This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2017-111742, filed Jun. 6, 2017, the entire contents of which are incorporated herein by reference.
Embodiments described herein relate generally to a driving device and an ink jet recording apparatus.
Inkjet printers eject ink droplets from a nozzle of an inkjet head. Upon exiting the nozzle, the ink droplet may separate into several smaller droplets. In particular, after ejection the ink droplet may separate into a main droplet with several smaller droplets in proximity. These smaller droplets are referred to as satellite droplets. These satellite droplets may deteriorate the print quality of images formed by the inkjet printer or the like.
In general, according to one embodiment, a driving device includes a head driver configured to generate and apply a driving signal to an actuator for ejecting a liquid from a pressure chamber connected to a nozzle, the driving signal including a contraction pulse, the contraction pulse causing the actuator to contract a volume of the pressure chamber, and end application of the contraction pulse when a flow rate of the liquid from the nozzle has a negative value in a liquid ejection direction from the nozzle.
Hereinafter, an inkjet recording apparatus according to example embodiments will be described with reference to the drawings. It should be noted that the drawings are schematic and are drawn with exaggeration and omissions for purposes of explanatory convenience. In general, components are not drawn to scale. In addition, the number of components, the dimensional ratio between different components, or the like, does not necessarily match between different drawings or to actual devices.
Hereinafter, a configuration of an inkjet recording apparatus according to a first embodiment will be described.
The inkjet recording apparatus 1 includes, for example, liquid ejectors 2, a head support mechanism 3 that supports the liquid ejectors 2 to be movable, and a medium support mechanism 4 that supports a recording medium S to be movable. The recording medium S is, for example, a sheet made of paper, a resin, or the like.
As illustrated in
The liquid ejectors 2 each eject, for example, ink of four colors corresponding to CMYK, that is, cyan ink, magenta ink, yellow ink, and black ink, respectively.
Hereinafter, the inkjet head 10 will be described with reference to
The inkjet head 10 is mounted on the inkjet recording apparatus 1 and is connected to an ink tank via a component such as a tube. The inkjet head 10 includes a head body 11, a main body 12, and a pair of circuit substrates 13. In this context, the inkjet head 10 is a driving device. The head body 11 ejects ink. The head body 11 is mounted on the main body 12. The main body 12 includes a manifold that forms a part of an ink flow path between the head body 11 and the ink tank or other elements inside the inkjet recording apparatus 1. The circuit substrates 13 are mounted on the head body 11.
The head body 11 includes a base plate 15, a nozzle plate 16, and a frame 17, and a pair of driving elements 18, as illustrated in
The base plate 15 is formed of, for example, ceramics such as alumina in a plate shape, as illustrated in
The supply holes 22 are formed in a line in the longitudinal direction of the base plate 15 in a middle portion of the base plate 15. The supply holes 22 communicate with an ink supply portion 12a of the manifold of the main body 12. The supply holes 22 are connected to the ink tank inside the circulation device 20 via the ink supply portion 12a. The ink in the ink tank is supplied to the ink chamber 19 via the ink supply portion and the supply holes 22.
The discharge holes 23 are formed in two lines and the supply holes 22 are interposed between the two lines. The discharge holes 23 communicate with an ink discharge portion 12b of the manifold of the main body 12. The discharge holes 23 are connected to the ink tank inside the circulation device 20 via the ink discharge portion 12b. The ink in the ink chamber 19 is collected to the ink tank via the ink discharge portion 12b and the discharge holes 23. In this way, the ink is circulated between the ink tank and the ink chamber 19.
The nozzle plate 16 is formed of, for example, a rectangular film made of polyimide, a surface of which is liquid-repellent. The nozzle plate 16 faces the mounting surface 21 of the base plate 15. In the nozzle plate 16, nozzles 25 are formed. The nozzles 25 are formed in two lines in the longitudinal direction of the nozzle plate 16.
