disposed in a line in one direction. Specifically, in the head unit 20, the number of nozzle lines L that correspond to the number of ejection heads 21 and that include nozzles 651 accommodated in the corresponding ejection portions 600 and arranged in one direction are formed. Note that the arrangement of the nozzles 651 in the nozzle lines L included in the ejection heads 21 is not limited to a line, and each of the ejection heads 21 may have a nozzle line L configured such that the plurality of nozzles 651 are divided into even-numbered nozzles 651 and odd-numbered nozzles 651 counted from one end and the even-numbered nozzles 651 and the odd-numbered nozzles 651 are disposed in shifted positions in a zigzag manner, or a nozzle line L having a plurality of nozzles 651 arranged in two or more lines in parallel.


Here, an example of a configuration of the ejection portions 600 will be described. FIG. 4 is a diagram schematically illustrating a configuration of one of the ejection portions 600. As illustrated in FIG. 4, the ejection portion 600 includes a piezoelectric element 60, a vibration plate 621, a cavity 631, and a nozzle 651. The cavity 631 is filled with ink supplied from a reservoir 641. The ink is guided from an ink cartridge not illustrated through a supply port 661 to the reservoir 641. Specifically, the cavity 631 is filled with the ink stored in the corresponding ink cartridge.


The vibration plate 621 is displaced by driving of the piezoelectric element 60 disposed on an upper surface thereof as illustrated in FIG. 4. Then internal volume of the cavity 631 filled with the ink is increased or reduced in accordance with the displacement of the vibration plate 621. Specifically, the vibration plate 621 functions as a diaphragm for changing the internal volume of the cavity 631. The nozzle 651 is an opening portion formed in a nozzle plate 632 and communicates with the cavity 631. When the internal volume of the cavity 631 is changed, an amount of ink corresponding to the change in the internal volume is guided to the cavity 631 and ejected from the nozzle 651.


The piezoelectric element 60 is configured such that a piezoelectric body 601 is sandwiched between a pair of electrodes 611 and 612. In the piezoelectric element 60 configured as described above, center portions of the electrodes 611 and 612 bend in an up-down direction with the vibration plate 621 in accordance with a potential difference between voltages supplied from the electrodes 611 and 612. Specifically, a driving signal VOUT is supplied to the electrode 611 of the piezoelectric element 60 and a signal of a reference potential is supplied to the electrode 612 of the piezoelectric element 60. When a voltage level of the driving signal VOUT supplied to the electrode 611 is lowered, a corresponding one of the piezoelectric elements 60 bends upward whereas when the voltage level of the driving signal VOUT supplied to the electrode 611 is increased, a corresponding piezoelectric element 60 bends downward.


In the ejection portion 600 configured as described above, when the piezoelectric element 60 bends upward, the vibration plate 621 is displaced upward and the internal volume of the cavity 631 is increased. By this, the ink is drawn from the reservoir 641. On the other hand, when the piezoelectric element 60 bends downward, the vibration plate 621 is displaced downward and the internal volume of the cavity 631 is reduced. By this, an amount of ink corresponding to a degree of the reduction is ejected from the nozzle 651. Note that the configuration of the piezoelectric element 60 is not limited to that illustrated in FIG. 4 as long as the ink is ejected from the nozzle 651 when the piezoelectric element 60 is driven. Furthermore, the configuration of the piezoelectric element 60 is not limited to that of the bending vibration described above, and a configuration using a vertical vibration may be used. Furthermore, in the piezoelectric element 60, when a voltage level of the driving signal VOUT supplied to the electrode 611 is increased, the corresponding piezoelectric element 60 may bend upward whereas when the voltage level of the driving signal VOUT supplied to the electrode 611 is reduced, a corresponding one of the piezoelectric elements 60 may bend downward.


Here, each of the ejection portions 600 including the piezoelectric elements 60 is an example of a driving section, and the driving signal COM serving as a base of the driving signal VOUT for driving the driving section is an example of a driving signal. The driving signal output circuit 50 that outputs the driving signal COM for driving the ejection portions 600 is an example of a driving circuit. Note that, since the driving signal VOUT is generated when the driving signal COM is selected or not selected, the driving signal VOUT is also an example of the driving signal in a broad sense.


1.3 Configuration of Driving Signal Output Circuit

As described above, the piezoelectric elements 60 is driven, by the driving signal VOUT based on the driving signal COM generated by the driving signal output circuit 50, for ejection of ink performed by the ejection portions 600 included in the head unit 20. A configuration and operation of the driving signal output circuit 50 that generates the driving signal COM that is a base of the driving signal VOUT will be described.


1.3.1 Voltage Waveform of Driving Signal COM

An example of a waveform of the driving signal COM generated by the driving signal output circuit 50 will now be described. FIG. 5 is a diagram illustrating an example of a waveform of the driving signal COM. As illustrated in FIG. 5, the driving signal COM includes a trapezoidal waveform Adp in every cycle T. A trapezoidal waveform Adp included in the driving signal COM includes a period of time in which a voltage Vc is fixed, a period of time in which a voltage Vb having a lower potential than that of the voltage Vc is fixed and which follows the period of time in which the voltage Vc is fixed, a period of time in which a voltage Vt having a potential higher than that of the voltage Vc is fixed and which follows the period of time in which the voltage Vb is fixed, and a period of time in which the voltage Vc is fixed that follows the period of time in which the voltage Vt is fixed. Specifically, the driving signal COM includes the trapezoidal waveform Adp that starts with the voltage Vc and terminates with the voltage Vc.


Here, the voltage Vc functions as a reference potential serving as a reference of the displacement of the piezoelectric element 60 driven by the driving signal COM. The piezoelectric element 60 bends upward in FIG. 4 when a voltage value of the driving signal COM supplied to the piezoelectric element 60 becomes the voltage Vb from the voltage Vc, and as a result, the vibration plate 621 is displaced upward in FIG. 4. Thereafter, when the vibration plate 621 is displaced upward, the internal volume of the cavity 631 is increased and the ink is drawn into the cavity 631 from the reservoir 641. Thereafter, the piezoelectric element 60 bends downward in FIG. 4 when the voltage value of the driving signal COM supplied to the piezoelectric element 60 becomes the voltage Vt from the voltage Vb, and as a result, the vibration plate 621 is displaced downward in FIG. 4. When the vibration 621 is displaced downward, the internal volume of the cavity 631 is reduced and the ink stored in the cavity 631 is ejected from the nozzle 651. Furthermore, after the ink is ejected from the nozzle 651 by driving of the piezoelectric element 60, the ink in the vicinity of the nozzle 651 and the vibration plate 621 may be continuously vibrated for a certain period of time. The period of time in which the voltage Vc is fixed included in the driving signal COM also functions as a period of time for stopping such vibration generated in the ink and the vibration plate 621 that does not contribute to the ejection of the ink.


1.3.2 Configuration of Driving Signal Output Circuit

A configuration of the driving signal output circuit 50 that generates and outputs the driving signal COM will now be described. FIGS. 6A and 6B are diagrams illustrating a functional configuration of the driving signal output circuit 50. As illustrated in FIGS. 6A and 6B, the driving signal output circuit 50 includes a base driving signal output circuit 510, an adder 511, a fixed output switching circuit 520, a pulse modulation circuit 530, a switch 531, a feedback circuit 540, a digital amplification circuit 550, a level shift circuit 560, and a demodulation circuit 580.


The controller 100 supplies base driving data dA that is a digital signal to the base driving signal output circuit 510. The base driving signal output circuit 510 performs digital-analog conversion on the supplied base driving data dA, and thereafter, outputs the converted analog signal as a base driving signal aA. Specifically, the base driving signal output circuit 510 includes a digital-to-analog (D/A) converter. A voltage amplitude of the base driving signal aA is 1 to 2 V, for example, and the driving signal output circuit 50 outputs the amplified base driving signal aA as the driving signal COM. Specifically, the base driving signal aA corresponds to a target signal before the amplification of the driving signal COM.


The base driving signal aA is supplied to a positive input terminal of the adder 511, and a feedback signal Sfb of the driving signal COM is supplied through the feedback circuit 540 to a negative input terminal of the adder 511. Then the adder 511 outputs a voltage obtained by subtracting a voltage input to the negative input terminal from a voltage input to the positive input terminal and integrating a result thereof to the pulse modulation circuit 530.


The pulse modulation circuit 530 performs pulse modulation on the signal supplied from the adder 511 and outputs the modulated signal to the switch 531. Specifically, the pulse modulation circuit 530 modulates the base driving signal aA serving as a base of the driving signal COM so as to output a modulated signal Ms.


The fixed output switching circuit 520 includes a switching circuit 521 and a fixed pulse output circuit 522. The base driving signal aA is supplied to the fixed pulse output circuit 522. Then the fixed pulse output circuit 522 generates a pulse signal PDC of a predetermined duty corresponding to a potential of the input base driving signal aA and outputs the pulse signal PDC to the switch 531. Furthermore, the base driving signal aA is supplied to the switching circuit 521. Then the switching circuit 521 outputs a switch signal Sel for controlling the switch 531 based on a potential of the input base driving signal aA. Specifically, the switching circuit 521 outputs the switch signal Sel to be used by the switch 531 to output the modulated signal Ms as a base gate signal Gd from an output terminal in a period of time in which the potential of the base driving signal aA is fixed. Furthermore, the switching circuit 521 outputs the switch signal Sel used by the switch 531 to output the pulse signal PDC as the base gate signal Gd from the output terminal in a period of time in which the potential of the base driving signal aA is changed.


The modulation signal Ms is supplied to one input terminal of the switch 531 and the pulse signal PDC is supplied to the other input terminal of the switch 531. Then the switch 531 selects the modulation signal Ms to be output as the base gate signal Gd from the output terminal or the pulse signal PDC to be output as the base gate signal Gd from the output terminal, based on the switch signal Sel output from the switching circuit 521. The base gate signal Gd output from the switch 531 is supplied to the digital amplification circuit 550.


The digital amplification circuit 550 includes a gate driver 551, a diode D1, a capacitor C1, and transistors Q1 and Q2. The digital amplification circuit 550 outputs an amplified modulation signal AMs1 obtained by amplifying the base gate signal Gd from a midpoint CP1.


Specifically, the base gate signal Gd is supplied to the gate driver 551 included in the digital amplification circuit 550. The gate driver 551 outputs a gate signal Hgs1 for driving the transistor Q1 and a gate signal Lgs1 for driving the transistor Q2 based on a logical level of the supplied base gate signal Gd.


The transistors Q1 and Q2 are configured by an N-channel MOS-FET. The gate signal Hgs1 output from the gate driver 551 is supplied to a gate terminal of the transistor Q1. Furthermore, a voltage VMV is supplied to a drain terminal of the transistor Q1, and a source terminal of the transistor Q1 is coupled to the midpoint CP1. Specifically, the transistor Q1 has the source terminal serving as one end electrically coupled to the midpoint CP1 and operates based on the gate signal Hgs1. Furthermore, the gate signal Hgs2 output from the gate driver 551 is supplied to a gate terminal of the transistor Q2. Furthermore, a drain terminal of the transistor Q2 is coupled to the midpoint CP1, and a ground potential GND is supplied to a source terminal of the transistor Q2. Specifically, the transistor Q2 has the drain terminal serving as one end electrically coupled to the midpoint CP1 and operates based on the gate signal Lgs1. Then the digital amplification circuit 550 outputs a signal generated at the midpoint CP1 where the transistors Q1 and Q2 are coupled to each other as the amplified modulation signal AMs1.


Here, an operation of the gate driver 551 that outputs the gate signals Hgs1 and Lgs1 will be described. The gate driver 551 includes gate drive circuits 552 and 553 and an inverter circuit 554. Then the base gate signal Gd supplied to the gate driver 551 is further supplied to the gate drive circuit 552 and also supplied to the gate drive circuit 553 through the inverter circuit 554. Specifically, the signal supplied to the gate drive circuit 552 and the signal supplied to the gate drive circuit 553 are exclusively in a high level. Here, the signal exclusively in a high level means that signals in a high level are not simultaneously supplied to the gate drive circuits 552 and 553.


Specifically, a state in which signals in a low level are simultaneously supplied to the gate drive circuits 552 and 553 is not excluded.


A low-potential-side input terminal of the gate drive circuit 552 is coupled to the midpoint CP1. Accordingly, a signal of a potential in the midpoint CP1 is supplied as a voltage HVss1 to the low-potential-side input terminal of the gate drive circuit 552. Furthermore, a high-potential-side input terminal of the gate drive circuit 552 is coupled to a cathode terminal of the diode D1 having an anode terminal to which a voltage Vg is supplied and also coupled to one end of the capacitor C1. The other end of the capacitor C1 is coupled to the midpoint CP1. Specifically, a bootstrap circuit including the capacitor C1 functioning as a bootstrap capacitor is configured at the high-potential-side input terminal of the gate drive circuit 552. Therefore, a voltage HVdd1 having a potential larger by the voltage Vg than a voltage HVss1 supplied to the low-potential-side input terminal is supplied to the high-potential-side input terminal of the gate drive circuit 552. Accordingly, when the base gate signal Gd in a high level is supplied to the gate drive circuit 552, the gate drive circuit 552 outputs a gate signal Hgs1 in a high level having a potential based on a voltage HVdd1 that is larger by a voltage Vg than the potential of the midpoint CP1, whereas when the base gate signal Gd in a low level is supplied to the gate drive circuit 552, the gate drive circuit 552 outputs a gate signal Hgs1 in a low level of a potential based on the voltage HVss1 that is a potential of the midpoint CP1. Note that the voltage Vg is a DC voltage generated by dropping or rising the voltages VHV, VMV, and VDD output from the power source circuit 70 and is a voltage value enabling driving of each of the transistors Q1 to Q4, that is, a DC voltage of 7.5 V, for example.


