The present application claims priority to and incorporates by reference the entire contents of Japanese priority document 2007-108590 filed in Japan on Apr. 17, 2007.
1. Field of the Invention
The present invention relates to a driving device equipped with a rotary inertial body, and an image forming apparatus.
2. Description of the Related Art
Rotary body driving devices that are equipped with a rotary body and a rotary inertial body (flywheel) to maintain a constant rotational velocity of the rotary body are well known. Such rotary body driving devices are widely used as photosensitive drum driving devices in image forming apparatuses such as copiers, facsimile machines, and printers. In an image forming apparatus, image data is written on the photosensitive drum functioning as a rotary body by an optical scanning unit to form a toner image on the photosensitive drum, the toner image is transferred to a recording medium, and the toner image on the recording medium is fixed o obtain the image. It is important to maintain a constant rotational velocity of the photosensitive drum when the image data is being written to the photosensitive drum by the optical scanning unit or when the toner image is being transferred to the recording medium. Any variation in the velocity of the photosensitive drum will cause deterioration in the quality of the toner image or of the image being transferred to the recording medium.
To maintain a constant rotational velocity of the photosensitive drum, it would be advantageous to increase the inertial energy E of the rotary inertial body, which is represented by the equation E=(Jω2)/2 (where J is the inertial moment of the rotary inertial body and ω is the angular velocity of the rotary inertial body). In other words, either the inertial moment J or the angular velocity ω of the rotary inertial body can be increased.
The inertial moment J can be increased by using a heavy and large-diameter rotary inertial body. However, such a rotary inertial body will occupy more space owing to its size, and owing to its weight, necessitates increasing the rigidity of a supporting mechanism for the rotary inertial body, pushing up the cost. The size will also hinder accessing the parts beyond to the rotary inertial body for maintenance purpose.
Driving devices in which angular velocity of the rotary inertial body is increased so as to be greater than the angular velocity of the photosensitive drum are disclosed in Japanese Patent Application Laid-open No. 3013779 and Japanese Patent Application Laid-open No. H10-288915.
A driving motor (driving-force source) 105 that drives a photosensitive drum 1 is fixed to a frame 102 of an image forming apparatus. A first small gear 106 is fixed to a first rotary shaft 110 of the driving motor 105, and engages with a first large gear 107. The first large gear 107 along with a second small gear 108 is fixed to the first rotary shaft 110, which is rotatably supported by the frames 102 and 103. The second small gear 108, which engages with a second large gear 109, is fixed to a second rotary shaft 111 (input shaft), which is rotatably supported by the frames 102 and 103. A first shaft joint 112 is fixed to the end of the second rotary shaft 111.
A second shaft joint 113 is fixed to the end of a third rotary shaft 1a, which serves as the rotational center for the photosensitive drum 1. The second shaft joint 113 is fixed to the first shaft joint 112. A first pulley 118 is fixed to the second rotary shaft 111.
A wheel rotary shaft 119 (output shaft) is supported by the frames 102 and 103 of the image forming apparatus. A flywheel 120, which serves as the rotary inertial body and stabilizes the rotational velocity of the photosensitive drum 1, is fixed to the wheel rotary shaft 119. A second pulley 121 is fixed to the wheel rotary shaft 119. The diameter of the second pulley 121 is smaller than that of the first pulley 118. An endless belt 122 is wound around the second pulley 121 and the first pulley 118.
The driving force of the driving motor 105 is transmitted to the second rotary shaft 111 (input shaft) via the gears 106 to 109, which reduce the rotational velocity before it is transmitted to the second rotary shaft 111. As a result, the first pulley 118 fixed to the second rotary shaft 111 (input shaft) rotates, simultaneously rotating the third rotary shaft 1a via the shaft joints 112 and 113, and therefore, the photosensitive drum 1. The driving force of the first pulley 118 is transmitted to the second pulley 121 by the endless belt 122, causing the second pulley 121 as well as the flywheel 120, which is coaxial with the second pulley 121, to rotate. As the radius of the first pulley 118 is larger than that of the second pulley 121, the angular velocity of the flywheel 120 is greater than that of the photosensitive drum.
Thus, by increasing the angular velocity ω of the flywheel 120, which serves as the rotary inertial body, the inertial energy E can be increased without having to increase the inertial moment J. Thus, required inertial energy can be obtained even with a light and small-diameter flywheel 120. As a result, the flywheel 120 can be fitted in a smaller space. Further, the rigidity of the shaft bearing and the frames 102 and 103 that support the wheel rotary shaft 119 need not be increased, thus preventing cost escalation.
The driving device disclosed in the patent document includes a velocity-varying mechanism 130 to increase the angular velocity of the flywheel 120 rather than that of the photosensitive drum 1. The velocity varying mechanism 130 includes a large friction wheel 128 fixed to the second rotary shaft 111 (input shaft) and a small friction wheel 129 fixed to the wheel rotary shaft 119 (output shaft) and engaging with and rotating with the large friction wheel 128.
The driving device disclosed in this patent document also realizes increased angular velocity ω to obtain increased inertial energy E while keeping the radius and weight of the flywheel 120 low.