The frame 17 is formed of, for example, a nickel alloy in a rectangular frame shape. The frame 17 is interposed between the mounting surface 21 of the base plate 15 and the nozzle plate 16. The frame 17 is adhered to the mounting surface 21 and the nozzle plate 16. That is, the nozzle plate 16 is mounted on the base plate 15 via the frame 17. As illustrated in
The driving element 18 is formed by two piezoelectric substances with a plate shape formed of, for example, lead zirconate titanate (PZT). The two piezoelectric substances are bonded so that polarization directions are reverse to each other in the thickness direction.
The pair of driving elements 18 is adhered to the mounting surface 21 of the base plate 15, as illustrated in
Grooves 27 are formed in the driving element 18. The grooves 27 extend in a direction interesting the longitudinal direction of the driving elements 18 and are arranged in the longitudinal direction of the driving elements 18. The grooves 27 face the nozzles 25 of the nozzle plate 16. As illustrated in
An electrode 28 is formed in each of the grooves 27. The electrodes 28 are formed, for example, by performing a photoresist etching process on a nickel thin film. The electrodes 28 cover the inner surfaces of the grooves 27.
As illustrated in
The wiring patterns 35 extend from one side end 21a and the other side end 21b of the mounting surface 21. The side ends 21a and 21b include not only edges of the mounting surface 21 but also regions of the peripheries of the edges. Therefore, the wiring patterns 35 may be formed inner sides of the edges of the mounting surface 21.
In the example embodiments described hereinafter, the wiring patterns 35 extend from the one side end 21a. A basic configuration of the wiring patterns 35 of the other side end 21b is the same as that of the wiring patterns 35 of the one side end 21a.
As illustrated in
In one driving element 18, several electrodes 28 among the electrodes 28 form a first electrode group 31. Other several electrodes 28 among the electrodes 28 form a second electrode group 32.
The first electrode group 31 and the second electrode group 32 are partitioned along a boundary which is the middle portion of the driving elements 18 in the longitudinal direction. The second electrode group 32 is adjacent to the first electrode group 31. Each of the first electrode group 31 and the second electrode group 32 include, for example, 159 electrodes 28.
As illustrated in
The substrate body 44 is a rigid printed wiring board formed in a rectangular shape. Various electronic components and connectors are mounted on the substrate body 44. The pair of FCPs 45 is each mounted on the substrate body 44.
The pair of FCPs 45 each include a film 46 formed of a flexible resin in which wirings are formed and a head driving circuit 47 connected to the wirings. The film 46 is a tape automated bonding (TAB). The head driving circuit 47 is an integrated circuit (IC) that applies a voltage to the electrodes 28. The head driving circuit 47 is fixed to the film 46 by a resin.
The end of one FCP 45 is thermally pressed to be connected to the first portion 35a of the wiring pattern 35 by an anisotropic conductive film (ACF) 48. Thus, the wirings of the FCP 45 are electrically connected to the wiring pattern 35.
When the FCP 45 is connected to the wiring pattern 35, the head driving circuit 47 is electrically connected to the electrodes 28 via the wirings of the FCP 45. The head driving circuit 47 applies a voltage to the electrodes 28 via the wirings of the film 46.
When the head driving circuit 47 applies a voltage to the electrodes 28, the driving elements 18 is subjected to shear mode deformation, and thus the volume of the pressure chamber 51 in which the electrodes 28 are formed is increased or decreased. Thus, a pressure of the ink inside the pressure chamber 51 is changed, and thus the ink is ejected from the nozzles 25. In this way, the driving element 18 isolating the pressure chamber 51 serves as an actuator that provide pressure vibration to the inside of the pressure chamber 51.
The circulation devices 20 illustrated in
The circulation device 20 supplies the liquid from a cartridge serving as a supply tank installed outside the circulation path to the circulation path.
A main circuit configuration of the inkjet recording apparatus 1 will be described.
The inkjet recording apparatus 1 includes a processor 101, a read-only memory (ROM) 102, a random access memory (RAM) 103, a communication interface 104, a display unit 105, an operation unit 106, a head interface 107, a bus 108, and an inkjet head 10.