A signal of the ground potential GND is supplied as a voltage LVss1 to the low-potential-side input terminal of the gate drive circuit 553. Furthermore, the voltage Vg is supplied as a voltage LVdd1 to the high-potential-side input terminal of the gate drive circuit 553. Accordingly, when a signal in a high level obtained by inverting a logic of the base gate signal Gd in a low level by the inverter circuit 554 is supplied to the gate drive circuit 553, the gate drive circuit 553 outputs a gate signal Lgs1 in a high level having a potential based on the voltage LVdd1 corresponding to the voltage Vg, whereas when a signal in a low level obtained by inverting a logic of the base gate signal Gd in a high level by the inverter circuit 554 is supplied to the gate drive circuit 553, the gate drive circuit 553 outputs a gate signal Lgs1 in a low level of a potential based on the voltage LVss1 that is the ground potential GND.


The level shift circuit 560 includes a reference level switching circuit 561 and a level-shift amplified modulation signal output circuit 570. Furthermore, the level-shift amplified modulation signal output circuit 570 includes a gate driver 571, diodes D2 to D4, capacitors C2 to C4, and transistors Q3 and Q4. Then the level shift circuit 560 including the level-shift amplified modulation signal output circuit 570 outputs a level-shift amplified modulation signal AMs2 obtained by shifting a reference potential of the amplified modulation signal AMs1 from the midpoint CP2. Specifically, the level shift circuit 560 has a mode in which the reference potential of the amplified modulation signal AMs1 is determined as the ground potential GND and a mode in which the reference potential of the amplified modulation signal AMs1 is determined as the voltage VMV.


Specifically, the base driving signal aA is supplied to the reference level switching circuit 561 from the base driving signal output circuit 510. The reference level switching circuit 561 generates a level switching signal Ls1 based on the base driving signal aA and outputs the generated level switching signal Ls1 to the level-shift amplified modulation signal output circuit 570. The level switching signal Ls1 is supplied to the gate driver 571. Specifically, the reference level switching circuit 561 generates, when the potential of the base driving signal aA is equal to or larger than a threshold voltage Vth1 of a certain potential, the level switching signal Ls1 in a high level to be output to the gate driver 571 and generates, when the potential of the base driving signal aA is smaller than the threshold voltage Vth1, the level switching signal Ls1 in a low level to be output to the gate driver 571.


The gate driver 571 outputs a gate signal Hgs2 for driving the transistor Q3 and a gate signal Lgs2 for driving the transistor Q4 based on a logical level of the supplied level switching signal Ls1.


The transistors Q3 and Q4 are configured by an N-channel MOS-FET. The gate signal Hgs2 output from the gate driver 571 is supplied to a gate terminal of the transistor Q3. Furthermore, a drain terminal of the transistor Q3 is coupled to a cathode terminal of the diode D4 having an anode terminal to which the voltage VMV is supplied, and a source terminal of the transistor Q3 is coupled to a midpoint CP2. Specifically, the transistor Q3 has the source terminal serving as one end electrically coupled to the midpoint CP2 and the drain terminal serving as the other end to which the voltage VMV is supplied through the diode D4, and operates based on the gate signal Hgs2. Furthermore, the gate signal Lgs2 output from the gate driver 571 is supplied to a gate terminal of the transistor Q4. Furthermore, a drain terminal of the transistor Q4 is coupled to the midpoint CP2, and a source terminal of the transistor Q4 is coupled to the midpoint CP1. Specifically, the transistor Q4 has the drain terminal serving as one end electrically coupled to the midpoint CP2 and the source terminal serving as the other end electrically coupled to the midpoint CP1, and operates based on the gate signal Lgs2. Then the level-shift amplified modulation signal output circuit 570 included in the level shift circuit 560 outputs a signal generated at the midpoint CP2 where the transistors Q3 and Q4 are coupled to each other as the level-shift amplified modulation signal AMs2.


Furthermore, the capacitor C4 has one end electrically coupled to the midpoint CP1 and the other end electrically coupled to a drain terminal of the transistor Q3. Specifically, the capacitor C4 functions as a bootstrap capacitor. Accordingly, a potential of the drain terminal of the transistor Q3 is specified based on a potential of the amplified modulation signal AMs1 output from the digital amplification circuit 550.


Here, an operation of the gate driver 571 that outputs the gate signals Hgs2 and Lgs2 will be described. The gate driver 571 includes gate drive circuits 572 and 573 and an inverter circuit 574. Then the level switching signal Ls1 that is supplied to the gate driver 571 and that is based on the base driving signal aA is further supplied to the gate drive circuit 572 and also supplied to the gate drive circuit 573 through the inverter circuit 574. Specifically, the signal supplied to the gate drive circuit 572 and the signal supplied to the gate drive circuit 573 are exclusively in a high level. Here, the signal exclusively in a high level means that signals in a high level are not simultaneously supplied to the gate drive circuits 572 and 573. Specifically, a state in which signals in a low level are simultaneously supplied to the gate drive circuits 572 and 573 is not excluded.


A low-potential-side input terminal of the gate drive circuit 572 is coupled to the midpoint CP2. Accordingly, a signal of a potential in the midpoint CP2 is supplied as a voltage HVss2 to the low-potential-side input terminal of the gate drive circuit 572. Furthermore, a high-potential-side input terminal of the gate drive circuit 572 is coupled to a cathode terminal of the diode D2 having an anode terminal to which the voltage Vg is supplied and also coupled to one end of the capacitor C2. The other end of the capacitor C2 is coupled to the midpoint CP2. Specifically, a bootstrap circuit including the capacitor C2 functioning as a bootstrap capacitor is configured at the high-potential-side input terminal of the gate drive circuit 572. Therefore, a voltage HVdd2 having a potential larger by the voltage Vg than a voltage LVss2 supplied to the low-potential-side input terminal is supplied to the high-potential-side input terminal of the gate drive circuit 572. Accordingly, when the level switching signal Ls1 in a high level is supplied to the gate drive circuit 572, the gate drive circuit 572 outputs a gate signal Hgs2 in a high level having a potential based on the voltage HVdd2 that is larger by the voltage Vg than the potential of the midpoint CP2, whereas when the level switching signal Ls1 in a low level is supplied to the gate drive circuit 572, the gate drive circuit 572 outputs a gate signal Hgs2 in a low level of a potential based on the voltage HVss2 that is a potential of the midpoint CP2.


A low-potential-side input terminal of the gate drive circuit 573 is coupled to the midpoint CP1. Accordingly, a signal of a potential of the midpoint CP1 is supplied as a voltage LVss2 to the low-potential-side input terminal of the gate drive circuit 573. Furthermore, a high-potential-side input terminal of the gate drive circuit 573 is coupled to a cathode terminal of the diode D3 having an anode terminal to which the voltage Vg is supplied and also coupled to one end of the capacitor C3. The other end of the capacitor C3 is coupled to the midpoint CP1. Specifically, a bootstrap circuit including the capacitor C3 functioning as a bootstrap capacitor is configured at the high-potential-side input terminal of the gate drive circuit 573. Therefore, a voltage LVdd2 having a potential larger by the voltage Vg than the voltage LVss2 supplied to the low-potential-side input terminal is supplied to the high-potential-side input terminal of the gate drive circuit 573. Accordingly, when a signal in a high level obtained by inverting a logic of the level switching signal Ls1 in a low level by the inverter circuit 574 is supplied to the gate drive circuit 573, the gate drive circuit 573 outputs a gate signal Lgs2 in a high level having a potential based on the voltage LVdd2 that is larger by the voltage Vg than the potential of the midpoint CP1, whereas when a signal in a low level obtained by inverting a logic of the level switching signal Ls1 in a high level by the inverter circuit 574 is supplied to the gate drive circuit 573, the gate drive circuit 573 outputs a gate signal Lgs2 in a low level of a potential based on the voltage LVss2 that is a potential of the midpoint CP1.


The demodulation circuit 580 outputs the driving signal COM that has been demodulated by smoothing the level-shift amplified modulation signal AMs1 output from the level shift circuit 560. The demodulation circuit 580 includes an inductor L1 and a capacitor C5. The inductor L1 has one end electrically coupled to the midpoint CP2 and the other end electrically coupled to one end of the capacitor C5. The ground potential GND is supplied to the other end of the capacitor C5. Specifically, the inductor L1 and the capacitor C5 configure a low-pass filter circuit. Accordingly, the level-shift amplified modulation signal AMs2 output from the level shift circuit 560 is smoothed, and a smoothed voltage is output as the driving signal COM from the driving signal output circuit 50.


The feedback circuit 540 is electrically coupled to the pulse modulation circuit 530 and the demodulation circuit 580 and supplies a feedback signal Sfb obtained by attenuating the driving signal COM generated by the demodulation circuit 580 to the adder 511. Specifically, the driving signal output circuit 50 includes the feedback circuit 540 that is electrically coupled to the pulse modulation circuit 530 and the demodulation circuit 580 and that outputs the feedback signal Sfb based on the driving signal COM. Accordingly, the driving signal COM output from the demodulation circuit 580 is fed back to the pulse modulation circuit 530, and as a result, accuracy of the driving signal COM is improved.


Here, the pulse modulation circuit 530 is an example of a modulation circuit. Furthermore, the digital amplification circuit 550 is an example of an amplification circuit, and the midpoint CP1 that outputs the amplified modulation signal AMs1 from the digital amplification circuit 550 is an example of a first output point. Furthermore, the midpoint CP2 that outputs the level-shift amplified modulation signal AMs2 from the level shift circuit 560 is an example of a second output point. Moreover, the gate driver 551 included in the digital amplification circuit 550 is an example of a first gate driver, the gate signal Lgs1 output from the gate driver 551 is an example of a first gate signal, and the gate signal Hgs1 output from the gate driver 551 is an example of a second gate signal. The transistor Q2 that operates based on the gate signal Lgs1 is an example of a first transistor, and the transistor Q1 that operates based on the gate signal Hgs1 is an example of a second transistor. Moreover, the gate driver 571 included in the level-shift amplified modulation signal output circuit 570 included in the level shift circuit 560 is an example of a second gate driver, the gate signal Lgs2 output from the gate driver 571 is an example of a third gate signal, and the gate signal Hgs2 output from the gate driver 571 is an example of a fourth gate signal. The transistor Q4 that operates based on the gate signal Lgs2 is an example of a third transistor, and the transistor Q3 that operates based on the gate signal Hgs2 is an example of a fourth transistor. The capacitor C4 having one end electrically coupled to the midpoint CP1 and the other end electrically coupled to the transistor Q3 is an example of a first capacitance element. The voltage VMV supplied to the capacitor C4 through the diode D4 is an example of a first power source voltage.


1.3.3 Operation of Driving Signal Output Circuit

An operation of generating the driving signal COM performed by the driving signal output circuit 50 configured as described above will be described. FIG. 7 is a diagram illustrating the operation of the driving signal output circuit 50. Note that, in FIG. 7, only a driving signal COM in an arbitrary cycle T in driving signals COM output from the driving signal output circuit 50 is illustrated.


Here, it is assumed in FIG. 7 that the threshold voltage Vth1 having a potential for performing switching between output of the level switching signal Ls1 in a high level performed by the reference level switch circuit 561 and output of the level switching signal Ls1 in a low level performed by the reference level switching circuit 561 has a potential larger than a voltage aVc obtained before the voltage Vc is amplified.


Furthermore, it is assumed that the fixed pulse output circuit 522 outputs a pulse signal PDC constantly having a pulse width of first Duty when a potential of the base driving signal aA is smaller than a threshold voltage Vth2, outputs a pulse signal PDC constantly having a pulse width of second Duty when a potential of the base driving signal aA is in a range between the threshold voltage Vth2 and a threshold voltage Vth3, and outputs a pulse signal PDC constantly having a pulse width of third Duty when a potential of the base driving signal aA is larger than the threshold voltage Vth3. Here, it is assumed that a potential of the threshold voltage Vth2 is lower than a voltage aVc obtained before the voltage Vc is amplified and higher than a voltage aVb obtained before the voltage Vb is amplified. Furthermore, it is assumed that a potential of the threshold voltage Vth3 is higher than the voltage aVc obtained before the voltage Vc is amplified and lower than a voltage aVt obtained before the voltage Vt is amplified. Specifically, the fixed pulse output circuit 522 outputs a pulse signal PDC constantly having a pulse width of the first Duty in a period of time in which a potential of the base driving signal aA that is a base of the driving signal COM is fixed to the voltage aVb, outputs a pulse signal PDC having a pulse width of the second Duty in a period of time in which a potential of the base driving signal aA is fixed to the voltage aVc, and outputs a pulse signal PDC having a pulse width of the third Duty in a period of time in which a potential of the base driving signal aA that is a base of the driving signal COM is fixed to the voltage aVt.


As illustrated in FIG. 7, in a period from a time point t0 to a time point t10, the driving signal output circuit 50 outputs a driving signal COM constantly having a voltage value of the voltage Vc. Specifically, in the period from the time point t0 to the time point t10, the base driving data dA for generating a driving signal COM constantly having a voltage value of the voltage Vc is supplied to the base driving signal output circuit 510. The base driving signal output circuit 510 generates a base driving signal aA constantly having a voltage aVc based on the supplied base driving data dA. The base driving signal aA generated by the base driving signal output circuit 510 is supplied to the pulse modulation circuit 530 through the adder 511, and in addition, supplied to the switching circuit 521 and the fixed pulse output circuit 522 included in the fixed output switching circuit 520.


Furthermore, since the voltage value of the supplied base driving signal aA is fixed to the voltage aVc in the period from the time point t0 to the time point t10, the switching circuit 521 outputs a switch signal Sel to be used by the switch 531 to select the pulse signal PDC as a base gate signal Gd. Consequently, the pulse signal PDC constantly having a pulse width of the second Duty output from the fixed pulse output circuit 522 is supplied as the base gate signal Gd to the digital amplification circuit 550. Then the gate driver 551 included in the digital amplification circuit 550 outputs the gate signal Hgs1 corresponding to a logical level of the supplied base gate signal Gd and the gate signal Lgs1 corresponding to a signal obtained by inverting the logical level of the base gate signal Gd, so as to output an amplified modulation signal AMs1 obtained by amplifying the base gate signal Gd based on the voltage VMV to the midpoint CP1 of the digital amplification circuit 550.


