1. Field of the Invention
The present invention relates to a driving device for driving a light emitting unit, and more particularly, to a driving device capable of effectively dissipating heat, improving light degradation of the light emitting unit and further extending the effective life of the light emitting unit.
2. Description of the Prior Art
Recently, application fields of light emitting diodes are widely developed. Different from an incandescent lamp, a light emitting diode emits luminescence light, and has advantages of low power consumption, long life, short warming time and rapid response. Moreover, since the light emitting diode is small, shake-proof, easily produced and can be manufactured into a tiny or arrayed element in conformation with different requirements, the light emitting diode is widely applied in an indicator light or a display device in information, communication and consumption electronic products. The light emitting diodes can be applied not only in outdoor monitors and traffic lights but also in any kinds of portable products, e.g. backlight of mobile phones or personal digital assistants, especially liquid crystal displays.
Though the light emitting diode has many advantages, there are some gaps from achieving illumination standards in application, which can be summarized in the following.
First, light degradation. The light degradation means that under the same driving power, luminance of the light emitting diode degrades as operating time increases, and the degradation is most obvious when the light emitting diode is initially activated. In other words, when turning on the light emitting diode at the first time, luminance degradation is most obvious. Therefore, although the light emitting diode has long life, the light degradation and deterioration of fluorescent powder and packaging materials can decrease the luminous flux under long-term operation. When the luminous flux decreases to a specific degree, the effective life of the light emitting diode is over, which cannot achieve requirements of illumination or backlight applications.
Second, heat of a light emitting diode chip. Though volume of the packaged light emitting diode is not small, surface area of the light emitting diode chip in some products is always less than 1 mm2. In such a case, the current density under operation is so large that heat accumulates inside the diode dramatically. If heat cannot be dissipated, the chip is easily damaged. In addition, for achieving some illumination requirements, a lot of light emitting diodes are combined, causing dramatic temperature increase under long-term operation. To dissipate heat effectively, a lot of heat-dissipation areas need to be added, resulting in more difficulties in design of external structures.
It is therefore a primary objective of the claimed invention to provide a driving device for driving a light emitting unit.
The present invention discloses a driving device for driving a light emitting unit, which comprises a power supply, an active signal generator, a heat-dissipation signal generator, a multiplexer, a burst signal generator and a logic unit.
The power supply is utilized for generating power to the light emitting unit according to a control signal. The active signal generator is utilized for generating an active signal sequence according to lighting features of the light emitting unit, each active signal of the active signal sequence comprising a first cycle. The heat-dissipation signal generator is utilized for generating a heat-dissipation signal sequence, each heat-dissipation signal of the heat-dissipation signal sequence comprising a second cycle. The multiplexer is coupled to the active signal generator and the heat-dissipation signal generator for combining the active signal sequence and the heat-dissipation signal sequence, so as to generate a driving signal sequence, each driving signal of the driving signal sequence comprising a third cycle equal to a sum of the first cycle and the second cycle. The burst signal generator is utilized for generating a burst signal according to the lighting features of the light emitting unit, the burst signal comprising a forth cycle longer than the third cycle. The logic unit is coupled to the multiplexer, the burst signal generator and the power supply for timely outputting the driving signal sequence according to the burst signal, so as to generate the control signal.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Please refer to
As to detail operation of the driving device 10, please refer to
As those skilled in the art recognized, a feature of human eyes is similar to a low pass filter. That is, human eyes are insensitive to rapid changes of luminance and chrominance. The present invention utilizes this feature to present the heat-dissipation signals HT and the active signals ACT alternately. When the active signal ACT is presented, the power supply 100 outputs driving power and the light emitting unit emits light. When the heat-dissipation signal HT is presented, the power supply 100 does not output driving power and the light emitting unit does not emit light, so as to dissipate heat. In such a case, since human eyes are insensitive to rapid changes of luminance and chrominance, the luminance and chrominance of light source outputted from the light emitting unit are unchanged and stable for human eyes. In other words, adding the heat-dissipation signals HT will not affect the luminance and chrominance of light source outputted from the light emitting unit. More important, via the heat-dissipation signals HT, the light emitting unit not only dissipates heat efficiently but also improves light degradation to further extend the effective life, because time of continuous operation of the light emitting unit is lessened.
Please note that,
In conclusion, the present invention presents the heat-dissipation signals HT and the active signals ACT alternately in the driving signal sequence DRV_Seq, such that when the heat-dissipation signal HT is presented, the power supply 100 does not output driving power, so as to dissipate heat. Since human eyes are insensitive to rapid changes of luminance and chrominance, the present invention will not affect the luminance and chrominance of light source outputted from the light emitting unit. More important, via the heat-dissipation signals HT, the light emitting unit not only dissipates heat efficiently but also improves light degradation, to further extend the effective life of the light emitting unit, because time of continuous operation of the light emitting unit is lessened.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention.
Number | Date | Country | Kind |
---|---|---|---|
97120928 A | Jun 2008 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
20060007212 | Kimura et al. | Jan 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20090302767 A1 | Dec 2009 | US |