However, in the velocity-varying mechanism disclosed in the former patent document a large tensile force is imposed on the endless belt 122 so as to prevent the first pulley 118 and the second pulley 121 from slipping. The tensile force causes the second rotary shaft 111 (input shaft) and the wheel rotary shaft 119 (output shaft) to bend towards each other, resulting in wobbling of the flywheel 122 and the photosensitive drum 1. The vibrations generated by the wobbling increases the velocity variation in spite of the flywheel 122. In the velocity-varying mechanism 130 disclosed in the latter patent document, significant pressure is required so that the small friction wheel 129 does not slip off the large friction wheel 128. As a result, the second rotary shaft 111 (input shaft) and the wheel rotary shaft 119 (output shaft bend away from each other, causing the flywheel 120 and the photosensitive drum 1 to wobble.
To avoid slipping, gears, etc., which have better gripping power because of presence of teeth, can be used in the velocity-varying mechanism. However, here again vibrations occur due to backlash or precision of teeth meshing profile.
Further, in the velocity-varying mechanisms disclosed in the two patent documents, the wheel rotary shaft 119 has to be located off a position coaxial with the second rotary shaft 111, increasing the size of the driving device in the radial direction of the rotary shaft.
It is an object of the present invention to at least partially solve the problems in the conventional technology.
According to an aspect of the present invention, there is provided a driving device including a driving-force source; a rotary-body driving-force transmitting mechanism that transmits a driving force of the driving-force source to a rotary body; a rotary inertial body that suppresses a velocity fluctuation in the rotary body; a rotary-inertial-body driving-force transmitting mechanism that transmits the driving force of the driving-force source to the rotary inertial body; and a rotational velocity shift mechanism that shifts the rotational velocity provided in at least either of the rotary-body driving-force transmitting mechanism and the rotary-inertial-body driving-force transmitting mechanism. The rotary inertial body, the rotary-body driving-force transmitting mechanism, and the rotary-inertial-body driving-force transmitting mechanism are set coaxially with a rotary shaft of the rotary body. A satellite frictional gear mechanism is used as the rotational velocity shift mechanism.
Furthermore, according to another aspect of the present invention, there is provided an image forming apparatus including a rotary body and a driving device for driving the rotary body. The driving device includes a driving-force source, a rotary-body driving-force transmitting mechanism that transmits a driving force of the driving-force source to the rotary body, a rotary inertial body that suppresses a velocity fluctuation in the rotary body, a rotary-inertial-body driving-force transmitting mechanism that transmits the driving force of the driving-force source to the rotary inertial body, and a rotational velocity shift mechanism that shifts the rotational velocity provided in at least either of the rotary-body driving-force transmitting mechanism and the rotary-inertial-body driving-force transmitting mechanism. The rotary inertial body, the rotary-body driving-force transmitting mechanism, and the rotary-inertial-body driving-force transmitting mechanism are set coaxially with a rotary shaft of the rotary body. A satellite frictional gear mechanism is used as the rotational velocity shift mechanism.
The above and other objects, features, advantages and technical and industrial significance of this invention will be better understood by reading the following detailed description of presently preferred embodiments of the invention, when considered in connection with the accompanying drawings.
Exemplary embodiments of the present invention are explained in detail below with reference to the accompanying drawings.
In the following description, a component member of the process cartridge is referred to by its reference numeral without a suffix of Y, C, M or Bk in a description where the distinction of toner colors is not necessary.
The charging device 2 is a scorotron charger that, when voltage is supplied by a not shown power source device provided in the main unit, performs charging through corona discharging between a grid held at a predetermined voltage against an organic photoconductive layer of the photosensitive drum 1 and a discharge wire, and thereby applies uniform voltage on the surface of the photosensitive drum 1.
The laser device 5 is an integrated unit that exposes the photosensitive drum 1 at four places with the laser beam L emitted in a radiating manner. The laser device 5 throws the laser beam L on the exposing unit 3 on the uniformed charged photosensitive drum 1 according to the image data of each color to form a latent image of each color. The laser device 5 can be four different entities corresponding to the four colors or can be a light-emitting diode (LED) array.
The developing device 4 is disposed facing the photosensitive drum 1, and includes a developing roller that electrostatically transports the toner and conveys it to the developing area of the photosensitive drum 1.
The transfer belt device 9 includes a transfer belt 13, and a driving roller 10, a driven roller 8, and a transfer roller 12 over which the transfer belt is tightly stretched. The transfer roller 12 is located on the inner side of the transfer belt 13 at the place where the transfer belt 13 comes in contact with the surface of the photosensitive drum 1 and marks a transfer area where the toner image is transferred from the photosensitive drum 1 to a recording sheet carried by the transfer belt 13. The transfer belt 13 is an endless belt and is made of two rubber layers. The base layer is a 0.5 to 2.0 mm thick semiconductive layer of silicone rubber or urethane rubber and having a volume resistance of 108 to 1012 ohm-cm. The top layer is a 5 to 50 μm thick fluorine-coated semiconductive layer that prevents toner filming. The base layer can be a 0.1 to 0.5 mm thick semiconductive layer made of polyester or polystyrene, polyethylene, polyethylene terephthalate, etc. A not shown belt cleaning device that cleans the surface of the transfer belt 13 is provided near the transfer belt 13.
The cleaning device 14 includes a cleaning blade 15 and a fur brush 16. The cleaning device 14 can be just the cleaning blade 15 alone.
A fixing device 18 is disposed downstream to the transfer belt device 9 in the recording sheet conveying direction. The fixing device 18 includes a pair of rollers that support a fixing belt 19, a tension roller 20, and a pressure roller that presses against the fixing roller.