Furthermore, the base driving signal aA is also supplied to the reference level switching circuit 561 included in the level shift circuit 560. In the period from the time point t0 to the time point t10, since a potential of the base driving signal aA is lower than the threshold voltage Vth1, the reference level switching circuit 561 outputs the level switching signal Ls1 in a low level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a low level to the transistor Q3 and the gate signal Lgs2 in a high level to the transistor Q4. As a result, the transistor Q3 is controlled to be nonconductive and the transistor Q4 is controlled to be conductive. Accordingly, the level-shift amplified modulation signal AMs2 equivalent to the amplified modulation signal AMs1 output to the midpoint CP1 of the digital amplification circuit 550 is supplied to the midpoint CP2 of the level shift circuit 560. In other words, the amplified modulation signal AMs1 having the ground potential GND as a reference potential is output as the level-shift amplified modulation signal AMs2.


Thereafter, the demodulation circuit 580 smooths and demodulates the level-shift amplified modulation signal AMs2 output from the midpoint CP2 of the level shift circuit 560 so that the driving signal COM constantly having the voltage Vc is output from the driving signal output circuit 50.


In a period from the time point t10 to a time point t20, the driving signal output circuit 50 outputs the driving signal COM having a voltage value changed from the voltage Vc to the voltage Vb. Specifically, in the period from the time point t10 to the time point t20, the base driving data dA for generating the driving signal COM having a voltage value changed from the voltage Vc to the voltage Vb is supplied to the base driving signal output circuit 510. The base driving signal output circuit 510 generates a base driving signal aA having a voltage value changed from the voltage aVc to the voltage aVb based on the supplied base driving data dA. The base driving signal aA generated by the base driving signal output circuit 510 is supplied to the pulse modulation circuit 530 through the adder 511, and in addition, supplied to the switching circuit 521 and the fixed pulse output circuit 522 included in the fixed output switching circuit 520.


Furthermore, since the voltage value of the supplied base driving signal aA is changed in the period from the time point t10 to the time point t20, the switching circuit 521 outputs a switch signal Sel to be used by the switch 531 to select the modulation signal Ms as the base gate signal Gd. Consequently, the modulation signal Ms output from the pulse modulation circuit 530 is supplied as the base gate signal Gd to the digital amplification circuit 550. Then the gate driver 551 included in the digital amplification circuit 550 outputs the gate signal Hgs1 corresponding to a logical level of the supplied base gate signal Gd and the gate signal Lgs1 corresponding to a signal obtained by inverting the logical level of the base gate signal Gd, so as to output an amplified modulation signal AMs1 obtained by amplifying the base gate signal Gd based on the voltage VMV to the midpoint CP1 of the digital amplification circuit 550.


Furthermore, the base driving signal aA is also supplied to the reference level switching circuit 561 included in the level shift circuit 560. In the period from the time point t10 to the time point t20, since a potential of the base driving signal aA is lower than the threshold voltage Vth1, the reference level switching circuit 561 outputs the level switching signal Ls1 in a low level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a low level to the transistor Q3 and the gate signal Lgs2 in a high level to the transistor Q4. As a result, the transistor Q3 is controlled to be nonconductive and the transistor Q4 is controlled to be conductive. Accordingly, the level-shift amplified modulation signal AMs2 equivalent to the amplified modulation signal AMs1 output to the midpoint CP1 of the digital amplification circuit 550 is supplied to the midpoint CP2 of the level shift circuit 560. In other words, the amplified modulation signal AMs1 having the ground potential GND as a reference potential is output as the level-shift amplified modulation signal AMs2.


Thereafter, the demodulation circuit 580 smooths and demodulates the level-shift amplified modulation signal AMs2 output from the midpoint CP2 of the level shift circuit 560 so that a driving signal COM having a voltage value changed from the voltage Vc to the voltage Vb is output from the driving signal output circuit 50.


Furthermore, in the period from the time point t10 to the time point t20, since a voltage value of the base driving signal aA is changed from the voltage aVc to the voltage aVb, and therefore, becomes lower than the threshold voltage Vth2, the fixed pulse output circuit 522 changes a pulse width of the output pulse signal PDC to the first Duty.


In a period from the time point t20 to a time point t30, the driving signal output circuit 50 outputs a driving signal COM constantly having a voltage value of the voltage Vb. Specifically, in the period from the time point t20 to the time point t30, the base driving data dA for generating a driving signal COM constantly having a voltage value of the voltage Vb is supplied to the base driving signal output circuit 510. The base driving signal output circuit 510 generates a base driving signal aA constantly having the voltage aVb based on the supplied base driving data dA. The base driving signal aA generated by the base driving signal output circuit 510 is supplied to the pulse modulation circuit 530 through the adder 511, and in addition, supplied to the switching circuit 521 and the fixed pulse output circuit 522 included in the fixed output switching circuit 520.


Furthermore, since the voltage value of the supplied base driving signal aA is fixed to the voltage aVb in the period from the time point t20 to the time point t30, the switching circuit 521 outputs a switch signal Sel to be used by the switch 531 to select the pulse signal PDC as a base gate signal Gd. Consequently, the pulse signal PDC constantly having a pulse width of the first Duty output from the fixed pulse output circuit 522 is supplied to the digital amplification circuit 550 as the base gate signal Gd. Then the gate driver 551 included in the digital amplification circuit 550 outputs the gate signal Hgs1 corresponding to a logical level of the supplied base gate signal Gd and the gate signal Lgs1 corresponding to a signal obtained by inverting the logical level of the base gate signal Gd, so as to output an amplified modulation signal AMs1 obtained by amplifying the base gate signal Gd based on the voltage VMV to the midpoint CP1 of the digital amplification circuit 550.


Furthermore, the base driving signal aA is also supplied to the reference level switching circuit 561 included in the level shift circuit 560. In the period from the time point t20 to the time point t30, since a potential of the base driving signal aA is lower than the threshold voltage Vth1, the reference level switching circuit 561 outputs the level switching signal Ls1 in a low level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a low level to the transistor Q3 and the gate signal Lgs2 in a high level to the transistor Q4. As a result, the transistor Q3 is controlled to be nonconductive and the transistor Q4 is controlled to be conductive. Accordingly, the level-shift amplified modulation signal AMs2 equivalent to the amplified modulation signal AMs1 output to the midpoint CP1 of the digital amplification circuit 550 is supplied to the midpoint CP2 of the level shift circuit 560. In other words, the amplified modulation signal AMs1 having the ground potential GND as a reference potential is output as the level-shift amplified modulation signal AMs2.


Thereafter, the demodulation circuit 580 smooths and demodulates the level-shift amplified modulation signal AMs2 output from the midpoint CP2 of the level shift circuit 560 so that the driving signal COM constantly having the voltage Vb is output from the driving signal output circuit 50.


In a period from the time point t30 to a time point t40, the driving signal output circuit 50 outputs a driving signal COM having a voltage value changed from the voltage Vb to the voltage Vt. Specifically, in the period from the time point t30 to the time point t40, the base driving data dA for generating the driving signal COM having a voltage value changed from the voltage Vb to the voltage Vt is supplied to the base driving signal output circuit 510. The base driving signal output circuit 510 generates a base driving signal aA constantly having a voltage value changed from the voltage aVb to the voltage aVt based on the supplied base driving data dA. The base driving signal aA generated by the base driving signal output circuit 510 is supplied to the pulse modulation circuit 530 through the adder 511, and in addition, supplied to the switching circuit 521 and the fixed pulse output circuit 522 included in the fixed output switching circuit 520.


Furthermore, since the voltage value of the supplied base driving signal aA is changed in the period from the time point t30 to the time point t40, the switching circuit 521 outputs the switch signal Sel to be used by the switch 531 to select the modulation signal Ms as the base gate signal Gd. Consequently, the modulation signal Ms output from the pulse modulation circuit 530 is supplied as the base gate signal Gd to the digital amplification circuit 550. Then the gate driver 551 included in the digital amplification circuit 550 outputs the gate signal Hgs1 corresponding to a logical level of the base gate signal Gd and the gate signal Lgs1 corresponding to a signal obtained by inverting the logical level of the base gate signal Gd, so as to output an amplified modulation signal AMs1 obtained by amplifying the base gate signal Gd based on the voltage VMV to the midpoint CP1 of the digital amplification circuit 550.


Furthermore, the base driving signal aA is also supplied to the reference level switching circuit 561 included in the level shift circuit 560. In a period from the time point t30 to a time point tc1 in which a voltage value of the base driving signal aA is smaller than the threshold voltage Vth1 in the period from the time point t30 to the time point t40, the reference level switching circuit 561 outputs the level switching signal Ls1 in a low level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a low level to the transistor Q3 and the gate signal Lgs2 in a high level to the transistor Q4. As a result, the transistor Q3 is controlled to be nonconductive and the transistor Q4 is controlled to be conductive. Accordingly, the level-shift amplified modulation signal AMs2 equivalent to the amplified modulation signal AMs1 output to the midpoint CP1 of the digital amplification circuit 550 is supplied to the midpoint CP2 of the level shift circuit 560. In other words, the amplified modulation signal AMs1 having the ground potential GND as a reference potential is output as the level-shift amplified modulation signal AMs2.


At the time point tc1 when the voltage value of the base driving signal aA matches the threshold voltage Vth1 in the period from the time point t30 to a time point t40, the reference level switching circuit 561 outputs the level switching signal Ls1 in a high level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a high level to the transistor Q3 and the gate signal Lgs2 in a low level to the transistor Q4. Thereafter, the reference level switching circuit 561 outputs the level switching signal Ls1 in a low level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a low level to the transistor Q3 and the gate signal Lgs2 in a high level to the transistor Q4. Thereafter, the reference level switching circuit 561 outputs the level switching signal Ls1 in a high level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a high level to the transistor Q3 and the gate signal Lgs2 in a low level to the transistor Q4. Specifically, at the time point tc1 when the voltage value of the base driving signal aA matches the threshold voltage Vth1, the gate driver 571 outputs the gate signal Lgs2 for controlling the transistor Q4 to be nonconductive and the gate signal Hgs2 for controlling the transistor Q3 to be conductive, and thereafter, outputs the gate signal Lgs2 for controlling the transistor Q4 to be conductive and the gate signal Hgs2 for controlling the transistor Q3 to be nonconductive. Thereafter, the gate driver 571 outputs the gate signal Lgs2 for controlling the transistor Q4 to be nonconductive and the gate signal Hgs2 for controlling the transistor Q3 to be conductive.


In a period from the time point tc1 to the time point t40 in which the voltage value of the base driving signal aA is larger than the threshold voltage Vth1 in the period from the time point t30 to the time point t40, the reference level switching circuit 561 outputs the level switching signal Ls1 in a high level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a high level to the transistor Q3 and the gate signal Lgs2 in a low level to the transistor Q4. As a result, the transistor Q3 is controlled to be conductive and the transistor Q4 is controlled to be nonconductive. Accordingly, the level-shift amplified modulation signal AMs2 obtained when a bootstrap circuit including the capacitor C3 performs level shift, to the voltage VMV, on the reference potential of the amplified modulation signal AMs1 output to the midpoint CP1 of the digital amplification circuit 550 is output to the midpoint CP2 the level shift circuit 560. In other words, the amplified modulation signal AMs1 having the voltage VMV as a reference potential is output as the level-shift amplified modulation signal AMs2.


As described above, the level shift circuit 560 has a mode in which the reference potential of the amplified modulation signal AMs1 is the ground potential GND and a mode in which the reference potential is the voltage VMV. When the reference potential of the amplified modulation signal AMs1 is shifted from the ground potential GND to the voltage VMV, the transistor Q3 is controlled to be conductive, nonconductive, and thereafter, conductive, and the transistor Q4 is controlled to be nonconductive, conductive, and thereafter, nonconductive.


Thereafter, the demodulation circuit 580 smooths and demodulates the level-shift amplified modulation signal AMs2 output from the midpoint CP2 of the level shift circuit 560 so that the driving signal COM having a voltage value changed from the voltage Vb to the voltage Vt is output from the driving signal output circuit 50.


Furthermore, in the period from the time point t30 to the time point t40, in the course of the change of the voltage value of the base driving signal aA from the voltage aVb to the voltage aVt, the voltage value of the base driving signal aA becomes larger than the threshold voltage Vth2.


Accordingly, the fixed pulse output circuit 522 changes a pulse width of the pulse signal PDC to be output to the second Duty. Thereafter, the voltage value of the base driving signal aA exceeds the threshold voltage Vth3. Accordingly, the fixed pulse output circuit 522 changes a pulse width of the pulse signal PDC to be output to the third Duty. Specifically, in the period from the time point t30 to the time point t40, in course of a change of the voltage value of the base driving signal aA from the voltage aVb to the voltage aVt, the fixed pulse output circuit 522 changes a pulse width of the output pulse signal PDC to be output from the first Duty to the third Duty


In a period from the time point t40 to a time point t50, the driving signal output circuit 50 outputs the driving signal COM constantly having a voltage value of the voltage Vt. Specifically, in the period from the time point t40 to the time point t50, the base driving data dA for generating the driving signal COM constantly having a voltage value of the voltage Vt is supplied to the base driving signal output circuit 510. The base driving signal output circuit 510 generates a base driving signal aA constantly having the voltage aVt based on the supplied base driving data dA. The base driving signal aA generated by the base driving signal output circuit 510 is supplied to the pulse modulation circuit 530 through the adder 511, and in addition, supplied to the switching circuit 521 and the fixed pulse output circuit 522 included in the fixed output switching circuit 520.