The processor 101 is equivalent to a central portion of a computer that performs processing and controlling necessary for an operation of the inkjet recording apparatus 1. The processor 101 controls each unit such that various functions of the inkjet recording apparatus 1 can be realized based on programs such as system software, application software, or firmware stored in the ROM 102. The processor 101 is, for example, a central processing unit (CPU), a micro processing unit (MPU), a system on a chip (SoC), a digital signal processor (DSP), or a graphics processing unit (GPU). Alternatively, the processor 101 is a combination thereof.
The ROM 102 is a nonvolatile memory that is equivalent to a main storage portion of a computer using the processor 101 as a center and is used only to read data. The ROM 102 stores the foregoing programs. The ROM 102 stores data, various setting values, or the like for the processor 101 to perform various processes.
The RAM 103 is a memory that is equivalent to a main storage portion of the computer using the processor 101 and is used to read and write data. The RAM 103 is used as a work area or the like that stores data temporarily used for the processor 101 to perform various processes.
The communication interface 104 is an interface through which the inkjet recording apparatus 1 communicates a host computer or the like via a network, a communication cable, or the like.
The display unit 105 displays a screen for notifying an operator of the inkjet recording apparatus 1 of various kinds of information. The display unit 105 is, for example, a display such as a liquid crystal display or an organic electro-luminescence (EL) display.
The operation unit 106 receives an operation by the operator of the inkjet recording apparatus 1. The operation unit 106 is, for example, a keyboard, a keypad, a touch pad, or a mouse. As the operation unit 106, a touch pad disposed to be superimposed on a display panel of the display unit 105 can also be used. That is, a display panel included in a touch panel can be used as the display unit 105 and a touch pad included in a touch panel can be used as the operation unit 106.
The head interface 107 is installed so that the processor 101 communicates with the inkjet head 10. The head interface 107 transmits grayscale data or the like to the inkjet head 10 under the control of the processor 101.
The bus 108 includes a control bus, an address bus, and a data bus and transmits a signal transmitted to and received from each unit of the inkjet recording apparatus 1.
The inkjet head 10 includes a head driver 100.
The head driver 100 is a driving circuit that operates the inkjet head 10. The head driver 100 is, for example, a line driver. The head driver 100 generates a driving signal to be applied to each of the driving elements 18 based on the input grayscale data. Then, the head driver 100 applies the generated driving signal to each of the driving elements 18. The head driver 100 is an example of the driving device. The head driver 100 operates as an application unit by applying the driving signal to the driving element 18.
By applying the driving signal, the driving element 18 which is a piezoelectric element is subjected to shear mode deformation. Through the deformation, the pressure chamber 51 is contracted and the volume of the pressure chamber 51 is decreased when the potential of the driving signal is positive. The pressure chamber 51 is expanded and the volume of the pressure chamber 51 is increased when the potential of the driving signal is negative. Then, the pressure of the ink inside the pressure chamber 51 is changed with a witch in the volume of the pressure chamber 51 described above. For example, the inkjet head 10 ejects the ink by expanding and then contracting the pressure chamber 51. The waveform of the driving signal is referred to as a “driving waveform”.
An example of a driving waveform according to the first embodiment will be described with reference to
The driving waveform according to the first embodiment is, for example, a waveform in which the potential varies in order of a negative potential (a), a positive potential (b), and a zero potential (c), as indicated by D1 in
By applying the negative potential (a), the pressure chamber 51 is expanded. Thus, the pressure is decreased for the ink inside the pressure chamber 51. Accordingly, the negative potential (a) is an example of a first expansion pulse for driving the actuator so that the pressure of the pressure chamber is decreased. By applying the positive potential (b), the pressure chamber 51 is contracted. Thus, the pressure is increased for the ink inside the pressure chamber 51. Accordingly, the positive potential (b) is an example of a contraction pulse for driving the actuator so that the pressure of the pressure chamber is increased.
When AL is a half time of an ink-inherent oscillation period (ink propagation time) of the ink chamber 19, an application time of the negative potential (a) is preferably is 1 AL.
That is, an application time of the negative potential (a) is preferably a half time of the ink-inherent oscillation period of the ink chamber 19.
In accordance with the forgoing conditions, the ink is efficiently ejected.