In the lower part of the main unit of the image forming apparatus are disposed a paper feeding cassette 31, a paper feeding roller 32, and a feed roller 33. The paper feeding cassette 31 houses the recording sheets which serve as transfer material. The paper feeding roller 32 and the feed roller 33 forward the recording sheet from the paper feeding cassette. A pair each of conveying rollers 34 and resist rollers 35 are disposed in the sheet conveyance path leading up to the transfer belt 13. An ejection roller 27 that ejects the recording sheet to a recording sheet stacking unit is disposed in the sheet conveyance path after the fixing device. A reversing roller 28 is disposed a path used for the duplex printing. Further, three sets of conveying rollers are disposed in the sheet conveyance path leading up to the pair of resist rollers 35. A manual paper feeding unit, a pick up roller 29 and a feed roller are disposed to the left of the main unit.
The functioning of the image forming apparatus having a structure described above is described next.
An image read by an imaging element of a not shown image reading device, which is a separate device from the image forming apparatus or an image edited by a computer is once stored in the memory as image signals of each of the colors Y, M, C, and Bk. A not shown photosensitive-drum driving motor actuates the photosensitive drum 1 and as a result the photosensitive drum 1 rotates in the counter-clockwise direction. The charging device 2Y for yellow applies a potential on the photosensitive drum 1. The charged photosensitive drum 1 is illuminated by a laser beam LY by the laser device 5. The exposure of the photosensitive drum 1 by the laser beam LY forms a yellow latent image on the photosensitive layer of the photosensitive drum 1 it turns. The developing roller 30Y of the developing device 4Y for yellow develops the yellow latent image by a non-contact developing method using the toner carried to the part facing the photosensitive drum 1, thus forming a yellow (Y) toner image on the photosensitive drum 1.
The charging device 2M for magenta applies a potential on the yellow toner image on the photosensitive drum 1. The charged photosensitive drum 1 is illuminated by a laser beam LM y the laser device 5. The exposure of the photosensitive drum 1 by the laser beam LM forms a magenta latent image on the photosensitive layer of the photosensitive drum 1 as it turns. The developing roller 30M of the developing device 4M for magenta develops the magenta latent image by a non-contact developing method using the toner carried to the part facing the photosensitive drum 1, thus forming a magenta (M) toner image on the photosensitive drum 1. Similarly, by the charging devices 2C and 2Bk and exposure by the laser beams LC and LBk, and the process by the developing devices 4C and 4Bk, a cyan (C) toner image and a black (Bk) toner image, respectively, are formed on the photosensitive drum.
The recording sheet is picked up from the paper feeding cassette 31 by the paper feeding roller 32, the feed roller 33, and the pair of conveying rollers 34, conveyed to the pair of resist rollers 35, and therefrom to the transfer area on the transfer belt 13 synchronized with the superposed toner images on the photosensitive drum 1. At the transfer area, the transfer roller 12 imparts a bias voltage of a polarity opposite to that the toner. As a result, the toner images sequentially get transferred to the recording medium
After transfer, the residual toner on the photosensitive drum 1 is cleaned by the cleaning device 14. The residual toner is first removed off the photosensitive drum 1 by the fur brush 16 followed by the action of the cleaning blade 15 disposed downstream to the fur brush 16, which thoroughly scrapes off any remaining toner. The toner thus collected is conveyed by a cleaning screw into a not shown waste toner bottle.
The recording sheet bearing thereon the color toner image and electrostatically adhered to the transfer belt 13 is carried up to the driving roller 10, where the leading edge of the recording sheet lifts off from the transfer belt 13 and is carried to the fixing device 18. In the fixing device 18, the recording sheet is transported clamped between the fixing belt 19 and the pressure roller while being subjected to heat application. After the toner image is fixed thus, the recording sheet is ejected to a stacking unit 26 via the ejection roller 27.
In duplex printing, the recording sheet is carried towards the reversing roller 28, which turns in the opposite direction and conveys the recording sheet to the resist roller 35 once again. The recording sheet is then conveyed to the nip portion of the transfer belt 13 in synchronization with the color toner image formed on the photosensitive drum 1, where the toner image is transferred to the backside of the recording sheet. The recording sheet is then conveyed through the fixing device 18 once again and ejected to the stacking unit 26.
Thus, in the image forming apparatus in which four developing devices are disposed around the photosensitive drum and are driven simultaneously, the vibrations caused by the developing devices are transmitted to the photosensitive drum 1, leading to variations in its rotational velocity. The effect of the vibrations on the rotational velocity of the photosensitive drum 1 can be dampened by providing a rotary inertial body in the form of a flywheel in the driving device, as explained below.
The driving device 60 includes a driving-force source in the form of a driving motor 62, a rotary inertial body in the form of a flywheel 61 that prevents variations in the velocity at which the-photosensitive drum 1 rotates, a driving-force transmitting member in the form of a driving gear 63 that transmits the driving force of the driving motor 62 to the photosensitive drum 1 and the flywheel 61, a velocity-varying mechanism in the form of a satellite frictional gear mechanism 70 that steps up the rotational velocity of the flywheel 61 so that it rotates at a greater angular velocity than the photosensitive drum 1.
