This application is a U.S. national stage of international application No. PCT/CN2021/110648, filed on Aug. 4, 2021, which claims priority to Chinese Patent Application No. 202010954142.7, filed on Sep. 11, 2020, and entitled “DRIVING DEVICE OF DISPLAY PANEL, DRIVING METHOD OF DISPLAY PANEL, AND DISPLAY DEVICE,” the disclosures of which are herein incorporated by reference in their entireties.
The present disclosure relates to the fields of display technologies, and in particular to a driving device for a display panel, a driving method for the same, and a display device.
Organic light-emitting diode (OLED) display panels are widely used in the display field due to advantages thereof such as self-illumination, high response speed, and flexibility. For example, the OLED may be used in the field of in-vehicle display.
The present disclosure provides a driving device for a display panel and a driving method for the same, and a display device. The technical solution is as follows.
According to one aspect, a driving device for a display panel is provided. The device includes a temperature sensor, a timing controller, and a source driving circuit; wherein
Optionally, a first corresponding relationship between the temperature ranges and candidate parameters is stored in the timing controller; and the timing controller is configured to:
Optionally, the target parameter includes at least one of a waveform of the drive signal, a duty cycle of the drive signal, and a bias voltage of the drive signal.
Optionally, the target parameter includes the waveform of the drive signal; and the first corresponding relationship includes a first temperature range, a second temperature range, a third temperature range, and a candidate waveform of the drive signal corresponding to each of the temperature ranges; wherein
Optionally, the waveform of the drive signal is a negative bias pulse waveform; the target parameter includes a duty cycle and a bias voltage of the negative bias pulse waveform; and the first corresponding relationship includes a first temperature range, a second temperature range, and a candidate duty cycle and a candidate bias voltage of the drive signal corresponding to each of the temperature ranges;
Optionally, the waveform of the drive signal is a negative bias pulse waveform and the bias voltage of the drive signal is a target negative bias voltage; the target parameter includes a duty cycle of the negative bias pulse waveform; and the first corresponding relationship includes a first temperature range, a second temperature range, and a candidate duty cycle of the drive signal corresponding to each of the temperature ranges;
Optionally, the waveform of the drive signal is a negative bias pulse waveform and the duty cycle of the drive signal is a target duty cycle; the target parameter includes a bias voltage of the negative bias pulse waveform; and the first corresponding relationship includes a first temperature range, a second temperature range, and a candidate bias voltage of the drive signal corresponding to each of the temperature ranges;
Optionally, the timing controller is further configured to determine an operating duration of a display panel and control, based on the operating duration of the display panel and the target temperature, the source driving circuit to output the drive signal with the target parameter to the pixel;
Optionally, a second corresponding relationship among the temperature ranges, the duration ranges, and candidate parameters is stored in the timing controller; and the timing controller is configured to:
Optionally, the target parameter includes a waveform of the drive signal; and the second corresponding relationship includes a first temperature range, a second temperature range, a first duration range, a second duration range, and a candidate waveform of the drive signal corresponding to each of the temperature ranges and each of the duration ranges;
Optionally, the target temperature further includes an ambient temperature at which the display panel is activated.
According to another aspect, a method for driving a display panel is provided. The method includes:
According to still another aspect, a non-transitory computer-readable storage medium is provided. The computer-readable storage medium stores a computer program, wherein the computer program, when loaded and run by a processor, causes the processor to perform the method for driving the display panel as described in the above aspect.
According to still another aspect, a display device is provided. The display device includes a display panel and the driving device for the display panel as described in the above aspect, wherein the driving device for the display panel is connected to the display panel.
To describe the technical solutions in the embodiments of the present disclosure more clearly, the following briefly introduces the accompanying drawings required for describing the embodiments. Apparently, the accompanying drawings in the following description show merely some embodiments of the present disclosure, and a person of ordinary skill in the art may still derive other drawings from these accompanying drawings without creative efforts.
For clearly illustrating the objects, technical solutions, and advantages of embodiments of the present disclosure, the inventive concept protected by embodiments of the disclosure is described in detail hereinafter with reference to the accompanying drawings and some embodiments.
In the related art, a driving device for the OLED display panel includes a timing controller and a source driving circuit, wherein the timing controller is connected to the source driving circuit, and the source driving circuit is connected to an OLED pixel in the display panel. The timing controller is configured to control the source driving circuit to output a drive signal in terms of a fixed waveform to the OLED pixel to drive the OLED pixel to emit light.