An application time of the positive potential (b) is preferably equal to or greater than 1 AL and less than 2 AL when the application time of the negative potential (a) is 1 AL. The application time of the positive potential (b) is more preferably equal to or greater than 1 AL and equal to or less than 1.8 AL. The application time of the positive potential (b) is further more preferably equal to or greater than 1.2 AL and equal to or less than 1.6 AL. Particularly preferably, the application time of the positive potential (b) is 1.5 AL.
That is, the application of the positive potential (b) preferably ends when 2 AL or more passes from start of the application of the negative potential (a) and before 3 AL passes. The application of the positive potential (b) more preferably ends when 2 AL or more passes from the start of the application of the negative potential (a) and before 2.8 AL passes. The application of the positive potential (b) further more preferably ends before 2.6 AL passes from the start of the application of the negative potential (a). The application of the positive potential (b) particularly preferably ends when 2.5 AL passes from the start of the application of the negative potential (a).
As known from V1 in
The inkjet recording apparatus 1 can suppress occurrence of a satellite droplet by applying the driving waveform according to the first embodiment.
Hereinafter, the driving waveform according to the first embodiment will be described with reference to a comparative analysis model and first to seventh analysis models. The comparative analysis model and the first to seventh analysis models are analysis models based on numeric analysis. In the following description, the nozzle pressure is a pressure when the direction in which the ink is ejected vertically to the nozzle surface is positive and the direction of the ink chamber side vertical to the nozzle surface is negative. The driving waveform illustrated in the drawings in each analysis model refers to a driving waveform which the head driver 100 applies to the actuator to eject the ink equivalent to one droplet from the nozzle 25.
Comparative Analysis Model
A driving waveform in a comparative analysis model is an example of a driving waveform used in an inkjet recording apparatus of the related art. The driving waveform of the comparative analysis model is illustrated in
For the driving waveform Dc of the comparative analysis model, after the negative potential (a) is applied for 1 AL, the positive potential (b) is subsequently applied for 2 AL. Then, after the zero potential (c), the negative potential (d) is applied.
First Analysis Model
The driving waveform of the first analysis model is illustrated in
For the driving waveform D1 of the first analysis model, after the negative potential (a) is applied for 1 AL, the positive potential (b) is applied for 1.5 AL which is a shorter time than 2 AL.
Second Analysis Model
The driving waveform of the second analysis model is illustrated in
For the driving waveform D2 of the second analysis model, after the negative potential (a) is applied for 1 AL, the positive potential (b) is applied for 1 AL.
Third Analysis Model
The driving waveform of the third analysis model is illustrated in
The driving waveform D3 of the third analysis model is the same as the driving waveform of the second analysis model. Here, in the third analysis model, numeric analysis is performed using ink with an attenuation factor greater than the ink in which the second analysis model is used. For example, the attenuation factor tends to increase as the ink has a higher coefficient of viscosity.
Fourth to Seventh Analysis Models
For driving waveforms of the fourth to seventh analysis models, the application time of the positive potential (b) of the driving waveform of the comparative analysis model is changed variously. On the assumption that the application time of the positive potential (b) of the comparative analysis model is 100% (=2 AL) of the ink-inherent oscillation period, an application time of the positive potential (b) of each analysis model is set within the following ranges:
100%=the application time of the positive potential (b) of the comparative analysis mode;
98%>the application time of the positive potential (b) of the fourth analysis model>97%;
95%>the application time of the positive potential (b) of the fifth analysis model>94%;
93%>the application time of the positive potential (b) of the sixth analysis model>92%; and
90%>the application time of the positive potential (b) of the seventh analysis model>89%.
For each of the foregoing comparative analysis model and fourth to seventh analysis models, the magnitude of the residual amplitude has been derived. This result is illustrated in the graph of
In the comparative analysis model, as illustrated in
In the comparative analysis model, due to the foregoing change in the flow rate, the ink is ejected in a shape illustrated in
In the first analysis model, the ink I is ejected in a shape illustrated in
From the viewpoint of the above description, when the application time of the positive potential (b) is 1.5 AL shorter than 2 AL, it can be understood that the effect of suppressing occurrence of a satellite droplet can be obtained.