Furthermore, since the voltage value of the supplied base driving signal aA is constant in the period from the time point t40 to the time point t50, the switching circuit 521 outputs a switch signal Sel to be used by the switch 531 to select the pulse signal PDC as the base gate signal Gd. Consequently, the pulse signal PDC constantly having a pulse width of the third Duty output from the fixed pulse output circuit 522 is supplied to the digital amplification circuit 550 as the base gate signal Gd. Then the gate driver 551 included in the digital amplification circuit 550 outputs the gate signal Hgs1 corresponding to a logical level of the supplied base gate signal Gd and the gate signal Lgs1 corresponding to a signal obtained by inverting the logical level of the base gate signal Gd, so as to output the amplified modulation signal AMs1 obtained by amplifying the base gate signal Gd based on the voltage VMV to the midpoint CP1 of the digital amplification circuit 550.


Furthermore, the base driving signal aA is also supplied to the reference level switching circuit 561 included in the level shift circuit 560. In the period from the time point t40 to the time point t50, since a potential of the base driving signal aA is higher than the threshold voltage Vth1, the reference level switching circuit 561 outputs the level switching signal Ls1 in a high level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a high level to the transistor Q3 and the gate signal Lgs2 in a low level to the transistor Q4. As a result, the transistor Q3 is controlled to be conductive and the transistor Q4 is controlled to be nonconductive. Accordingly, the level-shift amplified modulation signal AMs2 obtained when a bootstrap circuit including the capacitor C3 performs level shift, to the voltage VMV, on the reference potential of the amplified modulation signal AMs1 output to the midpoint CP1 of the digital amplification circuit 550 is output to the midpoint CP2 the level shift circuit 560. In other words, the amplified modulation signal AMs1 having the voltage VMV as a reference potential is output as the level-shift amplified modulation signal AMs2.


Thereafter, the demodulation circuit 580 smooths and demodulates the level-shift amplified modulation signal AMs2 output from the midpoint CP2 of the level shift circuit 560 so that the driving signal COM constantly having the voltage Vt is output from the driving signal output circuit 50.


In a period from the time point t50 to a time point t60, the driving signal output circuit 50 outputs the driving signal COM having a voltage value changed from the voltage Vt to the voltage Vc. Specifically, in the period from the time point t50 to the time point t60, the base driving data dA for generating the driving signal COM having a voltage value changed from the voltage Vt to the voltage Vc is supplied to the base driving signal output circuit 510. The base driving signal output circuit 510 generates the base driving signal aA constantly having a voltage value changed from the voltage aVt to a voltage aVc based on the supplied base driving data dA. The base driving signal aA generated by the base driving signal output circuit 510 is supplied to the pulse modulation circuit 530 through the adder 511, and in addition, supplied to the switching circuit 521 and the fixed pulse output circuit 522 included in the fixed output switching circuit 520.


Furthermore, since the voltage value of the supplied base driving signal aA is changed in the period from the time point t50 to the time point t60, the switching circuit 521 outputs the switch signal Sel to be used by the switch 531 to select the modulation signal Ms as the base gate signal Gd. Consequently, the modulation signal Ms output from the pulse modulation circuit 530 is supplied as the base gate signal Gd to the digital amplification circuit 550. Then the gate driver 551 included in the digital amplification circuit 550 outputs the gate signal Hgs1 corresponding to a logical level of the base gate signal Gd and the gate signal Lgs1 corresponding to a signal obtained by inverting the logical level of the base gate signal Gd, so as to output the amplified modulation signal AMs1 obtained by amplifying the base gate signal Gd based on the voltage VMV to the midpoint CP1 of the digital amplification circuit 550.


Furthermore, the base driving signal aA is also supplied to the reference level switching circuit 561 included in the level shift circuit 560. In a period from the time point t50 to a time point tc2 in which the voltage value of the base driving signal aA is larger than the threshold voltage Vth1 in the period from the time point t50 to the time point t60, the reference level switching circuit 561 outputs the level switching signal Ls1 in a high level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a high level to the transistor Q3 and the gate signal Lgs2 in a low level to the transistor Q4. As a result, the transistor Q3 is controlled to be conductive and the transistor Q4 is controlled to be nonconductive. Accordingly, the level-shift amplified modulation signal AMs2 obtained when a bootstrap circuit including the capacitor C3 performs level shift, to the voltage VMV, on the reference potential of the amplified modulation signal AMs1 output to the midpoint CP1 of the digital amplification circuit 550 is output to the midpoint CP2 the level shift circuit 560. In other words, the amplified modulation signal AMs1 having the voltage VMV as a reference potential is output as the level-shift amplified modulation signal AMs2.


At a time point tc2 when the voltage value of the base driving signal aA matches the threshold voltage Vth1 in the period from the time point t50 to a time point t60, the reference level switching circuit 561 outputs the level switching signal Ls1 in a low level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a low level to the transistor Q3 and the gate signal Lgs2 in a high level to the transistor Q4. Thereafter, the reference level switching circuit 561 outputs the level switching signal Ls1 in a high level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a high level to the transistor Q3 and the gate signal Lgs2 in a low level to the transistor Q4. Thereafter, the reference level switching circuit 561 outputs the level switching signal Ls1 in a low level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a low level to the transistor Q3 and the gate signal Lgs2 in a high level to the transistor Q4. Specifically, at the time point tc2 when the voltage value of the base driving signal aA matches the threshold voltage Vth1, the gate driver 571 outputs the gate signal Lgs2 for controlling the transistor Q4 to be conductive and the gate signal Hgs2 controlling the transistor Q3 to be nonconductive, and thereafter, outputs the gate signal Lgs2 for controlling the transistor Q4 to be nonconductive and the gate signal Hgs2 for controlling the transistor Q3 to be conductive. Thereafter, the gate driver 571 outputs the gate signal Lgs2 for controlling the transistor Q4 to be conductive and the gate signal Hgs2 for controlling the transistor Q3 to be nonconductive.


In a period from the time point tc2 to the time point t60 in which a voltage value of the base driving signal aA is smaller than the threshold voltage Vth1 in the period from the time point t50 to the time point t60, the reference level switching circuit 561 outputs the level switching signal Ls1 in a low level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a low level to the transistor Q3 and the gate signal Lgs2 in a high level to the transistor Q4. As a result, the transistor Q3 is controlled to be nonconductive and the transistor Q4 is controlled to be conductive. Accordingly, the level-shift amplified modulation signal AMs2 equivalent to the amplified modulation signal AMs1 output to the midpoint CP1 of the digital amplification circuit 550 is supplied to the midpoint CP2 of the level shift circuit 560. In other words, the amplified modulation signal AMs1 having the ground potential GND as a reference potential is output as the level-shift amplified modulation signal AMs2.


Thereafter, the demodulation circuit 580 smooths and demodulates the level-shift amplified modulation signal AMs2 output from the midpoint CP2 of the level shift circuit 560 so that the driving signal COM having a voltage value changed from the voltage Vt to the voltage Vc is output from the driving signal output circuit 50.


Furthermore, in the period from the time point t50 to the time point t60, since a voltage value of the base driving signal aA is changed from the voltage aVt to the voltage aVc and a voltage value of the base driving signal aA becomes lower than the threshold voltage Vth3, the fixed pulse output circuit 522 changes a pulse width of the output pulse signal PDC to the second Duty.


In a period from the time point t60 to a time point t70, the driving signal output circuit 50 outputs the driving signal COM constantly having a voltage value of the voltage Vc. Specifically, in the period from the time point t60 to the time point t70, the base driving data dA for generating the driving signal COM constantly having a voltage value of the voltage Vc is supplied to the base driving signal output circuit 510. The base driving signal output circuit 510 generates a base driving signal aA constantly having the voltage aVc based on the supplied base driving data dA. The base driving signal aA generated by the base driving signal output circuit 510 is supplied to the pulse modulation circuit 530 through the adder 511, and in addition, supplied to the switching circuit 521 and the fixed pulse output circuit 522 included in the fixed output switching circuit 520.


Furthermore, since the voltage value of the supplied base driving signal aA is constant in the period from the time point t60 to the time point t70, the switching circuit 521 outputs the switch signal Sel to be used by the switch 531 to select the pulse signal PDC as the base gate signal Gd. Consequently, the pulse signal PDC constantly having a pulse width of the second Duty output from the fixed pulse output circuit 522 is supplied as the base gate signal Gd to the digital amplification circuit 550. Then the gate driver 551 included in the digital amplification circuit 550 outputs the gate signal Hgs1 corresponding to a logical level of the supplied base gate signal Gd and the gate signal Lgs1 corresponding to a signal obtained by inverting the logical level of the base gate signal Gd, so as to output the amplified modulation signal AMs1 obtained by amplifying the base gate signal Gd based on the voltage VMV to the midpoint CP1 of the digital amplification circuit 550.


Furthermore, the base driving signal aA is also supplied to the reference level switching circuit 561 included in the level shift circuit 560. In the period from the time point t60 to the time point t70, since a potential of the base driving signal aA is lower than the threshold voltage Vth1, the reference level switching circuit 561 outputs the level switching signal Ls1 in a low level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a low level to the transistor Q3 and the gate signal Lgs2 in a high level to the transistor Q4. As a result, the transistor Q3 is controlled to be nonconductive and the transistor Q4 is controlled to be conductive. Accordingly, the level-shift amplified modulation signal AMs2 equivalent to the amplified modulation signal AMs1 output to the midpoint CP1 of the digital amplification circuit 550 is supplied to the midpoint CP2 of the level shift circuit 560. In other words, the amplified modulation signal AMs1 having the ground potential GND as a reference potential is output as the level-shift amplified modulation signal AMs2.


Thereafter, the demodulation circuit 580 smooths and demodulates the level-shift amplified modulation signal AMs2 output from the midpoint CP2 of the level shift circuit 560 so that the driving signal COM constantly having the voltage Vc is output from the driving signal output circuit 50. The time point t70 corresponds to the time point t0 in FIG. 7. Accordingly, the driving signal output circuit 50 generates and outputs the driving signal COM repeatedly including the trapezoidal waveform Adp in every cycle T.


As described above, in the driving signal output circuit 50 included in the liquid ejecting apparatus 1 according to this embodiment, when the level shift circuit 560 outputs, as the level-shift amplified modulation signal AMs2, the amplified modulation signal AMs1 having the ground potential GND as a reference potential, the gate driver 571 outputs the gate signal Hgs2 for controlling the transistor Q3 to be nonconductive and the gate signal Lgs2 for controlling the transistor Q4 to be conductive. Furthermore, when the level shift circuit 560 outputs, as the level-shift amplified modulation signal AMs2, the amplified modulation signal AMs1 having the voltage VMV as a reference potential, the gate driver 571 outputs the gate signal Hgs2 for controlling the transistor Q3 to be conductive and the gate signal Lgs2 for controlling the transistor Q4 to be nonconductive.


Then, when the state in which the level shift circuit 560 outputs, as the level-shift amplified modulation signal AMs2, the amplified modulation signal AMs1 having the ground potential GND as a reference potential is shifted to the state in which the level shift circuit 560 outputs, as the level-shift amplified modulation signal AMs2, the amplified modulation signal AMs1 having the voltage VMV as a reference potential, the gate driver 571 outputs the gate signal Lgs2 for controlling the transistor Q4 to be nonconductive and the gate signal Hgs2 for controlling the transistor Q3 to be conductive, then outputs the gate signal Lgs2 for controlling the transistor Q4 to be conductive and the gate signal Hgs2 for controlling the transistor Q3 to be nonconductive, and thereafter, outputs the gate signal Lgs2 for controlling the transistor Q4 to be nonconductive and the gate signal Hgs2 for controlling the transistor Q3 to be conductive.


When the state in which the level shift circuit 560 outputs, as the level-shift amplified modulation signal AMs2, the amplified modulation signal AMs1 having the ground potential GND as the reference potential is shifted to the state in which the level shift circuit 560 outputs, as the level-shift amplified modulation signal AMs2, the amplified modulation signal AMs1 having the voltage VMV as the reference potential, since the reference potential of the amplified modulation signal AMs1 output as the level-shift amplified modulation signal AMs2 is changed, a sudden pulse signal is superposed on the level-shift amplified modulation signal AMs2 due to a circuit delay of the feedback circuit 540 or the like, and consequently, a waveform of the driving signal COM generated by demodulating the level-shift amplified modulation signal AMs2 is deformed. To address the deformation of the waveform generated in the driving signal COM, when the state in which the level shift circuit 560 outputs, as the level-shift amplified modulation signal AMs2, the amplified modulation signal AMs1 having the ground potential GND as a reference potential is shifted to the state in which the level shift circuit 560 outputs, as the level-shift amplified modulation signal AMs2, the amplified modulation signal AMs1 having the voltage VMV as a reference potential, the gate driver 571 outputs the gate signal Lgs2 for controlling the transistor Q4 to be nonconductive and the gate signal Hgs2 for controlling the transistor Q3 to be conductive, then outputs the gate signal Lgs2 for controlling the transistor Q4 to be conductive and the gate signal Hgs2 for controlling the transistor Q3 to be nonconductive, and thereafter, outputs the gate signal Lgs2 for controlling the transistor Q4 to be nonconductive and the gate signal Hgs2 for controlling the transistor Q3 to be conductive, so that the generation of the sudden pulse superposed on the level-shift amplified modulation signal AMs2 is reduced, and as a result, accuracy of the waveform of the driving signal COM may be improved.


