This invention relates to driving a matrix of pixels with a polarity inversion scheme. In particular, this invention relates to preventing image sticking or image retention on an active matrix liquid crystal display device.
An active matrix device, such as described in U.S. Pat. No. 6,469,684, which hereby is incorporated in the present specification by reference, comprises an inversion circuitry coupled to drive signals, which inversion circuitry has at least one Cole sequence generator providing random, semi-random, or pseudo-random sequence patterns of the matrix. The Cole sequence generator provides a sequence of inversion patterns of pixel biasing over several frames. Over time each pixel is presented with a substantially equal number of positive and negative drive levels to prevent the generation of undesirable display artifacts that might occur under a direct current bias. The prior-art patent further discloses that when using the Cole sequence generator, it is required to compensate for spatial related errors such as long strings of pixels biased positively or negatively thereby generating display artifacts, or spatial related errors such as flicker caused if groups of pixels change near each other in time. These errors are compensated by having a rapidly changing inversion pattern, which does not repeat often.
Generally for television applications, however, pixel biasing is reversed once per frame, that is, with a frequency equal to a display refresh rate and synchronous with a video signal. A non-zero DC-component causes electroplating of ion impurities in the liquid crystal in the electrodes, which is a major source for image retention or image sticking. This problem is particularly encountered in no de-interlace or poor de-interlace television applications of active matrix liquid crystal displays.
An object of the present invention is to provide driving a matrix of pixels with a polarity inversion pattern, which further reduces image sticking. The invention is defined by the independent claims. The dependent claims define advantageous embodiments.
When reversing once per frame a regular polarity pattern for an interlaced television signal, then the first polarity pattern is, for example, applied to odd frames of the television signal, while the inverted polarity pattern is linked with the even frames of the television signal. As the content of odd and even frames may be different, pixels may be driven for a number of frames with, for example, a large voltage driving odd frames in combination with a positive polarity, and a small voltage during even frames in combination with a negative polarity. As a result, the pixel is driven with a non-zero DC component causing image retention after some time.
By excluding the first set of pixels from being driven with the inverted polarity pattern, during the second frame, which means that this set of pixels is driven with the first polarity pattern during this second frame, the regular scheme of inverting the pattern for subsequent frames is interrupted for this first set of pixels. By continuing again inverting the polarity pattern during the third frame, effectively the regular scheme of inverting the pattern for subsequent frames is resumed again, however, now with an opposite polarity with respect to the odd and even frames. As a result, any non-zero DC-component built-up before the second frame due to stationary differences between the content of odd and even frames, is compensated from the second frame onwards because the polarity of the odd and even frames is reversed. Hence, even for television signals with poor or no de-interlacing image sticking is reduced.
By driving the pixels with subsequent exception of mutually different sets of pixels in subsequent frames with the inverted pattern, the polarity scheme for odd and even frames is subsequently reversed for all pixels of the matrix of pixels. This provides a fully controlled polarization inversion scheme limiting charge build up on pixels in the temporal domain.
For case of implementation, the first set of pixels may comprise neighboring pixels in one or more rows or columns of the matrix of pixels, the subsequently excepted sets of pixels may be subsequent, neighboring sets of pixels, and/or the first set of pixels may be one or more entire rows or columns.
If the first set of pixels and the mutually different sets of pixels each comprise less then half of the total amount of pixels in the matrix, a flicker effect caused by the change of the polarity scheme is reduced.
The matrix of pixels may be a matrix of Liquid Crystal Display pixels, or any other matrix display showing the phenomenon of building up a non-zero DC-component.
The driving circuitry may be formed by an integrated circuit, or by a group of integrated circuits which may have peripheral components.
The display product may be a television receiver, a monitor, a projector, or any other product with a display device.
The video processing circuitry converts an external input signal, for example, from an antenna or from an external input device such as a DVD-player or computer coupled to the product, into a format suitable for driving the display device.
A particular feature of the present invention relates to a video signal manipulating circuit for compensating for biasing difference. This feature reduces the visibility of the change of the polarity pattern caused by the relatively slow response of especially Liquid Crystal Display pixels to drive signals.
Usually, this response is partially compensated by so called “overdrive” as, for example, disclosed in U.S. Pat. No. 5,495,265. To compensate, however, for the change of the polarity pattern an opposite correction is required, which may be called “under-drive”. This required correction may be obtained by measuring the behavior of the matrix of pixels for the available transitions of grey levels of the pixels, storing the required corrections of the transitions, and applying these corrections in case a change of polarity scheme takes place. This approach is similar to the approach described in U.S. Pat. No. 5,495,265 and is therefore not further detailed in this application.
In an embodiment the available overdrive circuitry or software is used to provide the underdrive: in case a change of polarity scheme for a pixel, the required correction is retrieved, for example, from look-up table and/or via a formula, and the correction is combined with the overdrive correction, so as to provide the correct drive signal to the pixel.
These and other aspects of the present invention are apparent from and will be elucidated with reference to the embodiments described hereinafter.
The invention is described further by way of example only with reference to the appended drawings, wherein:
The term “scheme” is in this context to be construed as a method or procedure implemented to be performed in a system utilizing hard- and/or software.
During a change of the polarity inversion scheme, so when excluding a row, a plurality of rows, or pixels as described with reference to above figures, the light output of a liquid crystal display slightly increases for a normally black display and decreases for a normally white display. This difference 80 in light output, which is shown in
The difference 80 is, according to the first embodiment, compensated in the digital domain by manipulating video data to the display via compensation circuitry. Alternatively, the difference 80 may be compensated in the analogue domain, for example, in the column drivers, but this solution requires additional complex circuitry.
It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design many alternative embodiments without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. Use of the verb “comprise” and its conjugations does not exclude the presence of elements or steps other than those stated in a claim. The article “a” or “an” preceding an element does not exclude the presence of a plurality of such elements. The invention may be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In the device claim enumerating several means, several of these means may be embodied by one and the same item of hardware. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.
Number | Date | Country | Kind |
---|---|---|---|
04102882.0 | Jun 2004 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2005/051995 | 6/17/2005 | WO | 00 | 12/19/2006 |