The invention will become more fully understood from the detailed description and accompanying drawings, which are given for illustration only, and thus are not limitative of the present invention, and wherein:
The present invention will be apparent from the following detailed description, which proceeds with reference to the accompanying drawings, wherein the same references relate to the same elements.
Referring to
In this embodiment, the start signal generating unit 21 generates the digital start signal Ss1 on receiving a start triggering edge Ed1 of the first digital burst signal Bs1 (see
The counter unit 22 is electrically connected to the start signal generating unit 21, and starts to count on receiving the digital start signal Ss1 for generating counting values Cv. If the counter unit 22 is a 4-bit counter, it may count from 0000 to 1111. If the counter unit 22 is a 2-bit counter, it may count from 00 to 11. In this embodiment, the 2-bit counter is illustrated as an example. In addition, the counting unit 22 also starts to count after receiving the digital end signal Ss2. Herein, it is to be noted that the counting unit 22 may also be implemented by a timer.
The memory unit 23 stores at least one target counting value TCv. If the counter unit 22 is a 4-bit counter, the target counting value TCv may range from 0000 to 1111. If the counter unit 22 is a 2-bit counter, the target counting value TCv may range from 00 to 11.
The comparator unit 24 is electrically connected to the counter unit 22 and the memory unit 23. Whenever the counting value Cv matches the target counting value TCv, the comparator unit 24 generates a triggering signal Tr. In this embodiment, the counter unit 22 will be reset after the triggering signal Tr is generated. That is, after the counter unit 22 receives the triggering signal Tr outputted from the comparator unit 24, it starts to count again from 00. In this embodiment, six light emitting units 3 are illustrated. Hence, there are six activating triggering signals Tr1 to Tr6 and six de-activating triggering signals Tr7 to Tr12.
The driving unit 25 is electrically connected to the comparator unit 24 and outputs the sequentially delayed driving signals Ps on receiving the triggering signals Tr. Herein, a time delay exists between subsequent two sequentially delayed driving signals. The driving unit 25 sequentially outputs six delayed driving signals Ps1 to Ps6 for respectively driving those six light emitting units 3 so that the light emitting units 3 turn on and off alternately.
The driving unit 25 activates the delayed driving signal Ps1 on receiving the activating triggering signal Tr1. Similarly, on receiving the activating triggering signals Tr2 to Tr6, it activates delayed driving signals Ps2 to Ps6. Then, the driving unit 25 de-activates the delayed driving signal Ps1 on receiving the de-activating triggering signal Tr7. Similarly, on receiving the de-activating triggering signals Tr8 to Tr12 it de-activates the delayed driving signals Ps2 to Ps6.
Referring again to
As shown in
As shown in
Referring to
In step S01, a digital start signal is generated on receiving a first digital burst signal. Step S02 is to start counting to generate a counting value on receiving the digital start signal. In step S03, the counting value is compared with at least one target counting value TCv to generate a triggering signal. In step S04, sequentially delayed driving signals are outputted on receiving the triggering signal.
The detailed driving-control method and variations thereof have been described in the above-mentioned embodiments, so detailed descriptions thereof will be omitted.
Hereinafter, a summary of this work is given. To improve LCD picture quality, a sequential flashing driving control and method is developed in this invention. It includes a counter unit, a comparator unit, a memory unit and a driving unit. The counter unit receives a triggering signal and starts counting. The memory unit stores at least one target counting value. The comparator unit compares the counting value of the counter unit with the target counting value stored in the memory unit. Once these two values matching each other, a sequentially delayed driving signal will be generated. The counter unit can be reset and re-triggered multiple times to generate a group of sequentially delayed driving signals. These sequentially delayed driving signals drive the light emitting units of the backlight module. Therefore, the light emitting units can be sequentially turned on. In this way, LCD motion picture quality can be improved by turning its holding-type display characteristic into CRT-like impulse-type display. Still in this way, since the light emitting units are turned on alternately, a power-saving scheme can be designed using the sequential flashing technique disclosed in this invention.
Although the invention has been described with reference to specific embodiments, this description is not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments, will be apparent to persons skilled in the art. It is, therefore, contemplated that the appended claims will cover all modifications that fall within the true scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
095132244 | Aug 2006 | TW | national |
200610127535.0 | Sep 2006 | CN | national |
096130724 | Aug 2007 | TW | national |