Similarly, when the state in which the level shift circuit 560 outputs, as the level-shift amplified modulation signal AMs2, the amplified modulation signal AMs1 having the voltage VMV as the reference potential is shifted to the state in which the level shift circuit 560 outputs, as the level-shift amplified modulation signal AMs2, the amplified modulation signal AMs1 having the ground potential GND as the reference potential, since the reference potential of the amplified modulation signal AMs1 output as the level-shift amplified modulation signal AMs2 is changed, a sudden pulse signal is superposed on the level-shift amplified modulation signal AMs2 due to a circuit delay of the feedback circuit 540 or the like, and consequently, a waveform of the driving signal COM generated by demodulating the level-shift amplified modulation signal AMs2 is deformed. To address the deformation of the waveform generated in the driving signal COM, when the state in which the level shift circuit 560 outputs, as the level-shift amplified modulation signal AMs2, the amplified modulation signal AMs1 having the voltage VMV as a reference potential is shifted to the state in which the level shift circuit 560 outputs, as the level-shift amplified modulation signal AMs2, the amplified modulation signal AMs1 having the ground potential GND as a reference potential, the gate driver 571 outputs the gate signal Lgs2 for controlling the transistor Q4 to be conductive and the gate signal Hgs2 for controlling the transistor Q3 to be nonconductive, then outputs the gate signal Lgs2 for controlling the transistor Q4 to be nonconductive and the gate signal Hgs2 for controlling the transistor Q3 to be conductive, and thereafter, outputs the gate signal Lgs2 for controlling the transistor Q4 to be conductive and the gate signal Hgs2 for controlling the transistor Q3 to be nonconductive, so that the generation of the sudden pulse superposed on the level-shift amplified modulation signal AMs2 is reduced, and as a result, accuracy of the waveform of the driving signal COM may be improved.


Here, the state in which the level shift circuit 560 outputs, as the level-shift amplified modulation signal AMs2, the amplified modulation signal AMs1 having the ground potential GND as a reference potential is an example of a first mode, and the state in which the level shift circuit 560 outputs, as the level-shift amplified modulation signal AMs2, the amplified modulation signal AMs1 having the voltage VMV as a reference potential is an example of a second mode. Then the ground potential GND functioning as a reference potential of the amplified modulation signal AMs1 in the first mode is an example of a first potential, and the potential of the voltage VMV functioning as a reference potential of the amplified modulation signal AMs1 in the second mode is an example of a second potential.


1.4 Effects

As described above, according to the liquid ejecting apparatus 1 of this embodiment, when the state in which the level shift circuit 560 included in the driving signal output circuit 50 outputs, as the level-shift amplified modulation signal AMs2, the amplified modulation signal AMs1 having the ground potential GND as a reference potential is shifted to the state in which the level shift circuit 560 outputs, as the level-shift amplified modulation signal AMs2, the amplified modulation signal AMs1 having the voltage VMV as a reference potential, the gate driver 571 outputs the gate signal Lgs2 for controlling the transistor Q4 to be nonconductive and the gate signal Hgs2 for controlling the transistor Q3 to be conductive, then outputs the gate signal Lgs2 for controlling the transistor Q4 to be conductive and the gate signal Hgs2 for controlling the transistor Q3 to be nonconductive, and thereafter, outputs the gate signal Lgs2 for controlling the transistor Q4 to be nonconductive and the gate signal Hgs2 for controlling the transistor Q3 to be conductive.


Accordingly, when the state in which the amplified modulation signal AMs1 having the ground potential GND as a reference potential is output as the level-shift amplified modulation signal AMs2 is shifted to the state in which the amplified modulation signal AMs1 having the voltage VMV as a reference potential is output as the level-shift amplified modulation signal AMs2, a counter pulse is generated at the midpoint CP2, and as a result, a sudden pulse generated in the level-shift amplified modulation signal AMs2 may be cancelled. Consequently, accuracy of a waveform of the driving signal COM may be improved.


Furthermore, according to the liquid ejecting apparatus 1 in this embodiment, when the state in which the level shift circuit 560 included in the driving signal output circuit 50 outputs, as the level-shift amplified modulation signal AMs2, the amplified modulation signal AMs1 having the voltage VMV as a reference potential is shifted to the state in which the level shift circuit 560 outputs, as the level-shift amplified modulation signal AMs2, the amplified modulation signal AMs1 having the ground potential GND as a reference potential, the gate driver 571 outputs the gate signal Lgs2 for controlling the transistor Q4 to be conductive and the gate signal Hgs2 for controlling the transistor Q3 to be nonconductive, then outputs the gate signal Lgs2 for controlling the transistor Q4 to be nonconductive and the gate signal Hgs2 for controlling the transistor Q3 to be conductive, and thereafter, outputs the gate signal Lgs2 for controlling the transistor Q4 to be conductive and the gate signal Hgs2 for controlling the transistor Q3 to be nonconductive, so that a counter pulse is generated at the midpoint CP2, and as a result, a sudden pulse generated in the level-shift amplified modulation signal AMs2 may be cancelled. Consequently, accuracy of a waveform of the driving signal COM may be improved.


2. Second Embodiment

Next, a liquid ejecting apparatus 1 according to a second embodiment will be described. FIGS. 8A and 8B are diagrams illustrating a functional configuration of a driving signal output circuit 50 according to a second embodiment. Note that, before the liquid ejecting apparatus 1 of the second embodiment is described, components the same as those of the first embodiment are denoted by reference numerals the same as those of the first embodiment, and detailed descriptions thereof are omitted.


As illustrated in FIGS. 8A and 8B, the driving signal output circuit 50 of the second embodiment is different from the driving signal output circuit 50 of the first embodiment in that a level shift circuit 560 includes, in addition to a reference level switching circuit 561 and a level-shift amplified modulation signal output circuit 570, a reference level switching circuit 562 and a level-shift amplified modulation signal output circuit 590.


A base driving signal aA is supplied to the reference level switching circuit 562 from a base driving signal output circuit 510. The reference level switching circuit 562 generates a level switching signal Ls2 based on the base driving signal aA and outputs the generated level switching signal Ls2 to the level-shift amplified modulation signal output circuit 590. Specifically, the reference level switching circuit 562 generates, when a potential of the base driving signal aA is equal to or larger than a threshold voltage Vth4 that is lower than the threshold voltage Vth1, the level switching signal Ls2 in a high level to be output to the level-shift amplified modulation signal output circuit 590, and generates, when the potential of the base driving signal aA is smaller than the threshold voltage Vth4, the level switching signal Ls2 in a low level to be output to the level-shift amplified modulation signal output circuit 590.


Furthermore, the level-shift amplified modulation signal output circuit 590 includes a gate driver 591, diodes D5 to D7, capacitors C6 to C8, and transistors Q5 and Q6. Then the level-shift amplified modulation signal output circuit 590 outputs a level-shift amplified modulation signal AMs3 obtained by shifting a reference potential of an amplified modulation signal AMs1 from a midpoint CP3 to the level-shift amplified modulation signal output circuit 570.


Specifically, the base driving signal aA is supplied to the reference level switching circuit 562 from the base driving signal output circuit 510. The reference level switching circuit 562 generates the level switching signal Ls2 based on the base driving signal aA and outputs the generated level switching signal Ls2 to the level-shift amplified modulation signal output circuit 590. The level switching signal Ls2 is supplied to the gate driver 591. The gate driver 591 outputs a gate signal Hgs3 for driving the transistor Q5 and a gate signal Lgs3 for driving the transistor Q6 based on a logical level of the supplied level switching signal Ls2.


The transistors Q5 and Q6 are configured by an N-channel MOS-FET. The gate signal Hgs3 output from the gate driver 591 is supplied to a gate terminal of the transistor Q5. Furthermore, a drain terminal of the transistor Q5 is coupled to a cathode terminal of the diode D7 having an anode terminal to which a voltage VMV is supplied, and a source terminal of the transistor Q5 is coupled to a midpoint CP3. Specifically, the transistor Q5 has the source terminal serving as one end electrically coupled to the midpoint CP3 and the drain terminal serving as the other end to which the voltage VMV is supplied through the diode D7, and operates based on the gate signal Hgs3. The gate signal Lgs3 output from the gate driver 591 is supplied to a gate terminal of the transistor Q6. Furthermore, a drain terminal of the transistor Q6 is coupled to the midpoint CP3, and a source terminal of the transistor Q6 is coupled to a midpoint CP1. Specifically, the transistor Q6 has the drain terminal serving as one end electrically coupled to the midpoint CP3 and the source terminal serving as the other end electrically coupled to the midpoint CP1, and operates based on the gate signal Lgs3. Then the level-shift amplified modulation signal output circuit 590 outputs a signal generated at the midpoint CP3 where the transistors Q5 and Q6 are coupled to each other as a level-shift amplified modulation signal AMs3.


Furthermore, the capacitor C8 has one end electrically coupled to the midpoint CP1 and the other end electrically coupled to the drain terminal of the transistor Q5. Specifically, the capacitor C8 functions as a bootstrap capacitor. Then the midpoint CP3 of the level-shift amplified modulation signal output circuit 590 is coupled to a source end of the transistor Q4 of the level-shift amplified modulation signal output circuit 570 and one end of the capacitor C4.


Specifically, in the driving signal output circuit 50 according to the second embodiment, the level-shift amplified modulation signal output circuit 590 is positioned between the digital amplification circuit 550 and the level-shift amplified modulation signal output circuit 570 in the driving signal output circuit 50 according to the first embodiment. Here, the digital amplification circuit 550 has a configuration and operation the same as those of the first embodiment except that the midpoint CP1 is coupled to the level-shift amplified modulation signal output circuit 590, and a detailed description thereof is omitted. Furthermore, the level-shift amplified modulation signal output circuit 570 has a configuration and operation the same as those of the first embodiment except that an input signal corresponds to the level-shift amplified modulation signal AMs3, and a detailed description thereof is omitted. Furthermore, the level-shift amplified modulation signal output circuit 570 and the level-shift amplified modulation signal output circuit 590 have the same configuration except for a signal to be input and a signal to be output. Therefore, when the driving signal output circuit 50 according to the second embodiment is illustrated, a portion of the configuration or the operation of the level-shift amplified modulation signal output circuit 590 may be omitted.


In the driving signal output circuit 50 according to the second embodiment configured as described above, the digital amplification circuit 550 outputs an amplified modulation signal AMs1 to the level-shift amplified modulation signal output circuit 590. Then the level-shift amplified modulation signal output circuit 590 outputs the level-shift amplified modulation signal AMs3 obtained by shifting a reference potential of the amplified modulation signal AMs1 based on a potential of the base driving signal aA supplied to the reference level switching circuit 562 to the level-shift amplified modulation signal output circuit 570. Then the level-shift amplified modulation signal output circuit 570 outputs a level-shift amplified modulation signal AMs2 obtained by shifting a reference potential of the amplified modulation signal AMs3 based on the potential of the base driving signal aA supplied to the reference level switching circuit 561 to a demodulation circuit 580. The demodulation circuit 580 demodulates the level-shift amplified modulation signal AMs2 so as to generate and output a driving signal COM.


Here, an operation of the driving signal output circuit 50 according to the second embodiment will be described with reference to FIG. 9. FIG. 9 is a diagram illustrating the operation of the driving signal output circuit 50 according to the second embodiment. Note that, in a period from a time point t0 to t70 illustrated in FIG. 9, a period from the time point t0 to a time point t30, a period from a time point t40 to a time point t50, a period from a time point t60 to the time point t70 are the same as those of the driving signal output circuit 50 according to the first embodiment, and therefore, in FIG. 9, a period from the time point t30 to the time point t40 and a period from the time point t50 to the time point t60 are described and operations performed in the period from the time point t0 to the time point t30, the period from the time point t40 to the time point t50, and the period from the time point t60 to the time point t70 are omitted.


As illustrated in FIG. 9, in a period from the time point t30 to the time point t40, the driving signal output circuit 50 outputs a driving signal COM having a voltage value changed from a voltage Vb to a voltage Vt. Specifically, in the period from the time point t30 to the time point t40, the base driving data dA for generating the driving signal COM having a voltage value changed from the voltage Vb to the voltage Vt is supplied to the base driving signal output circuit 510. The base driving signal output circuit 510 generates a base driving signal aA having a voltage value changed from a voltage aVb to a voltage aVt based on the supplied base driving data dA. The base driving signal aA generated by the base driving signal output circuit 510 is supplied to a pulse modulation circuit 530 through an adder 511, and in addition, supplied to a switching circuit 521 and a fixed pulse output circuit 522 included in a fixed output switching circuit 520.


Furthermore, since the voltage value of the supplied base driving signal aA is changed in the period from the time point t30 to the time point t40, the switching circuit 521 outputs a switch signal Sel to be used by the switch 531 to select a modulation signal Ms as a base gate signal Gd. Consequently, the modulation signal Ms output from the pulse modulation circuit 530 is supplied as the base gate signal Gd to the digital amplification circuit 550. Then a gate driver 551 included in the digital amplification circuit 550 outputs a gate signal Hgs1 corresponding to a logical level of the base gate signal Gd and a gate signal Lgs1 corresponding to a signal obtained by inverting the logical level of the base gate signal Gd, so as to output an amplified modulation signal AMs1 obtained by amplifying the base gate signal Gd based on the voltage VMV to the midpoint CP1 of the digital amplification circuit 550.


Furthermore, the base driving signal aA is also supplied to the reference level switching circuits 561 and 562 included in the level shift circuit 560. In a period from the time point t30 to a time point tc3 in which a voltage value of the base driving signal aA is smaller than the threshold voltages Vth1 and Vth4 in the period from the time point t30 to the time point t40, the reference level switching circuit 561 outputs a level switching signal Ls1 in a low level to the gate driver 571. Accordingly, the gate driver 571 outputs a gate signal Hgs2 in a low level to the transistor Q3 and a gate signal Lgs2 in a high level to the transistor Q4. Furthermore, the reference level switching circuit 562 outputs the level switching signal Ls2 in a low level to the gate driver 591. Accordingly, the gate driver 591 outputs the gate signal Hgs3 in a low level to the transistor Q5 and the gate signal Lgs3 in a high level to the transistor Q6. By this, the transistor Q3 is controlled to be nonconductive, the transistor Q4 is controlled to be conductive, the transistor Q5 is controlled to be nonconductive, and the transistor Q6 is controlled to be conductive. Consequently, the level-shift amplified modulation signal AMs3 equivalent to the amplified modulation signal AMs1 output to the midpoint CP1 of the digital amplification circuit 550 is output to the midpoint CP3 of the level-shift amplified modulation signal output circuit 590, and the level-shift amplified modulation signal AMs2 equivalent to the amplified modulation signal AMs1 output to the midpoint CP1 of the digital amplification circuit 550 is output to the midpoint CP2 of the level-shift amplified modulation signal output circuit 570. Specifically, the level shift circuit 560 outputs the level-shift amplified modulation signal AMs2 equivalent to the amplified modulation signal AMs1 from the midpoint CP2.