In the second analysis model, a change such as the abrupt suppression of the nozzle flow rate V2 at the time of ending the application of the positive potential (b) does not occur. The residual amplitude r2 is greater than the residual amplitude rc of the comparative analysis model. Therefore, the trailing portion I22 is shortened as in the first analysis model. Accordingly, when the application time of the positive potential (b) is 1 AL, it can be understood that the effect of suppressing occurrence of a satellite droplet can be obtained. However, since the residual amplitude r2 has a magnitude close to the amplitude at the peak p, a possibility of ejecting the ink at the time of the peak of the residual amplitude r2 is higher in the second analysis model than in the first analysis mode. Accordingly, when the application time of the positive potential (b) is too short, a possibility of erroneous ejection is considered to increase. From the viewpoint of the above description, it can be understood that the application time of the positive potential (b) is preferably 1.5 AL rather than 1 AL.
In the third analysis model, as in the second analysis mode, a change such as the abrupt suppression of the nozzle flow rate V3 at the time of ending the application of the positive potential (b) does not occur. The residual amplitude r3 is greater than the residual amplitude rc of the comparative analysis model. Accordingly, as in the second analysis model, when the application time of the positive potential (b) is 1 AL, it can be understood that the effect of suppressing occurrence of a satellite droplet can be obtained. Here, in the third analysis model, the residual amplitude r3 is less than in the second analysis model. This is because the attenuation factor of the ink is large. Accordingly, when the attenuation factor of the ink is large, it can be understood that erroneous ejection does not easily occur despite a short application time of the positive potential (b). That is, it can be understood that if the attenuation factor of the ink is large, it is preferable that the application time of the positive potential (b) is shorter than that of the ink with a small attenuation factor in order to keep a sufficient residual amplitude. For the application time of the positive potential (b), a peak (a second positive peak) of the residual amplitude is preferably equal to or greater than 30% and equal to or less than 65% of the first positive peak according to the attenuation factor of the ink. It is considered that it is not preferable that the application time of the positive potential (b) is shorter than 1 AL since ejection efficiency (ejection amount) of the ink degrades and oscillation amplitude of a flow rate accordingly decreases.
As illustrated in
An inkjet recording apparatus 1 according to a second embodiment will be described. The inkjet recording apparatus 1 according to the second embodiment has the same configuration as that according to the first embodiment, and thus the description thereof will be omitted.
A driving waveform according to the second embodiment will be described with reference to
The driving waveform according to the second embodiment is, for example, a waveform in which the potential varies in order of a negative potential (a), a positive potential (b), a zero potential (c), a negative potential (d), and a zero potential (e), as indicated by D8 in
The negative potential (d) has a single rectangular waveform as in the negative potential (a) and the positive potential (b).
By applying the negative potential (d), the pressure chamber 51 is expanded. Thus, the pressure of the ink inside the pressure chamber 51 is decreased. Accordingly, the negative potential (d) is an example of a second expansion pulse for driving the actuator so that the pressure of the pressure chamber is decreased.
The application of the negative potential (d) preferably starts when 3 AL or more passes from the start of the application of the negative potential (a) and before 4 AL passes. Then, the application of the negative potential (d) preferably ends when 3 AL or more passes from the start of the application of the negative potential (a) and before 4 AL passes.
When the negative potential (d) is not applied, the nozzle flow rate indicates a negative value until 3 AL passes from the start of the application of the negative potential (a) after 2 AL passes from the start of the application of the negative potential (a). Then, when the negative potential (d) is not applied, the nozzle flow rate indicates a positive value until 4 AL passes from the start of the application of the negative potential (a) after 3 AL passes from the start of the application of the negative potential (a). From the viewpoint of the above description, a period in which the nozzle flow rate is equal to or greater than 0 when the negative potential (d) is not applied is referred to as a “specific period” below. From the viewpoint of the above description, the application of the negative potential (d) preferably starts within the specific period. Then, the application of the negative potential (d) preferably ends within a specific period. The application of the negative potential (d) more preferably ends when the nozzle flow rate is 0.
The driving waveform according to the second embodiment also satisfies the condition of the driving waveform according to the first embodiment. Accordingly, the inkjet recording apparatus 1 can suppress occurrence of a satellite droplet as in the first embodiment by applying the driving waveform according to the second embodiment.