The driving motor 62 is fixed to a supporting plate 64. The driving gear 63 is engaged with an output gear 62a of the driving motor 62 and is fixed to an output shaft 67, which is coaxial with the rotary shaft 1a of the photosensitive drum 1. The pitch diameter of the driving gear 63 is greater than the diameter of the photosensitive drum 1. When the driving motor 62 rotates, its driving force is transmitted from the output gear 62a to the driving gear 63 such that the photosensitive drum 1 is driven at a stepped-down velocity. By enabling transmitting a stepped-down driving force to the photosensitive drum 1 without an additional gear, the number of components required in the driving device 60, and hence the cost, can be reduced. Further, ineffective driving force transmission arising from improper teeth meshing and eccentricity when two gears are provided can be avoided. To prevent banding (pitch irregularity of meshing cycle) in the toner image formed on the photosensitive drum 1 due to variation in the rotational velocity of the photosensitive drum and to obtain high-frequency area, it is preferable that the relational expression m<(Dg/2πDd) be satisfied, where m is the module (number of teeth/diameter of gear) of the driving gear 63, Dd is the diameter of the photosensitive drum 1, and Dg is the pitch diameter of the driving gear 63.
The satellite frictional gear mechanism 70 is attached to the aft-end of the output shaft 67. A driving-end coupling 66b is coaxially fixed to the drum-end of the output shaft 67. A sun shaft 74 of the satellite frictional gear mechanism extends coaxially with the rotary shaft 1a of the photosensitive drum 1. The sun shaft 74 serves as a sun frictional gear and is fixed to the flywheel 61. A shaft bearing 92 of an aft-end side plate 65 rotatably supports the output shaft 67. A shaft bearing 91 of the supporting plate 64 rotatably supports the sun shaft 74.
A shaft bearing 93 of a front plate 69 detachably attached to a fore-end plate 68 rotatably supports the fore-end of the rotary shaft 1a of the photosensitive drum 1. A driven-end coupling 66a is coaxially fixed to the aft-end of the rotary shaft 1a of the photosensitive drum.
The photosensitive drum 1, the front plate 69, the rotary shaft 1a, and the driven-end coupling 66a form an integrated unit that is detachably attached to the main unit of the image forming apparatus. When the photosensitive drum 1 is attached to the main unit, the driving-end coupling 66b and the driven-end coupling 66a are engaged in the rotation direction. When the output shaft 67 rotates, the rotation is transmitted to the rotary shaft 1a by the coupling mechanism 66 formed by the driven-end coupling 66a and the driving-end coupling 66b, thus driving the photosensitive drum 1.
The satellite frictional gear mechanism 70 includes the sun shaft 74, three satellite frictional gears 73a to 73c, a carrier member 72, and an inscribed ring 71.
The carrier member 72 is coaxially fixed to the aft-end face of the output shaft 67. At the sun-shaft end of the carrier member 72, three satellite shafts 72a to 72c that are equidistant along the perimeter extend perpendicularly from the side face at three places. Each of the satellite frictional gears 73a to 73b is rotatably attached to its corresponding satellite shafts 72a to 72c. On the outer periphery of the satellite frictional gears 73a to 73c, the outer surface of the sun shaft 74 and the inner surface of the inscribed ring 71 are in pressure contact with each other. The sun shaft 74, the satellite frictional gears 73a to 73c, and the inscribed ring 71 are made of a highly rigid metal that can resist elastic deformation due to pressure contact. The inscribed ring 71 is tubular and includes circular faces 71b and 71c with holes at the centers thereon serving as shaft bearings 71e and 71d, respectively. The output shaft 67 passes through the shaft bearing 71e of the circular face 71b, and the sun shaft 74 passes through the shaft bearing 71d of the circular face 71c. Thus, the carrier member 72 within the inscribed ring 71 and the satellite frictional gears 73a to 73c are hermetically enclosed by the inscribed ring 71. Thus, no space is available between the satellite frictional gears 73 and the sun shaft 74 or between the satellite frictional gears 73 and the inner face of the inscribed ring 71 for a foreign substance such as scattered toner to adhere to. Therefore, the possibility of the satellite frictional gears 73 slipping due to the presence of toner, etc. is eliminated, and the driving force can be effectively transmitted to the flywheel 61. The inscribed ring 71 is fixed to the supporting plate 64.
Thus, the satellite frictional gear mechanism 70 includes an input unit that receives the rotational driving force in the form of the sun shaft 74, an output unit that steps up and outputs the angular velocity in the form of the carrier member 72, and a stationary member that remains stationary in the form of the inscribed ring 71. This structure enables the satellite frictional gear mechanism 70 to function as a velocity-varying mechanism. In the satellite frictional gear mechanism 70 shown in
When the driving motor 62 rotates, the driving force is transmitted from the output gear 62a to the driving gear 63, causing the output shaft 67 to rotate. As a result, the driven-end coupling 66a engaged with the driving-end coupling 66b fixed to the output shaft 67 rotates, and the photosensitive drum 1 attached to the rotary shaft 1a rotates. In other words, the rotary-body driving-force transmitting mechanism that transmits the driving force of the driving motor to the photosensitive drum in the embodiment is the coupling mechanism 66.