At a time point tc3 when the voltage value of the base driving signal aA matches the threshold voltage Vth4 in the period from the time point t30 to the time point t40, the reference level switching circuit 562 outputs the level switching signal Ls2 in a high level to the gate driver 591. Accordingly, the gate driver 591 outputs the gate signal Hgs3 in a high level to the transistor Q5 and the gate signal Lgs3 in a low level to the transistor Q6. Thereafter, the reference level switching circuit 562 outputs the level switching signal Ls2 in a low level to the gate driver 591. Accordingly, the gate driver 591 outputs the gate signal Hgs3 in a low level to the transistor Q5 and the gate signal Lgs3 in a high level to the transistor Q6. Thereafter, the reference level switching circuit 562 outputs the level switching signal Ls2 in a high level to the gate driver 591. Accordingly, the gate driver 591 outputs the gate signal Hgs3 in a high level to the transistor Q5 and the gate signal Lgs3 in a low level to the transistor Q6. Specifically, at the time point tc3 when the voltage value of the base driving signal aA matches the threshold voltage Vth4, the gate driver 591 outputs the gate signal Lgs3 for controlling the transistor Q6 to be nonconductive and the gate signal Hgs3 controlling the transistor Q5 to be conductive, and thereafter, outputs the gate signal Lgs3 for controlling the transistor Q6 to be conductive and the gate signal Hgs3 for controlling the transistor Q5 to be nonconductive. Thereafter, the gate driver 591 outputs the gate signal Lgs3 for controlling the transistor Q6 to be nonconductive and the gate signal Hgs3 for controlling the transistor Q5 to be conductive. At the time point tc3 when the voltage value of the base driving signal aA matches the threshold voltage Vth4 in the period from the time point t30 to the time point t40, the reference level switching circuit 561 continuously outputs the level switching signal Ls1 in a low level to the gate driver 571.


In a period from the time point tc3 to a time point tc1 in which a voltage value of the base driving signal aA is larger than the threshold voltage Vth4 and smaller than the threshold voltage Vth1 in the period from the time point t30 to the time point t40, the reference level switching circuit 561 outputs the level switching signal Ls1 in a low level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a low level to the transistor Q3 and the gate signal Lgs2 in a high level to the transistor Q4. Furthermore, the reference level switching circuit 562 outputs a level switching signal Ls2 in a high level to the gate driver 591. Accordingly, the gate driver 591 outputs the gate signal Hgs3 in a high level to the transistor Q5 and the gate signal Lgs3 in a low level to the transistor Q6. Consequently, the transistor Q3 is controlled to be nonconductive, the transistor Q4 is controlled to be conductive, the transistor Q5 is controlled to be conductive, and the transistor Q6 is controlled to be nonconductive.


Consequently, in the period from the time point tc3 to the time point tc1 the level-shift amplified modulation signal AMs3 obtained by shifting the reference potential of the amplified modulation signal AMs1 output to the midpoint CP1 of the digital amplification circuit 550 by a potential of the voltage VMV is output to the midpoint CP3 of the level-shift amplified modulation signal output circuit 590, and the level-shift amplified modulation signal AMs2 equivalent to the level-shift amplified modulation signal AMs3 is output to the midpoint CP2 of the level-shift amplified modulation signal output circuit 570. Specifically, the level shift circuit 560 outputs the level-shift amplified modulation signal AMs2 obtained by shifting a reference potential of the amplified modulation signal AMs1 to the potential of the voltage VMV from the midpoint CP2.


At the time point tc1 when the voltage value of the base driving signal aA matches the threshold voltage Vth1 in the period from the time point t30 to a time point t40, the reference level switching circuit 561 outputs the level switching signal Ls1 in a high level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a high level to the transistor Q3 and the gate signal Lgs2 in a low level to the transistor Q4. Thereafter, the reference level switching circuit 561 outputs the level switching signal Ls1 in a low level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a low level to the transistor Q3 and the gate signal Lgs2 in a high level to the transistor Q4. Thereafter, the reference level switching circuit 561 outputs the level switching signal Ls1 in a high level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a high level to the transistor Q3 and the gate signal Lgs2 in a low level to the transistor Q4. Specifically, at the time point tc1 when the voltage value of the base driving signal aA matches the threshold voltage Vth1, the gate driver 571 outputs the gate signal Lgs2 for controlling the transistor Q4 to be nonconductive and the gate signal Hgs2 for controlling the transistor Q3 to be conductive, and thereafter, outputs the gate signal Lgs2 for controlling the transistor Q4 to be conductive and the gate signal Hgs2 for controlling the transistor Q3 to be nonconductive. Thereafter, the gate driver 571 outputs the gate signal Lgs2 for controlling the transistor Q4 to be nonconductive and the gate signal Hgs2 for controlling the transistor Q3 to be conductive. At the time point tc1 when the voltage value of the base driving signal aA matches the threshold voltage Vth1 in the period from the time point t30 to the time point t40, the reference level switching circuit 562 continuously outputs the level switching signal Ls2 in a low level to the gate driver 591.


In a period from the time point tc1 to the time point t40 in which the voltage value of the base driving signal aA is larger than the threshold voltages Vth1 and Vth4 in the period from the time point t30 to the time point t40, the reference level switching circuit 561 outputs the level switching signal Ls1 in a high level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a high level to the transistor Q3 and the gate signal Lgs2 in a low level to the transistor Q4. Furthermore, the reference level switching circuit 562 outputs the level switching signal Ls2 in a high level to the gate driver 591. Accordingly, the gate driver 591 outputs the gate signal Hgs3 in a high level to the transistor Q5 and the gate signal Lgs3 in a low level to the transistor Q6. Consequently, the transistor Q3 is controlled to be conductive, the transistor Q4 is controlled to be nonconductive, the transistor Q5 is controlled to be conductive, and the transistor Q6 is controlled to be nonconductive.


Consequently, in the period from the time point tc1 to the time point t40, the level-shift amplified modulation signal AMs3 obtained by shifting the reference potential of the amplified modulation signal AMs1 output to the midpoint CP1 of the digital amplification circuit 550 by the potential of the voltage VMV is output to the midpoint CP3 of the level-shift amplified modulation signal output circuit 590, and the level-shift amplified modulation signal AMs2 obtained by shifting the reference potential of the level-shift amplified modulation signal AMs3 by the potential of the voltage VMV is output to the midpoint CP2 of the level-shift amplified modulation signal output circuit 570. Specifically, the level shift circuit 560 outputs the level-shift amplified modulation signal AMs2 obtained by shifting a reference potential of the amplified modulation signal AMs1 to twice the potential of the voltage VMV from the midpoint CP2.


Furthermore, as illustrated in FIG. 9, in a period from the time point t50 to a time point t60, the driving signal output circuit 50 outputs the driving signal COM having a voltage value changed from the voltage Vt to the voltage Vc. Specifically, in the period from the time point t50 to the time point t60, the base driving data dA for generating the driving signal COM having a voltage value changed from the voltage Vt to the voltage Vc is supplied to the base driving signal output circuit 510. The base driving signal output circuit 510 generates the base driving signal aA constantly having a voltage value changed from the voltage aVt to a voltage aVc based on the supplied base driving data dA. The base driving signal aA generated by the base driving signal output circuit 510 is supplied to the pulse modulation circuit 530 through the adder 511, and in addition, supplied to the switching circuit 521 and the fixed pulse output circuit 522 included in the fixed output switching circuit 520.


Furthermore, since the voltage value of the supplied base driving signal aA is changed in the period from the time point t50 to the time point t60, the switching circuit 521 outputs the switch signal Sel to be used by the switch 531 to select the modulation signal Ms as the base gate signal Gd. Consequently, the modulation signal Ms output from the pulse modulation circuit 530 is supplied as the base gate signal Gd to the digital amplification circuit 550. Then the gate driver 551 included in the digital amplification circuit 550 outputs the gate signal Hgs1 corresponding to a logical level of the base gate signal Gd and the gate signal Lgs1 corresponding to a signal obtained by inverting the logical level of the base gate signal Gd, so as to output the amplified modulation signal AMs1 obtained by amplifying the base gate signal Gd based on the voltage VMV to the midpoint CP1 of the digital amplification circuit 550.


Furthermore, the base driving signal aA is also supplied to the reference level switching circuits 561 and 562 included in the level shift circuit 560. In a period from the time point t50 to a time point tc2 in which the voltage value of the base driving signal aA is larger than the threshold voltages Vth1 and Vth4 in the period from the time point t50 to the time point t60, the reference level switching circuit 561 outputs the level switching signal Ls1 in a high level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a high level to the transistor Q3 and the gate signal Lgs2 in a low level to the transistor Q4. Furthermore, the reference level switching circuit 562 outputs the level switching signal Ls2 in a high level to the gate driver 591. Accordingly, the gate driver 591 outputs the gate signal Hgs3 in a high level to the transistor Q5 and the gate signal Lgs3 in a low level to the transistor Q6. By this, the transistor Q3 is controlled to be conductive, the transistor Q4 is controlled to be nonconductive, the transistor Q5 is controlled to be conductive, and the transistor Q6 is controlled to be nonconductive.


Consequently, in the period from the time point t50 to the time point tc2, the level-shift amplified modulation signal AMs3 obtained by shifting the reference potential of the amplified modulation signal AMs1 output to the midpoint CP1 of the digital amplification circuit 550 by the potential of the voltage VMV is output to the midpoint CP3 of the level-shift amplified modulation signal output circuit 590, and the level-shift amplified modulation signal AMs2 obtained by shifting the reference potential of the level-shift amplified modulation signal AMs3 by the potential of the voltage VMV is output to the midpoint CP2 of the level-shift amplified modulation signal output circuit 570. Specifically, the level shift circuit 560 outputs the level-shift amplified modulation signal AMs2 obtained by shifting the reference potential of the amplified modulation signal AMs1 to twice the potential of the voltage VMV from the midpoint CP2.


At the time point tc2 when the voltage value of the base driving signal aA matches the threshold voltage Vth1 in the period from the time point t50 to a time point t60, the reference level switching circuit 561 outputs the level switching signal Ls1 in a low level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a low level to the transistor Q3 and the gate signal Lgs2 in a high level to the transistor Q4. Thereafter, the reference level switching circuit 561 outputs the level switching signal Ls1 in a high level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a high level to the transistor Q3 and the gate signal Lgs2 in a low level to the transistor Q4. Thereafter, the reference level switching circuit 561 outputs the level switching signal Ls1 in a low level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a low level to the transistor Q3 and the gate signal Lgs2 in a high level to the transistor Q4. Specifically, at the time point tc2 when the voltage value of the base driving signal aA matches the threshold voltage Vth1, the gate driver 571 outputs the gate signal Lgs2 for controlling the transistor Q4 to be conductive and the gate signal Hgs2 for controlling the transistor Q3 to be nonconductive, and thereafter, outputs the gate signal Lgs2 for controlling the transistor Q4 to be nonconductive and the gate signal Hgs2 for controlling the transistor Q3 to be conductive. Thereafter, the gate driver 571 outputs the gate signal Lgs2 for controlling the transistor Q4 to be conductive and the gate signal Hgs2 for controlling the transistor Q3 to be nonconductive. At the time point tc2 when the voltage value of the base driving signal aA matches the threshold voltage Vth1 in the period from the time point t50 to the time point t60, the reference level switching circuit 562 continuously outputs the level switching signal Ls2 in a high level to the gate driver 591.


In the period from the time point tc2 to the time point tc4 in which a voltage value of the base driving signal aA is larger than the threshold voltage Vth4 and smaller than the threshold voltage Vth1 in the period from the time point t50 to the time point t60, the reference level switching circuit 561 outputs the level switching signal Ls1 in a low level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a low level to the transistor Q3 and the gate signal Lgs2 in a high level to the transistor Q4. Furthermore, the reference level switching circuit 562 outputs the level switching signal Ls2 in a high level to the gate driver 591. Accordingly, the gate driver 591 outputs the gate signal Hgs3 in a high level to the transistor Q5 and the gate signal Lgs3 in a low level to the transistor Q6. Consequently, the transistor Q3 is controlled to be nonconductive, the transistor Q4 is controlled to be conductive, the transistor Q5 is controlled to be conductive, and the transistor Q6 is controlled to be nonconductive.


As a result, in the period from the time point tc2 to the time point tc4, the level-shift amplified modulation signal AMs3 obtained by shifting the reference potential of the amplified modulation signal AMs1 output to the midpoint CP1 of the digital amplification circuit 550 by the potential of the voltage VMV is output to the midpoint CP3 of the level-shift amplified modulation signal output circuit 590, and the level-shift amplified modulation signal AMs2 equivalent to the amplified modulation signal AMs3 is output to the midpoint CP2 of the level-shift amplified modulation signal output circuit 570. Specifically, the level shift circuit 560 outputs the level-shift amplified modulation signal AMs2 obtained by shifting the reference potential of the amplified modulation signal AMs1 to the potential of the voltage VMV from the midpoint CP2.


