This application claims the priority benefit of Taiwan application serial no. 101122435, filed on Jun. 22, 2012. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
1. Technical Field
The invention relates to a driving circuit of a flat display. Particularly, the invention relates to a driving circuit having a thermal-reducing effect.
2. Related Art
A display panel of a flat display is composed of a pixel array. Each pixel may contain a plurality of sub-pixel colors corresponding to primary colors, and display a brightness of a color according to a required gray level, so as to form the color of a color pixel. A driving voltage of each pixel varies with the gray level. Regarding dynamic images, the display panel continuously displays new frames according to a frequency, and accordingly charges/discharges the driven pixels.
The driving circuit 102 generally includes a charging circuit path and a discharging circuit path. The charging circuit path, for example, includes a P-type metal oxide semiconductor (PMOS) transistor 106, a switch 110 and an electrostatic discharge (ESD) element 112, and impedances thereof are respectively represented by RSP, RS and RE. The discharging circuit path, for example, includes an NMOS transistor 108, the switch 110 and the ESD element 112. An impedance of the NMOS transistor 108 is represented by RSN. Gates of the PMOS transistor 106 and the NMOS transistor 108 are controlled by the voltage input circuit 100 under normal operation, and conducting levels of the transistors are controlled by the gray levels.
In a charging stage, a system high voltage VDD is received, and the pixel capacitor 116 is charged according to the input voltage Vin. A capacitance of the pixel capacitor 116 is represented by CP, which becomes stable after a period of time, and an output voltage Vout at an output terminal of the driving circuit 102 increases with time in the charging stage. In a discharging stage, a ground voltage provides a discharging voltage.
Since the internal impedance of the driving circuit may have power consumption during a driving process, heat is generated. When a pixel density increases, the generated heat cannot be ignored. Therefore, it is an important issue in research and development to reduce a temperature of the driving circuit.
The invention is directed to a driving circuit of a flat display, which has a thermal-reducing effect.
The invention provides a driving circuit of a flat display, which has an output terminal for driving pixels of a display panel to display. The driving circuit includes a charging circuit path, a discharging circuit path, and a detecting circuit. The charging circuit path is configured to charge pixels of the display panel, and has a first impedance state and a second impedance state. An impedance value of the first impedance state is smaller than an impedance value of the second impedance state. The discharging circuit path is configured to discharge the pixels of the display panel, and has a third impedance state and a fourth impedance state. An impedance value of the third impedance state is smaller than an impedance value of the fourth impedance state. The detecting circuit detects whether or not the charging circuit path or the discharging circuit path is in a first state of a charging/discharging stage or in a second state with voltage approaching to a stable state. In the first state, the detecting circuit controls the charging circuit path to the first impedance state or controls the discharging circuit path to the third impedance state. In the second state, the detecting circuit controls the charging circuit path to the second impedance state or controls the discharging circuit path to the fourth impedance state.
In order to make the aforementioned and other features and advantages of the invention comprehensible, several exemplary embodiments accompanied with figures are described in detail below.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
The conventional circuit of
Therefore, if the internal impedance RIC of the output terminal of the driving circuit is decreased, the temperature of the driving circuit is decreased. However, if the internal impedance is arbitrarily changed, features such as stability of the driving circuit of the original design or the discharging capability of the ESD element are changed.
An embodiment of the invention provides a circuit structure capable of dynamically changing the internal impedance of the output terminal of the driving circuit, in which the internal impedance of the driving circuit is decreased in an initial stage of a charging/discharging stage, and after the charging/discharging is completed, the originally designed internal impedance is recovered. In this way, the power consumption is reduced during the charging/discharging process to reduce the heat generation without influencing a normal display operation.
The driving circuit 202 may include a charging circuit path and a discharging circuit path. Moreover, a detecting circuit is used to detect whether the charging circuit path or the discharging circuit path is in a charging state or a discharging state. The detecting circuit can be configured in internal or at external of the driving circuit 202, which is determined according to an actual design requirement. The detecting circuit of the present embodiment is not illustrated in
The charging circuit path, for example, includes a field-effect transistor circuit 206, a switch circuit 210 and an ESD circuit 212. The discharging circuit path, for example, includes a field-effect transistor circuit 208, the switch circuit 210 and the ESD circuit 212. The switch circuit 210 turns off or turns on the charging the charging circuit path or the discharging circuit path to charge or discharge the pixels according to an actual operation requirement. In designs of other driving mechanisms, the switch circuit 210 can also be omitted.