As the photosensitive drum 1 rotates, the carrier member 72 of the satellite frictional gear mechanism 70 fixed to the aft-end face of the output shaft 67. The rotating carrier member 72 causes the satellite frictional gears 73a to 73c rotatably attached to the satellite shafts 72a to 72c, respectively, of the carrier member 72 to revolve around the sun shaft 74. As the satellite frictional gears 73a to 73c are in pressure contact with the inner surface of the inscribed ring 71 fixed to the supporting plate 64, the satellite frictional gears 73a to 73c rotate on their own axes while rolling over the contact surface with the inscribed ring 71. Further, as the satellite frictional gears 73a to 73c are in pressure contact with the sun shaft 74, the revolving motion as well as the rotation of the satellite frictional gears 73a to 73c on their own axes is transmitted to the sun shaft 74, causing it to rotate. In this way, the rotational velocity of the output shaft 67 is stepped by the satellite frictional gear mechanism 70 and output to the sun shaft 74, causing the flywheel 61 to rotate at a greater angular velocity than the photosensitive drum 1. Thus, in the embodiment, the satellite frictional gear mechanism 70 functions as the rotary-inertial-body driving-force transmitting mechanism that transmits the driving force of the driving motor to the flywheel serving as the rotary inertial body.
The rate of velocity increase brought about by the satellite frictional gear mechanism 70 can be calculated by the expression, Rate of velocity increase (Number of rotations of output shaft/number of rotations of input shaft)=(πDi/πDs)+1=(Di/Ds)+1, where Ds is the outer diameter of the sun shaft, Dp is the outer diameter of the satellite frictional gear, and Di is the inner diameter of the inscribed ring.
For example, if Ds=10, Dp=20, and Di=50, the rate of velocity increase will be six times.
As the rotational velocity of the output shaft 67 is stepped up by the satellite frictional gear mechanism 70 before being output to the sun shaft 74, the flywheel 61 attached to the sun shaft 74 can be made to rotate at a greater the angular velocity ω than the photosensitive drum 1.
By increasing the angular velocity ω of the flywheel 61, the inertial energy E, which is given by (Jω2)/2 (J is the inertial moment of the rotary inertial body and ω is the angular velocity of the rotary inertial body), can be increased. Thus, even if the flywheel 61 is light and of a small diameter, the inertial energy required for preventing variations in the velocity of the photosensitive drum 1 can be obtained. Thus, a space-saving driving device with a compact flywheel 61 can be realized without compromising on the effectiveness in controlling the velocity variation in the photosensitive drum 1.
In the embodiment, the flywheel 61 is placed alongside the driving motor 62, as shown in
By satisfying the relational expression Rd>Rf+Rm, the length of the shaft (sun shaft 74) to which the flywheel 61 is attached can be kept short, thereby eliminating the possibility of bending of the sun shaft 74 due to the weight of the flywheel 61 and realizing a more compact driving device along the shaft direction.
Modifications of the driving device 60 are described next.
In a first modification of the driving device, the flywheel 61 and the satellite frictional gear mechanism 70 are set at the fore-end of the printer main unit. The inscribed ring 71 of the satellite frictional gear mechanism 70 is fixed to the front plate 69. A first coupling 80a is attached to the fore-end of the rotary shaft 1a and a second coupling 80b is attached to the aft-end of an input shaft 81. The first coupling 80a and the second coupling 80b are engaged in the rotation direction. The input shaft 81 is rotatably supported by the front plate, and the carrier member 72 is fixed to the fore-end of the input shaft 81.
In the first modification, the driving force of the driving motor 62 is transmitted from the output gear 62a to the driving gear 63, causing the output shaft 67 to rotate. The rotating output shaft 67 causes the rotary shaft 1a and thus the photosensitive drum 1 to rotate via the coupling mechanism 66. The rotation of the rotary shaft 1a is transmitted to the input shaft 81 via the coupling mechanism 80 formed by the first coupling 80a and the second coupling 80b. The velocity is stepped up by the satellite frictional gear mechanism 70 and output to the sun shaft 74, causing the flywheel 61 attached to the sun shaft 74 to rotate at a greater angular velocity than the photosensitive drum 1. In other words, in the first modification, the rotary-inertial-body driving-force transmitting mechanism that transmits the driving force of the motor to the flywheel includes the coupling mechanism 80, the input shaft 81, and the satellite frictional gear mechanism 70.
In the driving device according to the first modification, by placing the flywheel in the fore-end of the device main unit, the space in the aft-end of the device can be more efficiently utilized. Further, the satellite frictional gear mechanism 70 and the flywheel 61 can be detached at the coupling mechanism 80 for replacing the photosensitive drum 1.
In the driving device according to the second modification, a circular depressed portion 63a is provided around the rotational center of the driving gear 63. A second depressed portion 63b is provided around the rotational center of the depressed portion 63a. The fore-end of the sun shaft 74 is rotatably attached to the second depressed portion 63b by a shaft bearing. The sun shaft 74 is rotatably supported by another shaft bearing in the supporting plate. The flywheel 61 is fixed to the aft-end of the sun shaft 74. Three satellite shafts 72a to 72c (the satellite shaft 72b is not seen in
In other words, in the driving device according to the second modification, the satellite frictional gear mechanism includes the depressed portion 63a of the driving gear 63, the sun shaft 74, the satellite frictional gears 73a to 73c, and the satellite shafts 72a to 72c.
In the driving device according to the second modification, an output unit 63c is provided coaxially with the rotational center of the driving gear 63 on its fore-end face (on the side of the photosensitive drum 1). A female coupling 66b in the form of a cylindrical depressed portion is provided at the leading end of the output unit 63c. The cylindrical depressed portion of the female coupling 66b has an annular gear having a plurality of gears on the inner periphery. A male coupling 66a is provided on the rotary shaft 1a of the photosensitive drum 1, including a gear that engages with the annular gear of the female coupling 66b. Alternatively, the male coupling 66a may be provided on the output unit 63c and the female coupling 66b may be provided on the rotary shaft 1a. The driving gear 63 is rotatably supported by a shaft bearing provided on the aft-end side plate 65.
