1. Field of Invention
The present invention relates to a driving circuit of a liquid crystal display device, and more particularly to a low color scale driving circuit of a liquid crystal display device.
2. Related Art
A liquid crystal display device usually includes a pair of parallel glass substrates between which is provided the assembly at least of an indium tin oxide (ITO) film, an alignment film and a color filter. The slot directions of the alignment films are perpendicular to each other. A liquid crystal material is placed between the substrates along the slots of the alignment film. When an electric field is applied between the substrates, the liquid crystal molecules become vertical to the slots so that light cannot pass and consequently black color is shown on the display screen. Therefore, a display can be implemented through controlling the liquid crystal molecules according to the variation of the electric field.
A color display scheme with 8, 64 or 128 color scales usually uses a driving circuit having the above architectures. For a 256-color-scale display device, 8, 64, 128 and 256 color scales must be all included, which consumes higher electric power.
The number of color scales is one important factor that influences the display quality. The greater number of color scales, the higher power is needed. Although power consumption is not the most serious concern for a liquid crystal display device of a desktop computer, it may be critical for a small display device of a portable electronic device such as a cell phone, a personal digital assistant or a laptop computer.
Therefore, there is a need of a display device with lower power consumption, suitable for use in a portable electronic device.
It is therefore an object of the invention to provide a low color scale driving circuit of a liquid crystal display device to achieve power saving when a high color scale is not needed. Furthermore, the driving circuit is driven with lower power to overcome the problem of the prior art, caused by excessive power consumption of the driving circuit.
In order to achieve the above and other objectives, a low color scale driving circuit is implemented in a driving circuit, which further includes a timing controller and a source driver. The timing controller receives an image data and outputs a digital image signal, digital signals and a polarity-inverting signal. The source driver receives the digital image signal and generates an analog image signal. The low color scale driving circuit outputs a first analog signal, a second analog signal, a third analog signal and a fourth analog signal according to the signals outputted from the timing controller. The low color scale driving circuit includes buffers, resistors and a plurality of sets of transistors. The buffers include at least a first buffer, a second buffer, a third buffer and a fourth buffer. Each buffer has a first input terminal, a second input terminal and an output terminal. The first input terminal of each buffer receives a polarity-inverting signal. The second input terminal of the first buffer receives a first digital signal. The second input terminal of the second buffer receives a second digital signal. The second input terminal of the third buffer receives a third digital signal. The second input terminal of the fourth buffer receives a fourth digital signal. Each set of transistors has PMOS transistor and NMOS transistor. For example, when four sets of transistors are provided, there are, totally, 8 transistors: a first PMOS transistor, a first NMOS transistor, a second PMOS transistor, a second NMOS transistor, a third PMOS transistor, a third NMOS transistor, a fourth PMOS transistor and a fourth NMOS transistor.
The architecture of the low color scale driving circuit according to the invention provides 2,8 or 64 color scales with low power consumption. It does not need an amplifier and a digital analog circuit (DAC) as required in the prior art, when the resolution of the liquid crystal display device is at 256 colors or higher. In the invention, the timing controller controls the color display with 64 color scales through only 4 data control signals, thereby, the pin count for the control signals is significantly lower than that used in the art.
The present invention will become more fully understood from the detailed description given herein below illustration only, and is thus not limitative of the present invention:
The buffers include a first buffer 131B1, a second buffer 131B2, a third buffer 131B3 and a fourth buffer 131B4. Each buffer has a first input terminal, a second input terminal and an output terminal. The first input terminal of each buffer receives a polarity-inverting signal 301. The second input terminal of the first buffer 131B1 receives a first digital signal 304A1. The second input terminal of the second buffer 131B2 receives a second digital signal 304A2. The second input terminal of the third buffer 131B3 receives a third digital signal 304A3. The second input terminal of the fourth buffer 131B4 receives a fourth digital signal 304A4.
The first set of transistors includes a first PMOS transistor 132P and a first NMOS transistor 132N. A gate of the first PMOS transistor 132P and a gate of the first NMOS transistor 132N are coupled with the output terminal of the first buffer 131B 1. A source of the first PMOS transistor 132P is coupled with a drain of the first NMOS transistor 132N. A drain of the first PMOS transistor 132P is coupled with a power voltage VDD. A source of the NMOS transistor 132N is coupled with a ground voltage VSS. The first analog signal GV1 is outputted through the source of the first PMOS transistor 132P and the drain of the first NMOS transistor 132N.
The second set of transistors includes a second PMOS transistor 133P and a second NMOS transistor 133N. A gate of the second PMOS transistor 133P and a gate of the second NMOS transistor 133N are coupled with the output terminal of the second buffer 131B2. A source of the second PMOS transistor 133P is coupled with a drain of the second NMOS transistor 133N. A drain of the second NMOS transistor 133N is coupled with a ground voltage VSS. A drain of the second PMOS transistor 133P is coupled with a power voltage VDD. The second analog signal GV2 is outputted through the source of the second PMOS transistor 133P and the drain of the second NMOS transistor 133N.