However, the source driving circuit in the related art can only output the drive signal in terms of the fixed waveform, resulting in poor driving flexibility.
With the increase in display duration, a display panel generates Joule (a unit for measuring heat) heat, and an operating temperature of the display panel may increase, which is an inevitable physical phenomenon.
For example, a display panel displays a solid image with a brightness of 800 nits, and an ambient temperature at which the display panel currently works is a room temperature, such as 25 degrees Celsius (° C.).
Furthermore, the increase in the operating temperature of the display panel may lead to the accelerated attenuation of the brightness emitted by the pixel in the display panel. Because the operating temperature of the display panel is positively correlated with the ambient temperature at which the display panel currently works, upon displaying the same image for same duration, the higher the ambient temperature is, the greater the degree of pixel brightness attenuates.
Taking that a same image is displayed as an example,
Combining the above analysis, it can be seen that the ambient temperature at which the display panel works may affect the operating temperature of the display panel, thereby affecting the attenuation degree of brightness of the pixel in the display panel, resulting in short service life of the display panel. Embodiments of the present disclosure provide a driving device that can flexibly drive, based on the operating temperature of the display panel and/or ambient temperature at which the display panel works, the pixel in the display panel to emit light, effectively extending the service life of the display panel.
The temperature sensor 10 may be connected to the timing controller 20. The temperature sensor 10 may be configured to sense a target temperature and output the target temperature to the timing controller (TCON) 20.
Optionally, the target temperature may include the operating temperature of the display panel, i.e., the temperature of the display panel during the display process. In this embodiment of the disclosure, the temperature sensor 10 may sense the operating temperature of the display panel in real-time or every target period (i.e., periodically) and feed back the temperature to the timing controller 20.
The timing controller 20 may also be connected to the source driving circuit (specifically, source integrated circuit, source IC) 30. The source driving circuit may further be connected to a pixel in the display panel (not shown in
The target temperatures within different temperature ranges correspond to drive signals with different target parameters. That is, the timing controller 20 can flexibly control, based on the different operating temperatures of the display panel, the source driving circuit 30 to output different drive signals to the connected pixel.
It should be noted that the source driving circuit 30 may be connected to the pixel through a chip on film (COF) method, and the pixel may further be connected to a gate line. In the case that the gate line provides a gate drive signal with active potential, the drive signal output by the source driving circuit 30 may be further output to the pixel, making the pixel emit light.
In summary, the embodiment of the present disclosure provides a driving device for a display panel. The driving device includes a temperature sensor, a timing controller, and a source driving circuit. Because the timing controller can control, based on different operating temperatures of the display panel sensed by the temperature sensor, the source driving circuit to output drive signals with different target parameters to the connected pixel, the driving flexibility of the driving device is high.
In addition, because the attenuation degrees of brightness of the pixel are different in the case that the pixel is driven to emit light by drive signals with different target parameters, and the timing controller can control, based on the display panel operating temperature which affects the brightness attenuation of the pixel, the drive signal output by the source driving circuit to the pixel, the effect of reducing the brightness attenuation of the pixel can be achieved by flexibly controlling the drive signal output to the pixel based on the temperature, thereby extending the service life of the display panel.
Optionally, the target parameter of the drive signal in this embodiment of the disclosure may include at least one of a waveform of the drive signal, a duty cycle of the drive signal, and a bias voltage of the drive signal.
The waveform of the drive signal refers to the shape/form of the drive signal, and the waveform of the drive signal determines the driving mode of the source driving circuit 30, i.e., different waveforms correspond to different driving modes. For example, the waveform of the drive signal may include a direct current waveform, a positive bias pulse waveform, and a negative bias pulse waveform. The driving mode corresponding to the direct current waveform may be called constant current (CC) driving, the driving mode corresponding to the positive bias pulse waveform may be called pulse current (PC) driving, and the driving mode corresponding to the negative bias pulse waveform may be called alternating current (AC) driving.
For example,
Combining the
The duty cycle of the drive signal is a percentage of a duration of the active potential in each cycle relative to an entire cycle duration. For example, for a drive signal with a direct current waveform, the duty cycle is 100%.
The bias voltage of the drive signal is a voltage of the drive signal with inactive potential. For example, for the drive signal with a negative bias pulse waveform, the bias voltage is less than 0.
Based on the above-documented embodiment, the timing controller 20 controls the target parameter of the drive signal output by the source driving circuit 30, which may also be referred to as controlling the driving mode of the source driving circuit 30. That is, the timing controller 20 provided in this embodiment of the disclosure can flexibly adjust the driving mode based on the operating temperature of the display panel.