When the driving motor 62 rotates, the velocity transmitted by the output gear 62a is reduced by the driving gear 63, and the reduced velocity is transmitted to the photosensitive drum 1 via the coupling mechanism 66. The rotation of the driving gear 63 causes the satellite frictional gears 73a to 73c in pressure contact with the depressed portion 63a of the driving gear 63 to rotate on their own axes. As the satellite frictional gears 73a to 73c are in pressure contact with the sun shaft 74, the rotation of the satellite frictional gears 73a to 73c on their own axes is transmitted to the sun shaft 74. Thus, the rotational velocity of the driving gear 63 is increased by the satellite frictional gear mechanism 70, and the increased rotational velocity is output to the sun shaft 74, which in turn causes the flywheel 61 to rotate at increased velocity. In other words, in the satellite frictional gear mechanism 70 of the driving device according to the second modification, the depressed portion 63a of the driving gear 63 functions as the input unit, the satellite shafts 72a to 72c function as the stationary units, and the sun shaft 74 functions as the output unit. The rate of velocity increase brought about by the satellite frictional gear mechanism 70 according to the second modification is determined by the following expression. Rate of velocity increase=πDi/πDs=−Di/Ds, where Di is the diameter of the depressed portion 63a of the driving gear 63 and Ds is the outer diameter of the sun shaft 74. The minus symbol indicates that the rotations of the input shaft and the output shaft are in the opposite directions. For example, if the diameter Di of the depressed portion 63a of the driving gear 63 is 50, the diameter Dp of the satellite frictional gear is 20, and the diameter of the sun shaft 74 is 10, the rate of velocity increase will be five times.
Thus, in the driving device according to the second modification too, causing the flywheel 61 to rotate at a greater angular velocity ω than the photosensitive drum 1 enables the radius Rf of the flywheel 61 to be kept small and, in addition, the relational expression Rd (radius of the driving gear 63)>Rf (radius of the flywheel 61)+Rm (radius of the driving motor 62) can be satisfied without compromising on the control of velocity variation of the photosensitive drum 1 by the flywheel 61. Thus, as shown in
The depressed portion 63a of the driving gear 63 of the driving device according to the second modification functions as the inscribed ring. Thus, the number of components, and hence the cost, can be reduced. Further, by accommodating a part of the satellite frictional gear mechanism inside the driving gear, the length of the driving device in the shaft direction can be reduced, achieving space-saving.
It is preferable to make the driving gear 63 out of resin to dampen the vibrations in the gear mechanism serving as the transmitting mechanism between the output gear 62a and the driving gear 63. However, in the case of a resin driving gear 63, the inner surface of the depressed portion 63a can undergo elastic deformation due to pressure contact with the satellite frictional gears 73a to 73c, leading to inadequate pressure contact between the satellite frictional gears 73a to 73c and the inner surface of the depressed portion 63a, and resulting in slipping between the satellite frictional gears 73a to 73c and the inner surface of the depressed portion 63a, and ineffective transmission of the driving force to the sun shaft 74.
Therefore, in the case of a resin driving gear 63, a metal ring 63d is fitted into the inner surface of the depressed portion 63a, as shown in
In the third modification of the driving device, the satellite shafts 72a to 72c (the satellite shaft 72b is not seen in
In other words, the satellite frictional gear mechanism 70 in the driving device according to the third modification includes the sun shaft 74, the satellite frictional gears 73a to 73c, the satellite shafts 72a to 62c set in the driving gear 63, and the inscribed ring 71.
When the driving motor 62 rotates, the velocity transmitted by the output gear 62a is reduced by the driving gear 63, and the reduced velocity is transmitted to the photosensitive drum 1 via the coupling mechanism 66. The rotation of the driving gear 63 causes the satellite shafts 72a to 72c to rotate around the sun shaft 74. As a result, the satellite frictional gears 73a to 73c rotatably attached to the satellite shafts 72a to 72c, respectively, start revolving around the shaft center of the sun shaft 74. As the satellite frictional gears 73a to 73c are in pressure contact with the inner surface of the inscribed ring 71 fixed to the supporting plate 64, the satellite frictional gears 73a to 73c rotate on their own axes while rolling over the contact surface with the inscribed ring 71. The rotation of the satellite frictional gears 73a to 73c on their own axes is transmitted to the sun shaft 74. Thus, the rotational velocity of the driving gear 63 is increased by the satellite frictional gear mechanism 70, and the increased rotational velocity is output to the sun shaft 74, which in turn causes the flywheel 61 to rotate at increased velocity. In other words, in the satellite frictional gear mechanism 70 of the driving device according to the second modification, the depressed portion 63a of the driving gear 63 functions as the input unit, the satellite shafts,72a to 72c function as the stationary units, and the sun shaft 74 functions as the output unit. The rate of velocity increase brought about by the satellite frictional gear mechanism 70 according to the second modification is determined by the following expression. Rate of velocity increase=πDi/πDs=−Di/Ds, where Di is the diameter of the depressed portion 63a of the driving gear 63 and Ds is the outer diameter of the sun shaft 74. The minus symbol indicates that the rotations of the input shaft and the output shaft are in the opposite directions. For example, if the diameter Di of the depressed portion 63a of the driving gear 63 is 50, the diameter Dp of the satellite frictional gear is 20, and the diameter of the sun shaft 74 is 10, the rate of velocity increase will be five times. As the satellite frictional gears 73a to 73c are in pressure contact with the inner surface of the inscribed ring 71 fixed to the supporting plate 64, the satellite frictional gears 73a to 73c rotate on their own axes. Further, as the satellite frictional gears 73a to 73c are in pressure contact with the sun shaft 74, the revolving motion as well as the rotation of the satellite frictional gears 73a to 73c around their own axes is transmitted to the sun shaft 74, causing it to rotate. In this way, the rotational velocity of the driving gear 63 is stepped by the satellite frictional gear mechanism 70 and output to the sun shaft 74, causing the flywheel 61 to rotate at increased velocity. In other words, in the satellite frictional gear mechanism 70 of the driving device according to the third modification, the satellite shafts 72a to 72c function as the input units, the inscribed ring 71 functions as the stationary unit, and the sun shaft functions as the output unit.