The inkjet recording apparatus 1 can suppress erroneous ejection of the ink by applying the driving waveform according to the second embodiment.
Hereinafter, the driving waveform according to the second embodiment will be further described based on the comparative and eighth analysis models. The eighth analysis model is an analysis model based on numeric analysis as in the comparative analysis model and the first to seventh analysis models.
Eighth Analysis Model
The driving waveform of the eighth analysis model is illustrated in
For the driving waveform D8, the positive potential (b) is applied for a time shorter than 2 AL after the negative potential (a) is applied for 1 AL. The application of the negative potential (d) starts when 3 AL passes from the start of the application of the negative potential (a) after the zero potential (c) and before 3.5 AL passes. Then, for the driving waveform D8, the application of the negative potential (d) ends before 3.5 AL passes from the start of the application of the negative potential (a).
Even in the eighth analysis model, a change such as the abrupt suppression of the nozzle flow rate V8 at the time of ending the application of the positive potential (b) does not occur and a residual amplitude r8 is greater than in the comparative analysis model. Accordingly, even in the eighth analysis model, it can be understood that the effect of suppressing occurrence of a satellite droplet can be obtained.
In the eighth analysis model, when the negative potential (d) is applied, a peak of the residual amplitude r8 is suppressed further than when the negative potential (d) is not applied as in the first embodiment. Accordingly, by applying the negative potential (d) appearing in the eighth analysis model, it is possible to obtain the effect of further suppressing erroneous ejection of the ink than when the negative potential (d) is not applied.
An inkjet recording apparatus 1 according to the third embodiment will be described. The inkjet recording apparatus 1 according to the third embodiment has the same configuration as that according to the first embodiment, and thus the description thereof will be omitted.
A driving waveform according to the third embodiment will be described with reference to
The driving waveform according to the third embodiment is, for example, a waveform in which the potential varies in order of a negative potential (a), a positive potential (b), a zero potential (c), a negative potential (d), and a zero potential (e), as indicated by D9 in
The negative potential (d) according to the third embodiment has a single rectangular waveform as in the second embodiment.
The application of the negative potential (d) according to the third embodiment preferably starts when 3 AL or more passes from the start of the application of the negative potential (a) and before 3.5 AL passes. Then, the application of the negative potential (d) preferably ends when 3.5 AL or more passes from the start of the application of the negative potential (a) and before 4 AL passes.
The nozzle flow rate indicates a waveform indicated by V9b in
The application of the negative potential (d) preferably ends when the nozzle flow rate is 0.
The driving waveform according to the third embodiment also satisfies the condition of the driving waveform according to the first embodiment. Accordingly, the inkjet recording apparatus 1 can suppress occurrence of a satellite droplet as in the first and second embodiments by applying the driving waveform according to the third embodiment.
The driving waveform according to the third embodiment also satisfies the condition of the driving waveform according to the second embodiment. Accordingly, the inkjet recording apparatus 1 can suppress erroneous ejection of the ink by applying the driving waveform according to the third embodiment as in the second embodiment.
Further, by applying the driving waveform according to the third embodiment, the inkjet recording apparatus 1 can suppress the residual oscillation. Thus, since the inkjet head 10 can perform a subsequent ink ejection operation immediately, it is possible to improve the number of times the ink is ejected per time. That is, it is possible to improve a driving frequency.
Ninth Analysis Model
The driving waveform of the ninth analysis model is illustrated in
For the driving waveform D9, the positive potential (b) is applied for a time shorter than 2 AL after the negative potential (a) is applied for 1 AL. The application of the negative potential (d) starts when 3 AL passes from the start of the application of the negative potential (a) after the zero potential (c). Then, for the driving waveform D9, the application of the negative potential (d) ends before 4 AL passes from the start of the application of the negative potential (a).