In order to illustrate that the attenuation degrees of pixel are different in the case that the pixel is driven by drive signals with different target parameters, referring to Table 1, the pixel brightness attenuation of three pieces (pcs) flexible OLED display panels RT-1, RT-4, and RT-7 at different ambient temperatures and under different driving modes is tested, wherein the three pieces flexible OLED display panels are made on a same glass substrate at a same period and in a same batch. Combining the Table 1, during the tests, each display panel is controlled to display the WRGB images, and the brightness and gamma values of various pieces are within an error threshold (e.g., 2%), wherein the gamma values are represented by color coordinates CIE x and CIE y in the Table.
Combining the above Table 1 with
Combining above Table 1 and
Therefore, in this embodiment of the present disclosure, the timing controller 20 can flexibly control, based on the acquired target temperature, the drive signal output by the source driving circuit 30, to delay the brightness attenuation of the pixel and extend the service life of the display panel. The target parameters corresponding to different temperatures described in the following embodiments are all target parameters that are beneficial to delaying the brightness attenuation of the pixel, that is, the service life of the display panel can be effectively extended based on the technical solutions in the following embodiments.
Optionally, the target temperature may further include the ambient temperature at which the display panel is activated. That is, in response to the display panel being activated each time, the timing controller 20 may also control, based on the ambient temperature at which the display panel works, the source driving circuit 30 to output the drive signal of the target parameter to the connected pixel. In this way, driving flexibility can be further improved and pixel brightness attenuation can be effectively delayed.
That is, in conjunction with
Optionally, in the embodiments of the present disclosure, the timing controller 20 may store a first corresponding relationship between temperature ranges and candidate parameters. Accordingly, the timing controller 20 may be configured to determine a target temperature range within which the target temperature falls, and determine a candidate parameter corresponding to the target temperature range as the target parameter. That is, the timing controller 20 may directly determine, based on the target temperature, the target parameter from the stored first corresponding relationship.
As an optional implementation, only the waveform of the drive signal output by the source driving circuit 30 may be adjusted based on temperature, i.e., the target parameter may only include the waveform of the drive signal. Accordingly, the first corresponding relationship may include a first temperature range, a second temperature range, a third temperature range, and a candidate waveform of the drive signal corresponding to each of the temperature ranges. In addition, an upper limit of the first temperature range is less than a lower limit of the second temperature range, and an upper limit of the second temperature range is less than a lower limit of the third temperature range.
For example, referring to Tables 2 and 3, the first temperature range is shown as (0, T1), that is, in the case that the target temperature is less than T1, it is determined that the target temperature falls within the first temperature range. The second temperature range is [T1, T2), that is, in the case that the target temperature is greater than or equal to T1 and less than T2, it is determined that the target temperature falls within the second temperature range. The third temperature range is [T2, +∞), that is, in the case that the target temperature is greater than or equal to T2, it is determined that the target temperature falls within the third temperature range. That is, the relationship between T1 and T2 is: T2>T1>0.
Still referring to Table 2, it can be seen that the candidate waveform corresponding to the first temperature range may be a direct current waveform. The candidate waveform corresponding to the second temperature range may be a negative bias pulse waveform. The candidate waveform corresponding to the third temperature range may be a positive bias pulse waveform. Alternatively, still referring to Table 3, it can be seen that the candidate waveform corresponding to the first temperature range is a negative bias pulse waveform; the candidate waveform corresponding to the second temperature range is a direct current waveform; and the candidate waveform corresponding to the third temperature range is a positive bias pulse waveform.
Combining Table 2 and Table 3, assuming that T1 is 40° C., T2 is 80° C., and the operating temperature of the display panel acquired by the temperature sensor 10 at a specific moment is 85° C., the timing controller 20 may determine that the operating temperature of the display panel falls within the third temperature range, and then determine the candidate waveform corresponding to the third temperature range “positive bias pulse waveform” as the target parameter and control the source driving circuit 30 to output the drive signal with the positive bias pulse waveform to the pixel, to drive the pixel to emit light. It should be noted that Tables 1 and 2 show optional waveforms of drive signals corresponding to pixels of different colors (including R, G, and B).
As another optional implementation, only the duty cycle and the bias voltage of the drive signal are adjusted based on temperature without adjusting the waveform of the drive signal. For example, the waveform of the drive signal is fixed as the negative bias pulse waveform, the target parameter may include the duty cycle and the bias voltage of the negative bias pulse waveform. Accordingly, the first corresponding relationship may include a first temperature range, a second temperature range, and a candidate duty cycle and a candidate bias voltage of the drive signal corresponding to each of the temperature ranges.