The rate of velocity increase brought about by the satellite frictional gear mechanism according to the third modification is similar to that shown in
Thus, in the driving device according to the third modification too, causing the flywheel 61 to rotate at a greater angular velocity ω than the photosensitive drum 1 enables the radius Rf of the flywheel 61 to be kept small and, in addition, the relational expression Rd (radius of the driving gear 63)>Rf (radius of the flywheel 61)+Rm (radius of the driving motor 62) can be satisfied without compromising on the control of velocity variation of the photosensitive drum 1 by the flywheel 61. Thus, as shown in
As the carrier member 72 is done away with in the third modification, the number of components, and hence the cost, can be reduced.
In the driving device according to the fourth modification, similar to the third modification, the satellite shafts 72a to 72c (the satellite shaft 72b is not seen in
When the driving motor 62 rotates, the velocity transmitted by the output gear 62a is reduced by the driving gear 63, and the reduced velocity is transmitted to the photosensitive drum 1 via the coupling mechanism 66. The rotation of the driving gear 63 causes the satellite shafts 72a to 72c to rotate around the sun shaft 74. As a result, the satellite frictional gears 73a to 73c rotatably attached to the satellite shafts 72a to 72c, respectively, start revolving around the shaft center of the sun shaft 74. As the satellite frictional gears 73a to 73c are in pressure contact with the outer surface of the sun shaft 74 fixed to the bracket 81, the satellite frictional gears 73a to 73c rotate on their own axes while rolling over the contact surface of the sun shaft 74. Further, as the satellite frictional gears 73a to 73c are in pressure contact with the inscribed ring 71, the revolving motion as well as the rotation of the satellite frictional gears 73a to 73c around their own axes is transmitted to the inscribed ring 71, causing it to rotate. Thus, the rotational velocity of the driving gear 63 is increased by the satellite frictional gear mechanism 70, and the increased rotational velocity is output to the inscribed ring, which in turn causes the flywheel 61 to rotate at increased velocity. In other words, in the satellite frictional gear mechanism 70 of the driving device according to the fourth modification, the satellite frictional gears 73a to 73c set in the driving gear 63 function as the input units, the sun shaft 74 functions as the stationary unit, and the inscribed ring 71 functions as the output unit.
The rate of velocity increase brought about by the satellite frictional gear mechanism 70 according to the fourth modification is determined by the following expression. Rate of velocity increase=(πDs/πDi)+1=Ds/Di+1. For example, if the Ds=10, Dp=20, and Di=50, the rate of velocity increase will be 1.2 times.
Thus, in the driving device according to the fourth modification too, causing the flywheel 61 to rotate at a greater angular velocity ω than the photosensitive drum 1 enables the radius Rf of the flywheel 61 to be kept small and, in addition, the relational expression Rd (radius of the driving gear 63)>Rf (radius of the flywheel 61)+Rm (radius of the driving motor 62) can be satisfied without compromising on the control of velocity variation of the photosensitive drum 1 by the flywheel 61. Thus, as shown in
As the carrier member 72 is done away with in the fourth modification, the number of components, and hence the cost, can be reduced.
Apart from the image forming apparatus shown in
In the embodiment, the satellite frictional gear mechanism increases the rotational velocity transmitted to the flywheel, causing the flywheel to rotate at a greater angular velocity than the photosensitive drum. Alternatively, the satellite frictional gear mechanism can be used to decrease the rotational velocity transmitted to the photosensitive drum to attain the same effect. In this case too, the inertial energy J can be increased with reduced flywheel size, compared with when the flywheel and the photosensitive drum are rotating at the same velocity. Yet another method to cause the flywheel to rotate at a greater angular velocity than the photosensitive drum is to provide in the rotary-body driving-force transmitting mechanism a satellite frictional mechanism that reduces the rotational velocity, and provide in the rotary-inertial-body driving-force transmitting mechanism a satellite frictional mechanism that increases the rotational velocity. Yet another alternative to cause the flywheel to rotate at a greater angular velocity than the photosensitive drum is to provide in both the rotary-body driving-force transmitting mechanism and the rotary-inertial-body driving-force transmitting mechanism a satellite frictional mechanism each for reducing the rotational velocity but setting the rate of velocity decrease of the satellite frictional mechanism of the rotary-body driving-force transmitting mechanism higher than that of the rotary-inertial-body driving-force transmitting mechanism. Yet another alternative is to provide in both the rotary-body driving-force transmitting mechanism and the rotary-inertial-body driving-force transmitting mechanism a satellite frictional mechanism each for increasing the rotational velocity but setting the rate of velocity increase of the satellite frictional mechanism of the rotary-inertial-body driving-force transmitting mechanism greater than that of the rotary-body driving-force transmitting.