At the time point tc4 when the voltage value of the base driving signal aA matches the threshold voltage Vth4 in the period from the time point t50 to a time point t60, the reference level switching circuit 562 outputs the level switching signal Ls2 in a low level to the gate driver 591. Accordingly, the gate driver 591 outputs the gate signal Hgs3 in a low level to the transistor Q5 and the gate signal Lgs3 in a high level to the transistor Q6. Thereafter, the reference level switching circuit 562 outputs the level switching signal Ls2 in a high level to the gate driver 591. Accordingly, the gate driver 591 outputs the gate signal Hgs3 in a high level to the transistor Q5 and the gate signal Lgs3 in a low level to the transistor Q6. Thereafter, the reference level switching circuit 562 outputs the level switching signal Ls2 in a low level to the gate driver 591. Accordingly, the gate driver 591 outputs the gate signal Hgs3 in a low level to the transistor Q5 and the gate signal Lgs3 in a high level to the transistor Q6. Specifically, at the time point tc4 when the voltage value of the base driving signal aA matches the threshold voltage Vth4, the gate driver 591 outputs the gate signal Lgs3 for controlling the transistor Q6 to be conductive and the gate signal Hgs3 controlling the transistor Q5 to be nonconductive, and thereafter, outputs the gate signal Lgs3 for controlling the transistor Q6 to be nonconductive and the gate signal Hgs3 for controlling the transistor Q5 to be conductive. Thereafter, the gate driver 591 outputs the gate signal Lgs3 for controlling the transistor Q6 to be conductive and the gate signal Hgs3 for controlling the transistor Q5 to be nonconductive. At the time point tc4 when the voltage value of the base driving signal aA matches the threshold voltage Vth4 in the period from the time point t50 to the time point t60, the reference level switching circuit 561 continuously outputs the level switching signal Ls1 in a low level to the gate driver 571.


In a period from the time point tc4 to a time point t60 in which a voltage value of the base driving signal aA is smaller than the threshold voltages Vth1 and Vth4 in the period from the time point t50 to the time point t60, the reference level switching circuit 561 outputs the level switching signal Ls1 in a low level to the gate driver 571. Accordingly, the gate driver 571 outputs the gate signal Hgs2 in a low level to the transistor Q3 and the gate signal Lgs2 in a high level to the transistor Q4. Furthermore, the reference level switching circuit 562 outputs the level switching signal Ls2 in a low level to the gate driver 591. Accordingly, the gate driver 591 outputs the gate signal Hgs3 in a low level to the transistor Q5 and the gate signal Lgs3 in a high level to the transistor Q6. By this, the transistor Q3 is controlled to be nonconductive, the transistor Q4 is controlled to be conductive, the transistor Q5 is controlled to be nonconductive, and the transistor Q6 is controlled to be conductive.


Consequently, in the period from the time point tc4 to the time point t60, the level-shift amplified modulation signal AMs3 equivalent to the reference potential of the amplified modulation signal AMs1 output to the midpoint CP1 of the digital amplification circuit 550 is output to the midpoint CP3 of the level-shift amplified modulation signal output circuit 590, and the level-shift amplified modulation signal AMs2 equivalent to the level-shift amplified modulation signal AMs3 is output to the midpoint CP2 of the level-shift amplified modulation signal output circuit 570. Specifically, the level shift circuit 560 outputs the level-shift amplified modulation signal AMs2 equivalent to the amplified modulation signal AMs1 from the midpoint CP2.


In the driving signal output circuit 50 configured as described above according to the second embodiment, the level-shift amplified modulation signal output circuit 590 switches the reference potential of the amplified modulation signal AMs1 between the ground potential GND and the potential of the voltage VMV and outputs the potential as the level-shift amplified modulation signal AMs3, and the level-shift amplified modulation signal output circuit 570 determines whether the reference potential of the level-shift amplified modulation signal AMs3 is to be shifted by the potential of the voltage VMV and outputs the potential as the level-shift amplified modulation signal AMs2. Specifically, the level shift circuit 560 shifts the reference potential of the amplified modulation signal AMs1 output to the midpoint CP1 of the digital amplification circuit 550 among the ground potential GND, the voltage VMV, and twice the voltage VMV.


Then, when the state in which the level-shift amplified modulation signal output circuit 590 outputs, as the level-shift amplified modulation signal AMs3, the amplified modulation signal AMs1 having the ground potential GND as a reference potential is shifted to the state in which the level-shift amplified modulation signal output circuit 590 outputs, as the level-shift amplified modulation signal AMs3, the amplified modulation signal AMs1 having the voltage VMV as a reference potential, the gate driver 591 outputs the gate signal Lgs3 for controlling the transistor Q6 to be nonconductive and the gate signal Hgs3 for controlling the transistor Q5 to be conductive, then outputs the gate signal Lgs3 for controlling the transistor Q6 to be conductive and the gate signal Hgs3 for controlling the transistor Q5 to be nonconductive, and thereafter, outputs the gate signal Lgs3 for controlling the transistor Q6 to be nonconductive and the gate signal Hgs3 for controlling the transistor Q5 to be conductive.


Furthermore, when the state in which the level-shift amplified modulation signal output circuit 590 outputs, as the level-shift amplified modulation signal AMs3, the amplified modulation signal AMs1 having the voltage VMV as a reference potential is shifted to the state in which the level-shift amplified modulation signal output circuit 590 outputs, as the level-shift amplified modulation signal AMs3, the amplified modulation signal AMs1 having the ground potential GND as a reference potential, the gate driver 591 outputs the gate signal Lgs3 for controlling the transistor Q6 to be conductive and the gate signal Hgs3 for controlling the transistor Q5 to be nonconductive, and thereafter, outputs the gate signal Lgs3 for controlling the transistor Q6 to be nonconductive and the gate signal Hgs3 for controlling the transistor Q5 to be conductive.


Thereafter, the gate driver 591 outputs the gate signal Lgs3 for controlling the transistor Q6 to be conductive and the gate signal Hgs3 for controlling the transistor Q5 to be nonconductive.


Accordingly, when the level-shift amplified modulation signal output circuit 590 selects output of, as the level-shift amplified modulation signal AMs3, the amplified modulation signal AMs1 having the voltage VMV as a reference potential or output of, as the level-shift amplified modulation signal AMs3, the amplified modulation signal AMs1 having the ground potential GND as a reference potential, a counter pulse is generated at the midpoint CP3, and as a result, a sudden pulse generated in the level-shift amplified modulation signal AMs3 may be cancelled. Consequently, accuracy of a waveform of the driving signal COM may be improved.


Similarly, when the state in which the level-shift amplified modulation signal output circuit 570 outputs, as the level-shift amplified modulation signal AMs2, the level-shift amplified modulation signal AMs3 is shifted to the state in which the level-shift amplified modulation signal output circuit 570 outputs, as the level-shift amplified modulation signal AMs2, a signal obtained by shifting the reference potential of the level-shift amplified modulation signal AMs3 by the voltage VMV, the gate driver 571 outputs the gate signal Lgs2 for controlling the transistor Q4 to be nonconductive and the gate signal Hgs2 for controlling the transistor Q3 to be conductive, then outputs the gate signal Lgs2 for controlling the transistor Q4 to be conductive and the gate signal Hgs2 for controlling the transistor Q3 to be nonconductive, and thereafter, outputs the gate signal Lgs2 for controlling the transistor Q4 to be nonconductive and the gate signal Hgs2 for controlling the transistor Q3 to be conductive.


Furthermore, when the state in which the level-shift amplified modulation signal output circuit 570 outputs, as the level-shift amplified modulation signal AMs2, the level-shift amplified modulation signal AMs3 is shifted to the state in which the level-shift amplified modulation signal output circuit 570 outputs, as the level-shift amplified modulation signal AMs2, a signal obtained by shifting the reference potential of the level-shift amplified modulation signal AMs3 by the voltage VMV, the gate driver 571 outputs the gate signal Lgs2 for controlling the transistor Q4 to be conductive and the gate signal Hgs2 for controlling the transistor Q3 to be nonconductive, then outputs the gate signal Lgs2 for controlling the transistor Q4 to be nonconductive and the gate signal Hgs2 for controlling the transistor Q3 to be conductive, and thereafter, outputs the gate signal Lgs2 for controlling the transistor Q4 to be conductive and the gate signal Hgs2 for controlling the transistor Q3 to be nonconductive.


Accordingly, when the level-shift amplified modulation signal output circuit 570 selects output of, as the level-shift amplified modulation signal AMs2, the level-shift amplified modulation signal AMs3 or output of, as the level-shift amplified modulation signal AMs3, a signal obtained by shifting the reference potential of the level-shift amplified modulation signal AMs3 by the voltage VMV, a counter pulse is generated at the midpoint CP2, and as a result, a sudden pulse generated in the level-shift amplified modulation signal AMs2 may be cancelled. Consequently, accuracy of a waveform of the driving signal COM may be improved.


According to the liquid ejecting apparatus 1 of the second embodiment configured as described above, even when a plurality of level-shift amplified modulation signal output circuits are included to shift a reference potential of the amplified modulation signal AMs1, a counter pulse may be generated when the reference potential of the amplified modulation signal AMs1 is shifted, and as a result, accuracy of a waveform of the driving signal COM output from the driving signal output circuit 50 may be improved.


Here, the gate driver 591 is an example of a third gate driver, the gate signal Lgs3 output from the gate driver 591 is an example of a fifth gate signal, the gate signal Hgs3 output from the gate driver 591 is an example of a sixth gate signal, the transistor Q6 driven by the gate signal Lgs3 is an example of a fifth transistor, and the transistor Q5 driven by the gate signal Hgs3 is an example of a sixth transistor. Furthermore, the capacitor C8 is an example of a second capacitance element. Then the voltage VMV supplied to the level-shift amplified modulation signal output circuit 590 is an example of a second power source voltage.


Furthermore, the mode in which the level shift circuit 560 outputs the level-shift amplified modulation signal AMs2 having the ground potential as the reference potential of the amplified modulation signal AMs1 is an example of a first mode according to the second embodiment, the mode in which the level shift circuit 560 outputs the level-shift amplified modulation signal AMs2 having the potential of the voltage VMV as the reference potential of the amplified modulation signal AMs1 is an example of a third mode according to the second embodiment, and the mode in which the level shift circuit 560 outputs the level-shift amplified modulation signal AMs2 having twice the voltage VMV as the reference potential of the amplified modulation signal AMs1 is an example of a second mode according to the second embodiment. Moreover, the ground potential GND serving as the reference potential of the amplified modulation signal AMs1 is an example of a first potential according to the second embodiment, the potential of the voltage VMV serving as the reference potential of the amplified modulation signal AMs1 is an example of a third potential according to the second embodiment, and the potential of twice the voltage VMV serving as the reference potential of the amplified modulation signal AMs1 is an example of a second potential according to the second embodiment.


Although the embodiments have been described hereinabove, the present disclosure is not limited to these embodiments and various modifications may be made without departing from the scope of the disclosure. For example, the foregoing embodiments may be appropriately combined with each other.


The present disclosure includes configurations substantially the same as the configurations described in the foregoing embodiments (for example, configurations having the same functions, methods, and results, or configurations having the same purposes and effects). Furthermore, the present disclosure includes configurations obtained by replacing a portion that is not essential to the configurations of the foregoing embodiments. Moreover, the present disclosure includes configurations that may attain the same effects or the same purposes as the configurations described in the foregoing embodiments. Furthermore, the present disclosure includes configurations obtained by adding the general techniques to the configurations of the foregoing embodiments.


The following is lead from the embodiments described above.


According to an aspect of a driving circuit, the driving circuit that outputs a driving signal for driving a driving section includes a modulation circuit configured to modulate a base driving signal that is a base of the driving signal and output a modulation signal, an amplification circuit configured to output, from a first output point, an amplified modulation signal obtained by amplifying the modulation signal, a level shift circuit configured to output, from a second output point, a level-shift amplified modulation signal obtained by shifting a potential of the amplified modulation signal, and a demodulation circuit configured to demodulate the level-shift amplified modulation signal and output the driving signal. The amplification circuit includes a first gate driver that outputs, based on the modulation signal, a first gate signal and a second gate signal, a first transistor that has one end electrically coupled to the first output point and that operates based on the first gate signal, and a second transistor that has one end electrically coupled to the first output point and that operates based on the second gate signal. The level shift circuit includes a second gate driver that outputs, based on the base driving signal, a third gate signal and a fourth gate signal, a third transistor that has one end electrically coupled to the second output point and the other end to which a signal based on the amplified modulation signal is supplied and that operates based on the third gate signal, a fourth transistor that has one end electrically coupled to the second output point and the other end to which a first power source voltage is supplied and that operates based on the fourth gate signal, and a first capacitance element that has one end to which a signal based on the amplified modulation signal is supplied and the other end electrically coupled to the other end of the fourth transistor. The level shift circuit has a first mode in which a reference potential of the amplified modulation signal is determined as a first potential and a second mode in which a reference potential of the amplified modulation signal is determined as a second potential higher than the first potential. When the level shift circuit enters the second mode from the first mode, the second gate driver outputs the third gate signal for controlling the third transistor to be nonconductive and the fourth gate signal for controlling the fourth transistor to be conductive, then outputs the third gate signal for controlling the third transistor to be conductive and the fourth gate signal for controlling the fourth transistor to be nonconductive, and thereafter outputs the third gate signal for controlling the third transistor to be nonconductive and the fourth gate signal for controlling the fourth transistor to be conductive.


According to this driving circuit, when the level shift circuit enters the second mode from the first mode, the second gate driver outputs the third gate signal for controlling the third transistor to be nonconductive and the fourth gate signal for controlling the fourth transistor to be conductive, then outputs the third gate signal for controlling the third transistor to be conductive and the fourth gate signal for controlling the fourth transistor to be nonconductive, and thereafter, outputs the third gate signal for controlling the third transistor to be nonconductive and the fourth gate signal for controlling the fourth transistor to be conductive, so that a counter pulse for a pulse generated when the level shift circuit enters the second mode from the first mode may be generated. Accordingly, accuracy of a waveform of a driving signal is improved.