The candidate bias voltage corresponding to the first temperature range is greater than the candidate bias voltage corresponding to the second temperature range, and the candidate duty cycle corresponding to the first temperature range is less than the candidate duty cycle corresponding to the second temperature range, wherein an upper limit of the first temperature range is less than a lower limit of the second temperature range.
For example, referring to Table 4, Table 4 shows a first temperature range of (0, T1) and a second temperature range of [T1, +∞), and shows that the candidate bias voltage corresponding to the first temperature range is −1V and the candidate duty cycle corresponding to the first temperature range is 75%, and the candidate bias voltage corresponding to the second temperature range is −0.5V and the candidate duty cycle corresponding to the second temperature range is 85%.
Referring to Table 4, assuming that T1 is 40° C. and the operating temperature of the display panel acquired by the temperature sensor 10 at a specific moment is 60° C., the timing controller 20 may determine that the operating temperature of the display panel falls within the second temperature range, and then determine the candidate bias voltage of −0.5V and the candidate duty cycle of 85% corresponding to the second temperature range as the target parameter and control the source driving circuit 30 to output a drive signal with a negative bias pulse waveform with a bias voltage of −0.5V and a duty cycle of 85% to the pixel, to drive the pixel to emit light. It should be noted that Table 4 also shows the duties and bias voltages corresponding to different color pixels (including R, G, and B).
As yet another optional implementation, only the duty cycle of the drive signal is adjusted based on temperature, and the waveform and the bias voltage of the drive signal are not adjusted. Taking that the waveform of the drive signal is the negative bias pulse waveform and the bias voltage of the drive signal is a target negative bias voltage as an example, the target parameter may include a duty cycle of the negative bias pulse waveform with the target negative bias voltage. Accordingly, the first corresponding relationship may include a first temperature range, a second temperature range, and a candidate duty cycle of the drive signal corresponding to each of the temperature ranges.
The candidate duty cycle corresponding to the first temperature range is smaller than the candidate duty cycle corresponding to the second temperature range, and an upper limit of the first temperature range is smaller than a lower limit of the second temperature range.
For example, referring to Table 5, Table 5 shows that the first temperature range is (0, T1) and the second temperature range is [T1, +∞), the bias voltage of the drive signal corresponding to each of the temperature ranges is the target negative bias voltage of −1V, the candidate duty cycle corresponding to the first temperature range is 75%, and the candidate duty cycle corresponding to the second temperature range is 85%.
Referring to Table 5, assuming that T1 is 40° C. and the operating temperature of the display panel acquired by the temperature sensor 10 at a specific moment is 20° C., the timing controller 20 may determine that the operating temperature of the display panel falls within the first temperature range, and then determine the candidate duty cycle of 85% corresponding to the first temperature range as the target parameter and control the source driving circuit 30 to output a drive signal with a negative bias pulse waveform of a bias voltage of −1V and a duty cycle of 85% to the pixel, to drive the pixel to emit light. It should be noted that Table 5 also shows the duties and bias voltages corresponding to different color pixels (including R, G, and B).
As yet another optional implementation, only the bias voltage of the drive signal is adjusted based on the temperature without adjusting the waveform and the duty cycle of the drive signal. Taking that the waveform of the drive signal is fixed as the negative bias pulse waveform and the duty cycle of the drive signal is a target duty cycle as an example, the target parameter may include a bias voltage of a pulse waveform of the target duty cycle. Accordingly, the first corresponding relationship may include a first temperature range, a second temperature range, and a candidate bias voltage of the drive signal corresponding to each of the temperature ranges.
The candidate bias voltage corresponding to the first temperature range is greater than the candidate bias voltage corresponding to the second temperature range, and an upper limit of the first temperature range is less than a lower limit of the second temperature range.
For example, referring to Table 6, Table 6 shows a first temperature range of (0, T1) and a second temperature range of [T1, +∞), and shows that the duty cycle of the drive signal corresponding to each of the temperature ranges is the target duty cycle of 75%, the candidate bias voltage corresponding to the first temperature range is −1V, and the candidate bias voltage corresponding to the second temperature range is −0.5V.