Thus, the driving device according to the embodiment includes a satellite frictional gear mechanism that causes the flywheel 61 to rotate at a greater angular velocity than the photosensitive drum 1. Hence, even with a light and small-diameter flywheel, the inertial energy required for preventing velocity variations of the photosensitive drum can be attained. Thus, a space-saving driving device with a compact flywheel can be realized without compromising on the effectiveness in controlling the velocity variation in the photosensitive drum 1.
Further, as the frictional force of the satellite frictional gear mechanism 70 is transmitted as the driving force, there are no undesirable effects such as bending of the rotary shaft 1a or meshing vibrations. As a result, the vibrations of the photosensitive drum due to the angular velocity increase transmitting mechanism can be prevented. Further, by using the satellite frictional gear mechanism, the input shaft and the output shaft are coaxially arranged, the flywheel 61 can be set coaxial with the rotary shaft, realizing a more compact driving device along the shaft direction.
In the driving device according to the embodiment, placing the driving-force transmitting member that inputs the driving force of the driving motor between the photosensitive drum 1 and the satellite frictional gear mechanism enables the flywheel to be set coaxially with the rotary shaft at the driving motor end.
As shown in
In the second modification of the driving device, the satellite frictional gears 73 are in pressure contact with the inner surface of the depressed portion provided around the rotational center of the driving gear at one end and with the outer surface of the sun shaft at the other end. Consequently, as compared to the structure of the driving device shown in
By using a resin driving gear 63, the vibrations in the gear transmission unit between the output gear 62a and the driving gear 63 can be dampened, and velocity variations of the photosensitive drum 1 can be prevented. By using a metal member in the inner surface of the depressed portion, elastic deformation of the inner surface of the depressed portion when the satellite frictional gears:come in pressure contact with it. Thus, the pressure contact between the satellite frictional gears 73 and the inner surface of the depressed portion can be maintained and slipping of the satellite frictional gears 73 can be prevented, and the driving force can be effectively transmitted to the flywheel.
In the third modification of the driving device, the satellite frictional gears are disposed equidistant along perimeter of a circle that is coaxial with the driving gear. Thus, by doing away with the carrier member, the cost of the driving device can be reduced.
Further, the driving force is transmitted by engagement of the driving gear and the output gear of the driving motor. Therefore, even if the rotational load of the photosensitive drum becomes significant, the driving force of the driving motor can be effectively transmitted by the driving gear.
By placing the driving motor and the flywheel alongside each other along the radial direction of the rotary shaft, a more compact driving device along the shaft direction can be realized.
By providing the driving-force transmitting member, the rotary inertial body, and the satellite frictional transmitting mechanism on the side of the image forming apparatus main unit, the number of parts that need to be replaced along with the photosensitive drum can be reduced.
By adapting the driving device according to the embodiment to the image forming apparatus, velocity variations in the rotary body can be prevented. By using the driving device according to the embodiment particularly as the driving device for rotating the image carrying member, faulty images with bands can be prevented.
In the image forming apparatus in which four developing devices are arranged around the photosensitive drum and are driven at the same time, the vibrations produced by the four developing devices can cause rotational velocity variations in the photosensitive drum. However, the photosensitive drum can be made to rotate at a constant velocity by using the driving device according to the embodiment to drive the photosensitive drum, thus preventing faulty images with bands.
As described above, according to an aspect of the present invention, a velocity-varying mechanism is provided that causes a rotary inertial body to rotate at a greater angular velocity than a rotary body. Thus, even with a light, small-radius rotary inertial body the inertial energy required for preventing velocity variations in the rotary body can be obtained. Thus, a space-saving driving device with a compact rotary inertial body and greater flexibility in terms of layout can be realized without compromising on the effectiveness in controlling the velocity variation in the rotary body.
Further, a satellite frictional gear mechanism is used as the velocity-varying mechanism to transmit frictional force as the driving force. Consequently, there are no meshing vibrations which are produced by gear mechanism in which there teeth meshing of the gears takes place. The satellite frictional gear mechanism includes a plurality of satellite frictional gears arranged equidistant along the perimeter of a sun frictional gear and in pressure contact with the sun frictional gear and an inner surface of a inscribed ring. Therefore, in spite of being a method whereby the driving force is generated by the frictional force, there is no bending of an input shaft or an output shaft caused by the velocity-varying mechanism, as described in the conventional technologies. As a result, the vibrations of the rotary body caused by the velocity-varying mechanism can be prevented. Further, by using the satellite frictional gear mechanism, the input shaft and the output shaft can be made coaxial, and hence the rotary inertial body can be provided coaxial with the rotary shaft. By providing the rotary inertial body coaxial with the rotary shaft, a more compact driving device along the radial direction of the rotary shaft can be obtained, as compared to the driving devices disclosed in the conventional technologies.
Although the invention has been described with respect to specific embodiments for a complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art that fairly fall within the basic teaching herein set forth.
Number | Date | Country | Kind |
---|---|---|---|
2007-108590 | Apr 2007 | JP | national |