In the aspect of the driving circuit, when the level shift circuit enters the first mode from the second mode, the second gate driver may output the third gate signal for controlling the third transistor to be conductive and the fourth gate signal for controlling the fourth transistor to be nonconductive, then outputs the third gate signal for controlling the third transistor to be nonconductive and the fourth gate signal for controlling the fourth transistor to be conductive, and thereafter outputs the third gate signal for controlling the third transistor to be conductive and the fourth gate signal for controlling the fourth transistor to be nonconductive.


According to this driving circuit, when the level shift circuit enters the first mode from the second mode, the second gate driver outputs the third gate signal for controlling the third transistor to be conductive and the fourth gate signal for controlling the fourth transistor to be nonconductive, then outputs the third gate signal for controlling the third transistor to be nonconductive and the fourth gate signal for controlling the fourth transistor to be conductive, and thereafter outputs the third gate signal for controlling the third transistor to be conductive and the fourth gate signal for controlling the fourth transistor to be nonconductive, so that a counter pulse for a pulse generated when the level shift circuit enters the first mode from the second mode may be generated. Accordingly, accuracy of a waveform of a driving signal is improved.


In the aspect of the driving circuit, in the first mode, the second gate driver may output the third gate signal for controlling the third transistor to be conductive and the fourth gate signal for controlling the fourth transistor to be nonconductive, and in the second mode, the second gate driver may output the third gate signal for controlling the third transistor to be nonconductive and the fourth gate signal for controlling the fourth transistor to be conductive.


According to this driving circuit, the number of times the third transistor and the fourth transistor included in the level shift circuit are switched may be reduced, and consequently, switching losses generated in the third transistor and the fourth transistor may be reduced. Accordingly, power consumption of the driving circuit may be reduced.


In the aspect of the driving circuit, the level shift circuit may include a third gate driver that outputs, based on the base driving signal, a fifth gate signal and a sixth gate signal, a fifth transistor that has one end electrically coupled to a third output point and the other end to which a signal based on the amplified modulation signal is supplied and that operates based on the fifth gate signal, a sixth transistor that has one end electrically coupled to the third output point and the other end to which a second power source voltage is supplied and that operates based on the sixth gate signal, and a second capacitance element that has one end to which a signal based on the amplified modulation signal is supplied and the other end electrically coupled to the other end of the sixth transistor, and the third output point may be electrically coupled to the other end of the third transistor and the one end of the first capacitance element.


According to this driving circuit, even when level shift circuits are disposed in a plurality of stages, a counter pulse may be generated for a pulse generated when a mode of the level shift circuits is shifted, and accordingly, accuracy of a waveform of a driving signal is improved.


In the aspect of the driving circuit, the level shift circuit may have a third mode in which a reference potential of the amplified modulation signal is determined as a third potential between the first potential and the second potential, and when the level shift circuit enters the third mode from the first mode, the third gate driver may output the fifth gate signal for controlling the fifth transistor to be conductive and the sixth gate signal for controlling the sixth transistor to be nonconductive, then outputs the fifth gate signal for controlling the fifth transistor to be nonconductive and the sixth gate signal for controlling the sixth transistor to be conductive, and thereafter outputs the fifth gate signal for controlling the fifth transistor to be conductive and the sixth gate signal for controlling the sixth transistor to be nonconductive.


According to this driving circuit, even when level shift circuits are disposed in a plurality of stages, a counter pulse may be generated for a pulse generated when a mode of the level shift circuits is shifted, and accordingly, accuracy of a waveform of a driving signal is improved.


In the aspect of the driving circuit, when the level shift circuit enters the first mode from the third mode, the third gate driver may output the fifth gate signal for controlling the fifth transistor to be conductive and the sixth gate signal for controlling the sixth transistor to be nonconductive, then outputs the fifth gate signal for controlling the fifth transistor to be nonconductive and the sixth gate signal for controlling the sixth transistor to be conductive, and thereafter outputs the fifth gate signal for controlling the fifth transistor to be conductive and the sixth gate signal for controlling the sixth transistor to be nonconductive.


According to this driving circuit, the number of times the fifth transistor and the sixth transistor included in the level shift circuit are switched may be reduced, and consequently, switching losses generated in the fifth transistor and the sixth transistor may be reduced. Accordingly, power consumption of the driving circuit may be reduced.


According to an aspect of a liquid ejecting apparatus, the liquid ejecting apparatus includes an ejection portion configured to eject liquid, and a driving circuit configured to output a driving signal for driving the ejection portion. The driving circuit includes a modulation circuit configured to modulate a base driving signal that is a base of the driving signal and output a modulation signal, an amplification circuit configured to output, from a first output point, an amplified modulation signal obtained by amplifying the modulation signal, a level shift circuit configured to output, from a second output point, a level-shift amplified modulation signal obtained by shifting a potential of the amplified modulation signal, and a demodulation circuit configured to demodulate the level-shift amplified modulation signal and output the driving signal. The amplification circuit includes a first gate driver that outputs, based on the modulation signal, a first gate signal and a second gate signal, a first transistor that has one end electrically coupled to the first output point and that operates based on the first gate signal, and a second transistor that has one end electrically coupled to the first output point and that operates based on the second gate signal. The level shift circuit includes a second gate driver that outputs, based on the base driving signal, a third gate signal and a fourth gate signal, a third transistor that has one end electrically coupled to the second output point and the other end to which a signal based on the amplified modulation signal is supplied and that operates based on the third gate signal, a fourth transistor that has one end electrically coupled to the second output point and the other end to which a first power source voltage is supplied and that operates based on the fourth gate signal, and a first capacitance element that has one end to which a signal based on the amplified modulation signal is supplied and the other end electrically coupled to the other end of the fourth transistor. The level shift circuit has a first mode in which a reference potential of the amplified modulation signal is determined as a first potential and a second mode in which a reference potential of the amplified modulation signal is determined as a second potential higher than the first potential. When the level shift circuit enters the second mode from the first mode, the second gate driver outputs the third gate signal for controlling the third transistor to be nonconductive and the fourth gate signal for controlling the fourth transistor to be conductive, then outputs the third gate signal for controlling the third transistor to be conductive and the fourth gate signal for controlling the fourth transistor to be nonconductive, and thereafter outputs the third gate signal for controlling the third transistor to be nonconductive and the fourth gate signal for controlling the fourth transistor to be conductive.


According to this liquid ejecting apparatus, when the level shift circuit enters the second mode from the first mode, the second gate driver outputs the third gate signal for controlling the third transistor to be nonconductive and the fourth gate signal for controlling the fourth transistor to be conductive, then outputs the third gate signal for controlling the third transistor to be conductive and the fourth gate signal for controlling the fourth transistor to be nonconductive, and thereafter, outputs the third gate signal for controlling the third transistor to be nonconductive and the fourth gate signal for controlling the fourth transistor to be conductive, so that a counter pulse for a pulse generated when the level shift circuit enters the second mode from the first mode may be generated. Accordingly, accuracy of a waveform of a driving signal is improved.

Claims
  • 1. A driving circuit that outputs a driving signal for driving a driving section, the driving circuit comprising: a modulation circuit configured to modulate a base driving signal that is a base of the driving signal and output a modulation signal;an amplification circuit configured to output, from a first output point, an amplified modulation signal obtained by amplifying the modulation signal;a level shift circuit configured to output, from a second output point, a level-shift amplified modulation signal obtained by shifting a potential of the amplified modulation signal; anda demodulation circuit configured to demodulate the level-shift amplified modulation signal and output the driving signal, whereinthe amplification circuit includes a first gate driver that outputs, based on the modulation signal, a first gate signal and a second gate signal, a first transistor that has one end electrically coupled to the first output point and that operates based on the first gate signal, and a second transistor that has one end electrically coupled to the first output point and that operates based on the second gate signal,the level shift circuit includes a second gate driver that outputs, based on the base driving signal, a third gate signal and a fourth gate signal, a third transistor that has one end electrically coupled to the second output point and the other end to which a signal based on the amplified modulation signal is supplied and that operates based on the third gate signal, a fourth transistor that has one end electrically coupled to the second output point and the other end to which a first power source voltage is supplied and that operates based on the fourth gate signal, and a first capacitance element that has one end to which a signal based on the amplified modulation signal is supplied and the other end electrically coupled to the other end of the fourth transistor,the level shift circuit has a first mode in which a reference potential of the amplified modulation signal is determined as a first potential and a second mode in which a reference potential of the amplified modulation signal is determined as a second potential higher than the first potential, andwhen the level shift circuit enters the second mode from the first mode, the second gate driver outputs the third gate signal for controlling the third transistor to be nonconductive and the fourth gate signal for controlling the fourth transistor to be conductive, then outputs the third gate signal for controlling the third transistor to be conductive and the fourth gate signal for controlling the fourth transistor to be nonconductive, and thereafter outputs the third gate signal for controlling the third transistor to be nonconductive and the fourth gate signal for controlling the fourth transistor to be conductive.
  • 2. The driving circuit according to claim 1, wherein when the level shift circuit enters the first mode from the second mode, the second gate driver outputs the third gate signal for controlling the third transistor to be conductive and the fourth gate signal for controlling the fourth transistor to be nonconductive, then outputs the third gate signal for controlling the third transistor to be nonconductive and the fourth gate signal for controlling the fourth transistor to be conductive, and thereafter outputs the third gate signal for controlling the third transistor to be conductive and the fourth gate signal for controlling the fourth transistor to be nonconductive.
  • 3. The driving circuit according to claim 1, wherein in the first mode, the second gate driver outputs the third gate signal for controlling the third transistor to be conductive and the fourth gate signal for controlling the fourth transistor to be nonconductive, andin the second mode, the second gate driver outputs the third gate signal for controlling the third transistor to be nonconductive and the fourth gate signal for controlling the fourth transistor to be conductive.
  • 4. The driving circuit according to claim 1, wherein the level shift circuit includes a third gate driver that outputs, based on the base driving signal, a fifth gate signal and a sixth gate signal, a fifth transistor that has one end electrically coupled to a third output point and the other end to which a signal based on the amplified modulation signal is supplied and that operates based on the fifth gate signal, a sixth transistor that has one end electrically coupled to the third output point and the other end to which a second power source voltage is supplied and that operates based on the sixth gate signal, and a second capacitance element that has one end to which a signal based on the amplified modulation signal is supplied and the other end electrically coupled to the other end of the sixth transistor, andthe third output point is electrically coupled to the other end of the third transistor and the one end of the first capacitance element.
  • 5. The driving circuit according to claim 4, wherein the level shift circuit has a third mode in which a reference potential of the amplified modulation signal is determined as a third potential between the first potential and the second potential, andwhen the level shift circuit enters the third mode from the first mode, the third gate driver outputs the fifth gate signal for controlling the fifth transistor to be conductive and the sixth gate signal for controlling the sixth transistor to be nonconductive, then outputs the fifth gate signal for controlling the fifth transistor to be nonconductive and the sixth gate signal for controlling the sixth transistor to be conductive, and thereafter outputs the fifth gate signal for controlling the fifth transistor to be conductive and the sixth gate signal for controlling the sixth transistor to be nonconductive.
  • 6. The driving circuit according to claim 5, wherein when the level shift circuit enters the first mode from the third mode, the third gate driver outputs the fifth gate signal for controlling the fifth transistor to be conductive and the sixth gate signal for controlling the sixth transistor to be nonconductive, then outputs the fifth gate signal for controlling the fifth transistor to be nonconductive and the sixth gate signal for controlling the sixth transistor to be conductive, and thereafter outputs the fifth gate signal for controlling the fifth transistor to be conductive and the sixth gate signal for controlling the sixth transistor to be nonconductive.
  • 7. A liquid ejecting apparatus, comprising: an ejection portion configured to eject liquid; anda driving circuit configured to output a driving signal for driving the ejection portion, whereinthe driving circuit includes a modulation circuit configured to modulate a base driving signal that is a base of the driving signal and output a modulation signal,an amplification circuit configured to output, from a first output point, an amplified modulation signal obtained by amplifying the modulation signal,a level shift circuit configured to output, from a second output point, a level-shift amplified modulation signal obtained by shifting a potential of the amplified modulation signal, anda demodulation circuit configured to demodulate the level-shift amplified modulation signal and output the driving signal,the amplification circuit includes a first gate driver that outputs, based on the modulation signal, a first gate signal and a second gate signal, a first transistor that has one end electrically coupled to the first output point and that operates based on the first gate signal, and a second transistor that has one end electrically coupled to the first output point and that operates based on the second gate signal,the level shift circuit includes a second gate driver that outputs, based on the base driving signal, a third gate signal and a fourth gate signal, a third transistor that has one end electrically coupled to the second output point and the other end to which a signal based on the amplified modulation signal is supplied and that operates based on the third gate signal, a fourth transistor that has one end electrically coupled to the second output point and the other end to which a first power source voltage is supplied and that operates based on the fourth gate signal, and a first capacitance element that has one end to which a signal based on the amplified modulation signal is supplied and the other end electrically coupled to the other end of the fourth transistor,the level shift circuit has a first mode in which a reference potential of the amplified modulation signal is determined as a first potential and a second mode in which a reference potential of the amplified modulation signal is determined as a second potential higher than the first potential, andwhen the level shift circuit enters the second mode from the first mode, the second gate driver outputs the third gate signal for controlling the third transistor to be nonconductive and the fourth gate signal for controlling the fourth transistor to be conductive, then outputs the third gate signal for controlling the third transistor to be conductive and the fourth gate signal for controlling the fourth transistor to be nonconductive, and thereafter outputs the third gate signal for controlling the third transistor to be nonconductive and the fourth gate signal for controlling the fourth transistor to be conductive.
Priority Claims (1)
Number Date Country Kind
2020-165279 Sep 2020 JP national