Referring to Table 6, assuming that T1 is 40° C. and the operating temperature of the display panel acquired by the temperature sensor 10 at a specific moment is 85° C., the timing controller 20 may determine that the operating temperature of the display panel falls within the second temperature range, and then determine the candidate bias voltage of −0.5V corresponding to the second temperature range as the target parameter and control the source driving circuit 30 to output a drive signal with the negative bias pulse waveform of the bias voltage of −0.5V and the duty cycle of 75% to the pixel, to drive the pixel to emit light. It should be noted that Table 6 also shows duties and bias voltages corresponding to different color pixels (including R, G, and B).
It should be noted that the operating temperature of the display panel sensed by the temperature sensor 10 may be affected by other factors (e.g., ambient temperature), therefore the timing controller 20 may also store a temperature error. Upon acquiring the temperature fed back by the temperature sensor 10, the timing controller 20 may further determine the target temperature based on the pre-stored temperature error and the received temperature. In this way, the reliability of the acquired target temperature is ensured, which in turn ensures the accuracy of the drive signal finally output to the pixel by the source driving circuit 30.
In addition, because the brightness attenuation of the pixel varies with the display duration of the display panel, in this embodiment of the present disclosure, the timing controller 20 may further be configured to determine an operating duration of the display panel, and control, based on the operating duration of the display panel and the target temperature, the source driving circuit 30 to output the drive signal with the target parameter to the pixel. At a same target temperature, the operating durations within different duration ranges correspond to drive signals with different target parameters. In this way, the driving flexibility can be further improved and the service life of the display panel can be further extended.
Optionally, as documented in the above embodiments, a second corresponding relationship among the temperature ranges, the duration ranges, and candidate parameters may be stored in the timing controller 20. Accordingly, the timing controller 20 may be configured to determine a target temperature range within which the target temperature falls and a target duration range within which the operating duration falls, and determine the candidate parameter corresponding to the target temperature range and the target duration range as the target parameter.
Assuming that the target parameter only includes the waveform of the drive signal, accordingly, the second corresponding relationship may include a first temperature range, a second temperature range, a first duration range, a second duration range, and a candidate waveform of the drive signal corresponding to each of the temperature ranges and each of the duration ranges, wherein an upper limit of the first temperature range is less than a lower limit of the second temperature range, and an upper limit of the first duration range is less than a lower limit of the second duration range.
For example, referring to Table 7, Table 7 shows a first temperature range of (0, T1) and a second temperature range of [T1, +∞). In addition, the first duration range is shown as (0, t1), that is, in the case that the operating duration is less than t1, it is determined that the operating duration falls within the first duration range. The second duration range is [t1, +∞), that is, in the case that the operating duration is greater than or equal to t1, it is determined that the operating duration falls within the second duration range. In addition, the T1 corresponding to the second temperature range and the T1 corresponding to the first temperature range may be the same or different.
Still referring to Table 7, the candidate waveform shown in Table 7 corresponding to the first temperature range and the first duration range may be a negative bias pulse waveform, and both the candidate waveform corresponding to the first temperature range and the second duration range and the candidate waveform corresponding to the second temperature range and the first duration range may be direct current waveforms. The candidate waveform corresponding to the second temperature range and the second duration range may be a positive bias pulse waveform.
Referring to Table 7, assuming that T1 is 40° C., t1 is 500 hours, and at the 600th hour, the operating temperature of the display panel acquired by the temperature sensor 10 is 85° C., the timing controller 20 may determine that the operating temperature of the display panel falls within the second temperature range and the operating duration falls within the second duration range, and then determine the candidate waveform “positive bias pulse waveform” corresponding to the second temperature range and the second duration range as the target parameter and control the source driving circuit 30 to output the drive signal with the positive bias pulse waveform to the pixel, to drive the pixels to emit light. Table 7 also shows the waveforms corresponding to different color pixels (including R, G, and B).
As an example,
Referring to
It should be noted that the above Tables 2 to 7 only schematically show one type of the target parameter corresponding to each of the different temperature ranges, and the waveform, duty cycle, and bias voltage of the drive signal are not limited in embodiments of the present disclosure. Optionally, the negative bias voltage of the drive signal may be adjusted in the range of −0.1V to −10V, as long as the negative bias voltage is not greater than a reverse breakdown voltage of the pixel. The duty cycle of the drive signal may be adjusted in the range of 1% to 99.99%. In addition, the frequency of the drive signal may be adjusted in the range of 1 Hertz (Hz) to 360 Hz.
In summary, the embodiments of the present disclosure provide a driving device for a display panel. The device includes a temperature sensor, a timing controller, and a source driving circuit. Because the timing controller can control, based on the different display panel operating temperatures sensed by the temperature sensor, the source driving circuit to output drive signals with different target parameters to the connected pixel, the driving flexibility of the driving device is high.