The third set of transistors includes a third PMOS transistor 134P and a third NMOS transistor 134N. A gate of the third PMOS transistor 134P and a gate of the third NMOS transistor 134N are coupled with the output terminal of the third buffer 131B3. A source of the third PMOS transistor 134P is coupled with a drain of the third NMOS transistor 134N. A drain of the third PMOS transistor 134P is coupled with a power voltage VDD. A source of the third NMOS transistor 134N is coupled to a ground voltage VSS. The third analog signal GV3 is outputted through the source with the third PMOS transistor 134P and the drain of the third NMOS transistor 134N.
The fourth set of transistors includes a fourth PMOS transistor 135P and a fourth NMOS transistor 135N. A gate of the fourth PMOS transistor 135P and a gate of the fourth NMOS transistor 135N are coupled with the output terminal of the fourth buffer 131B4. A source of the fourth PMOS transistor 135P is coupled with a drain of the fourth NMOS transistor 135N. A drain of the fourth PMOS transistor 135P is coupled with a power voltage VDD. A source of the fourth NMOS transistor 135N is coupled with a ground voltage VSS. The fourth analog signal GV4 is outputted through the source of the fourth PMOS transistor 135P and the drain of the fourth NMOS transistor 135N.
Furthermore, three resistors 136A, 136B, 136C are connected in series between the drain of the first PMOS transistor 132P and the source of the first NMOS transistor 132N. A resistor 136D is further connected between the drain of the first PMOS transistor 132P and the drain of the second PMOS transistor 133P. A transistor 136E is further connected between the drain of the second PMOS transistor 133P and the drain of the third PMOS transistor 134P. A transistor 136F is further connected between the drain of the third PMOS transistor 134P and the drain of the fourth PMOS transistor 135P. A resistor 136G is connected between the fourth PMOS transistor 135P and the power voltage VDD. A resistor 136H is connected between the source of the first NMOS transistor 132N and the source of the second NMOS transistor 133N. A resistor 1361 is connected between the source of the second NMOS transistor 133N and the source of the third NMOS transistor 134N. A resistor 136J is connected between the source of the third NMOS transistor 134N and the source of the fourth NMOS transistor 135N. A resistor 136K is connected between the source of the fourth NMOS transistor 135N and the ground voltage VSS.
Each of the red, green and blue primary colors is defined by 4 bits, totaling 4×4×4=64 bits. However, the definition of one primary color is not done necessarily with 4 bits. The number of digital signals used to control the exhibition of color can be changed, depending on the demand of lower resolution. Sometimes, only one signal is needed.
The architecture of the driving circuit according to the invention does not need an amplifier and a digital analog circuit (DAC) as required in the prior art, when the resolution of the liquid crystal display device is at 256 colors or higher. In the invention, the timing controller controls the color exhibition with 64 color scales through only 4 data control signals, thereby the pin count for the control signals is significantly lower than that used in the prior art. The object of lower power consumption is achieved by implementing the driving circuit with an additional low color scale driving circuit. When the system operates with less color scale, the driving circuit uses the low color scale circuit to deliver analog signals.
Knowing the invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
92113958 A | May 2003 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
6160532 | Kaburagi et al. | Dec 2000 | A |
6525707 | Kaneko et al. | Feb 2003 | B1 |
6710809 | Niikawa | Mar 2004 | B1 |
20010015709 | Imajo et al. | Aug 2001 | A1 |
20020005846 | Hiroki et al. | Jan 2002 | A1 |
20020044126 | Aoki | Apr 2002 | A1 |
20020080107 | Fujimoto et al. | Jun 2002 | A1 |
20020093475 | Hashimoto | Jul 2002 | A1 |
20020097208 | Hashimoto | Jul 2002 | A1 |
20020126106 | Naito | Sep 2002 | A1 |
20020140711 | Saito et al. | Oct 2002 | A1 |
20020171613 | Goto et al. | Nov 2002 | A1 |
20030020678 | Ozawa et al. | Jan 2003 | A1 |
20030034942 | Tjandra et al. | Feb 2003 | A1 |
20030058229 | Kawabe et al. | Mar 2003 | A1 |
20030122757 | Bu | Jul 2003 | A1 |
20030132903 | Ueda | Jul 2003 | A1 |
20030156086 | Maeda et al. | Aug 2003 | A1 |
20030169247 | Kawabe et al. | Sep 2003 | A1 |
20040131279 | Poor | Jul 2004 | A1 |
20040174328 | Hudson | Sep 2004 | A1 |
20040196231 | Goto et al. | Oct 2004 | A1 |
20040227713 | Sun | Nov 2004 | A1 |
20050078101 | Shigeta | Apr 2005 | A1 |
20050219188 | Kawabe et al. | Oct 2005 | A1 |
20050244054 | Hsieh | Nov 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20040233149 A1 | Nov 2004 | US |