Tenth Analysis Model
The driving waveform of the tenth analysis model is illustrated in
For the driving waveform D10, the positive potential (b) is applied for a time shorter than 2 AL after the negative potential (a) is applied for 1 AL. The application of the negative potential (d) starts when 3 AL passes from the start of the application of the negative potential (a) after the zero potential (c) and before 3.5 AL passes. Then, for the driving waveform D10, the application of the negative potential (d) ends when 3.5 AL passes from the start of the application of the negative potential (a) and before 4 AL passes.
Even in the ninth and tenth analysis models, a change such as the abrupt suppression of the nozzle flow rates V9 and V10 at the time of ending the application of the positive potential (b) does not occur and residual amplitudes r9 and r10 are greater than the residual amplitude rc of the comparative analysis model. Accordingly, even in the ninth and tenth analysis models, it can be understood that the effect of suppressing occurrence of a satellite droplet can be obtained.
Even in the ninth and tenth analysis models, when the negative potential (d) is applied, peaks of the residual amplitudes r9 and r10 are suppressed further in comparison to the nozzle flow rate V9 or V10 and the waveform V9b or V10b. Accordingly, even when the negative potential (d) appearing in the ninth and tenth analysis models is applied, it is possible to obtain the effect of further suppressing erroneous ejection of the ink than when the negative potential (d) is not applied.
Further, in the ninth and tenth analysis models, as illustrated in
An inkjet recording apparatus 1 according to a fourth embodiment will be described. The inkjet recording apparatus 1 according to the fourth embodiment has the same configuration as that according to the first embodiment, and thus the description thereof will be omitted.
A driving waveform according to the fourth embodiment will be described with reference to
The driving waveform according to the fourth embodiment is, for example, a waveform in which the potential varies in order of a positive potential (z), a zero potential (a2), a positive potential (b), and a zero potential (c), as indicated by D11 in
The positive potential (z) is an auxiliary pulse for causing the subsequently continuing zero potential (a2) to have the same effect as the negative potential (a). That is, when the pressure chamber 51 is contracted by the positive potential (z) and the zero potential (a2) is subsequently set, the volume of the pressure chamber at the zero potential (a2) is in a further expanded state than at the positive potential (z). Therefore, the zero potential (a2) continuing from the positive potential (z) has the same effect as the negative potential (a). From the viewpoint of the above description, the zero potential (a2) is an example of the first expansion pulse.
The application time of the positive potential (z) is preferably 1 AL. That is, the application time of the positive potential (z) is preferably a half time of the ink-inherent oscillation period of the ink chamber 19.
The application time of the zero potential (a2) is preferably 1 AL as in the negative potential (a) of the driving waveform according to the first embodiment.
In accordance with the forgoing conditions, the ink is efficiently ejected.
The application time of the positive potential (b) according to the fourth embodiment is the same as that of the first embodiment.
That is, the application of the positive potential (b) according to the fourth embodiment preferably ends when 3 AL or more passes from start of the application of the positive potential (z) and before 4 AL passes. The application of the positive potential (b) more preferably ends when 3 AL or more passes from the start of the application of the positive potential (z) and before 3.6 AL passes. The application of the positive potential (b) further more preferably ends when 3.5 AL passes from the start of the application of the positive potential (z).
The application of the positive potential (b) according to the fourth embodiment preferably ends when the nozzle flow rate is a negative value.
As in the first embodiment, the inkjet recording apparatus 1 can suppress occurrence of a satellite droplet by applying the driving waveform according to the fourth embodiment as in the first embodiment.
Hereinafter, the driving waveform according to the fourth embodiment will be described with reference to the eleventh analysis model. The eleventh analysis model is an analysis model based on numeric analysis as in the comparative analysis model and the first to tenth analysis models.
Eleventh Analysis Model
The driving waveform of the eleventh analysis model is illustrated in
For the driving waveform D11, after the positive potential (z) is applied for 1 AL, the zero potential (a2) is applied for 1 AL. Thereafter, the positive potential (b) is applied for a time shorter than 2 AL.
Even in the eleventh analysis model, a change such as the abrupt suppression of the nozzle flow rate V11 at the time of ending the application of the positive potential (b) does not occur and a sufficient residual amplitude r11 remains. Accordingly, as in the fourth embodiment, it can be understood that the same effect as that of the first embodiment can be obtained even when the positive potential (z) and the zero potential (a2) are applied instead of the negative potential (a).