Process 1901: the target temperature is acquired.
Optionally, the target temperature may include the operating temperature of the display panel.
Process 1902: the source driving circuit is controlled, based on the target temperature, to output a drive signal of a target parameter to a pixel to drive the pixel to emit light.
The target temperatures within different temperature ranges correspond to drive signals with different target parameters.
In summary, the embodiment of the present disclosure provides a method for driving a display panel. In the method, the timing controller can control, based on different display panel operating temperatures sensed by the temperature sensor, the source driving circuit to output drive signals with different target parameters to the connected pixel, therefore the driving flexibility of the method is high.
It should be noted that for the corresponding optional implementations for processes 1901 and 1902, reference may be made to the above device embodiment, and the descriptions are not repeated in the method embodiment.
Optionally, the embodiments of the present disclosure further provide a non-transitory computer-readable storage medium storing a computer program. The computer program, when loaded and run by a processor, causes the processor to perform the method for driving the display panel as shown in
Optionally,
Optionally, referring to
Optionally, the display device may be an OLED device, a cell phone, a tablet, a television, a monitor, a laptop, a navigator, or any other product or component with a display function.
It should be understood that the “and/or” in the specification indicates that there may be three kinds of relationships, for example, A and/or B may include three cases, that is, only A exists, both A and B exist, and only B exists. The character “I” generally indicates an “or” relationship between the associated objects in front of the character and behind the character.
The foregoing are only optional embodiments of the present disclosure and are not intended to limit the present disclosure, and any modifications, equivalent substitutions, or improvements made within the concept and principle of the present disclosure are within the scope of protection of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
202010954142.7 | Sep 2020 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2021/110648 | 8/4/2021 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2022/052685 | 3/17/2022 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5252954 | Nagata | Oct 1993 | A |
6066920 | Torihara | May 2000 | A |
6388388 | Weindorf | May 2002 | B1 |
8400391 | Schmidt | Mar 2013 | B2 |
8558765 | Cok | Oct 2013 | B2 |
10551661 | Choi | Feb 2020 | B2 |
10914640 | Capps | Feb 2021 | B2 |
10991295 | Takizawa | Apr 2021 | B2 |
11355064 | Jeon | Jun 2022 | B2 |
11386820 | Li | Jul 2022 | B2 |
20070139319 | Nishida | Jun 2007 | A1 |
20080055209 | Cok | Mar 2008 | A1 |
20080055210 | Cok | Mar 2008 | A1 |
20080238864 | Fu | Oct 2008 | A1 |
20090179848 | Schmidt | Jul 2009 | A1 |
20090201231 | Takahara | Aug 2009 | A1 |
20100156766 | Levey et al. | Jun 2010 | A1 |
20100259572 | Yang et al. | Oct 2010 | A1 |
20110074750 | Leon et al. | Mar 2011 | A1 |
20140104259 | Oh et al. | Apr 2014 | A1 |
20140312869 | Zulim et al. | Oct 2014 | A1 |
20180151127 | Won et al. | May 2018 | A1 |
20180158423 | Kim et al. | Jun 2018 | A1 |
20180196301 | Choi | Jul 2018 | A1 |
20200041349 | Capps | Feb 2020 | A1 |
20210005157 | Takizawa | Jan 2021 | A1 |
20210142720 | Mou et al. | May 2021 | A1 |
20210241664 | Li | Aug 2021 | A1 |
20210319747 | Jeon | Oct 2021 | A1 |
20230085906 | Mou | Mar 2023 | A1 |
Number | Date | Country |
---|---|---|
101276556 | Oct 2008 | CN |
101392875 | Mar 2009 | CN |
101840679 | Sep 2010 | CN |
102257554 | Nov 2011 | CN |
102687193 | Sep 2012 | CN |
103730088 | Apr 2014 | CN |
104376816 | Feb 2015 | CN |
105702702 | Jun 2016 | CN |
106898289 | Jun 2017 | CN |
108665858 | Oct 2018 | CN |
109410843 | Mar 2019 | CN |
109754752 | May 2019 | CN |
110021274 | Jul 2019 | CN |
112037711 | Dec 2020 | CN |
201037656 | Oct 2010 | TW |
Entry |
---|
CN202010954142.7 first office action. |
CN202010954142.7 second office action. |
CN202010954142.7 Decision of rejection. |
Number | Date | Country | |
---|---|---|---|
20230085906 A1 | Mar 2023 | US |