The charging circuit path is used to charge the pixels of the display panel 104, and the charging circuit path has a first impedance state and a second impedance state. An impedance value of the first impedance state is smaller than an impedance value of the second impedance state.
The discharging circuit path is used to discharge the pixels of the display panel 104, and the discharging circuit path has a third impedance state and a fourth impedance state. An impedance value of the third impedance state is smaller than an impedance value of the fourth impedance state.
The detecting circuit, as that shown in
In other words, in the first state of the driving circuit 202, the detecting circuit controls the charging circuit path to the first impedance state or controls the discharging circuit path to the third impedance state. In the second state of the driving circuit 202, the detecting circuit controls the charging circuit path to the second impedance state or controls the discharging circuit path to the fourth impedance state.
By reducing the impedance of the driving circuit, in the charging/discharging stage, the power consumption of the driving circuit is reduced to reduce a heat generation amount, so as to reduce the temperature. After the charging/discharging is completed, the impedance state of the original design is recovered, so that the normal display is not influenced.
There is a plurality of methods for detecting whether the driving circuit is in the charging/discharging stage, and for example, it can be directly determined through a RC characteristic curve according to a time of the voltage input signal Vin. Moreover, the voltage input signal Vin and the output voltage Vout can be directly compared to determine whether the charging or discharging is nearly completed, and a more accurate situation is to actually detect completion of the charging/discharging.
In the driving circuit 202 of the present embodiment, the charging circuit path includes a MOS transistor 106 corresponding to the field-effect transistor circuit 206 of
Regarding the discharging circuit path includes a MOS transistor 108 corresponding to the field-effect transistor circuit 208 of
It should be noticed that conductivities of the MOS transistors 106, 108, 252 and 254 can be the same or different, and in case of different conductivities, the transistors can be exchanged, and only the control voltages of the gates thereof are accordingly changed. The MOS transistor 106 and the MOS transistor 252 are, for example, PMOS transistors, and a voltage for causing a conducting state, called as a conducting voltage, thereof is a ground voltage. The MOS transistor 108 and the MOS transistor 254 are, for example, NMOS transistors, and a conducting voltage thereof is a positive voltage.
In the present embodiment, in addition to the common switch circuit 210 and the ESD circuit 212, a circuit path including a switch 262 and an ESD element 264 is added. The ESD element 264 also includes a switch that is controlled by the defecting circuit 200. In case that the switch circuit 210 is turned on, the switch 262 and the ESD element 264 are turned on according to whether the driving circuit is in the charging/discharging stage or is turned off at other stage.
In the present embodiment, the added components would respectively add impedance values, respectively represented by RSPD, RSND, RSD and RED as an example, which are the additional output stage impedance of the driving circuit. In the charging stage and the discharging stage of the output terminal of the driving circuit, the signal SW has a high voltage level, and the signal SWB has a low voltage level, so that the output impedance of the driving circuit is decreased due to a parallel connection of the impedances. In the stable periods 302 and 306 after the output terminal of the driving circuit completes the charging and discharging operations, the signal SW has a low voltage level, and the signal SWB has a high voltage level, so that the driving circuit recovers the normal operation, by which a thermal-reducing effect is achieved without influencing an original feature.
Due to different control mechanisms, designs of the detecting circuit 200 are also different.
Referring to
The detecting circuit 200 detects whether the charging/discharging stage is completed by analysing a voltage increasing/decreasing degree of the output voltage Vout. However, it can also be set according to the time of the input voltage signal Vin.
Several embodiments are provided above, though the invention is not limited thereto, and as long as the output impedance is reduced to achieve a thermal-reducing effect during the charging/discharging stage of the driving circuit, it is considered to match the spirit of the invention. Moreover, the provided embodiments can be suitably combined.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
101122435 A | Jun 2012 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
20030160749 | Tsuchi | Aug 2003 | A1 |
20060164368 | Tobita | Jul 2006 | A1 |
20120280959 | Shiu et al. | Nov 2012 | A1 |
20130181749 | Hamanaka | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
529240 | Apr 2003 | TW |
201106317 | Feb 2011 | TW |
Number | Date | Country | |
---|---|---|---|
20130342109 A1 | Dec 2013 | US |