The first to fourth embodiments can also be modified as follows.
The driving waveforms according to the first and second embodiments are waveforms in which the positive potential (b) is applied immediately after the negative potential (a). However, the driving waveforms may be waveforms in which a potential other than a zero potential or the like occurs for a given time without applying the positive potential (b) immediately after the end of the application of the negative potential (a).
In the first to fourth embodiments, when the potential of the driving signal is positive, the pressure chamber 51 is contracted. When the potential of the driving signal is negative, the pressure chamber 51 is expanded. However, when the potential of the driving signal is negative, the pressure chamber 51 may be contracted. When the potential of the driving signal is positive, the pressure chamber 51 may be expanded.
In addition to the foregoing example embodiments, the inkjet head 10 may have, for example, a structure in which ink is ejected by deforming an oscillation plate through static electricity or a structure in which ink is ejected from the nozzles using heat energy of a heater or the like. In this case, the oscillation plate, the heater, or the like serves as an actuator that provides pressure oscillation to the inside of the pressure chamber 51. The inkjet recording apparatus 1 according to the example embodiments described above is an inkjet printer that forms a 2-dimensional image on the recording medium S using ink. However, the inkjet recording apparatus according to the embodiments is not limited thereto. It should be noted that the particular example embodiments described above are just some possible examples of an inkjet recording apparatus according to the present disclosure and do not limit the possible configurations, specifications, or the like of inkjet recording apparatuses according to the present disclosure. The inkjet recording apparatus may be, for example, a 3D printer, an industrial manufacturing machine, or a medical machine. When the inkjet recording apparatus according to the present disclosure is a 3D printer, the inkjet recording apparatus forms, for example, a 3-dimensional object by ejecting a substance which becomes a raw material or a binder or the like for hardening the raw material from an inkjet head.
The inkjet recording apparatus 1 according to the example embodiments described above includes four liquid ejectors 2 and color of the ink I used by each of the liquid ejectors 2 is cyan, magenta, yellow, and black. However, the number of liquid ejectors 2 included in the inkjet recording apparatus is not limited to 4 and may not be other numbers. The color and characteristics of the ink I used by each liquid ejector 2 are not limited.
The liquid ejector 2 can also eject transparent glossy ink, ink coloring at the time of radiating infrared light or violet light, or other special ink. Further, the liquid ejector 2 may eject a liquid other than ink. The liquid ejected by the liquid ejector 2 may be a dispersing liquid such as a suspension. Examples of the liquid other than ink ejected by the liquid ejector 2 include, for example, a liquid that contains conductive particles for forming a wiring pattern of a printed wiring substrate, a liquid that contains cells for artificially forming a tissue, an organ, or the like, a binder such as an adhesive, wax, or a liquid-shaped resin.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2017-111742 | Jun 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6464315 | Otokita et al. | Oct 2002 | B1 |
6899409 | Kusunoki | May 2005 | B2 |
8632151 | Nishikawa | Jan 2014 | B2 |
9205647 | Ichikawa | Dec 2015 | B2 |
20050024400 | Satake | Feb 2005 | A1 |
20060125856 | Kitami et al. | Jun 2006 | A1 |
20070030297 | Norigoe | Feb 2007 | A1 |
20100328381 | Kuki et al. | Dec 2010 | A1 |
20140160193 | Iwata | Jun 2014 | A1 |
20160082722 | Nitta | Mar 2016 | A1 |
20170008280 | Nitta | Jan 2017 | A1 |
20170066236 | Sohgawa et al. | Mar 2017 | A1 |
20170259564 | Nitta et al. | Sep 2017 | A1 |
20180272707 | Nitta | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
2275264 | Jan 2011 | EP |
3115211 | Jan 2017 | EP |
3378650 | Sep 2018 | EP |
2004-202707 | Jul 2004 | JP |
2013-199065 | Oct 2013 | JP |
Entry |
---|
Extended European Search Report dated Oct. 18, 2018, mailed in counterpart European Application No. 18176094.3, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20180345661 A1 | Dec 2018 | US |