1. Field of the Invention
The present invention relates to both a driving method and a driving apparatus for a display apparatus, and more particularly, to both a driving method and a driving apparatus capable of reducing a response time of a display apparatus.
2. Description of the Prior Art
An image displaying principle of a liquid crystal display (LCD) lies in externally inputting driving voltages for rearranging liquid crystal molecules of each pixel so that both a polarization state and a transmittance of lights are changed to lead in various luminances. However, liquid crystal molecules are inert to changes of external driving voltages, therefore, in comparison to a conventional cathode ray tube display, a liquid crystal display may incur image blurs while displaying animation.
For neutralizing the defect, voltage overriding may be used. For example, luminance having a gray scale G1 is originally expected to be retrieved by inputting an external driving voltage V1 for having crystal molecules to rotate with an angle θ1, however, for raising a response velocity of crystal molecules, an overdriving voltage V2 higher than the driving voltage V1 is provided as a transition driving voltage, then a stable driving voltage V1 is provided for displaying the gray scale G1. Besides, provided overdriving voltages should be changed corresponding to changes of initial states of the liquid crystal molecules. For example, an overdriving voltage V3 for having a pixel be changed from the gray scale G2 to the gray scale G1 should be different from an overdriving voltage V4 for having the same pixel changed from a gray scale G3 to the gray scale G1. Therefore, an overdriving voltage signal table may be built in the display apparatus for providing different and appropriate overdriving voltages with respect to various changes of gray scales.
Please refer to
Therefore, a purpose of the claimed invention is to disclose a method and apparatus thereof for driving a display apparatus so as to reduce a response time of the display apparatus.
The claimed invention discloses a driving method for a display apparatus. The driving method comprises setting a plurality of driving voltages respectively corresponding to a plurality of gray scales, which comprises a first gray scale and a second gray scale, wherein the first gray scale is corresponding to a first driving voltage, and the second gray scale is corresponding to a second driving voltage and lower than the first gray scale; and controlling the displaying apparatus to merely display up to the second gray scale.
The claimed invention discloses a driving apparatus of a display apparatus. The display apparatus comprises a reference voltage generating module and a control module. The reference voltage generating module is used for setting a plurality of driving voltages and respective corresponding to a plurality of gray scales. The plurality of gray scales comprises a first gray scale and a second gray scale smaller than the first gray scale. The first gray scale is corresponding to a first driving voltage. The second gray scale is corresponding to a second driving voltage. The control module is coupled to both the reference voltage generating module and the display apparatus for generating a control signal to the display apparatus to control the display apparatus to merely display up to the second gray scale.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Please refer to
An input gray scale signal VIN is an 8-bit signal indicating an integer gray scale ranged between 0 and 255 for representing 256 types of gray scale signals. The voltage overdriving module 120 is coupled to the Gamma reference voltage generating module 130 for generating a voltage overdriving signal SOD to the Gamma reference voltage generating module 130 so as to perform voltage overdriving by providing the display panel 140 with appropriate overdriving voltages. An overdriving voltage signal table as shown in
As mentioned above, since the highest gray scale, which is 255 in the embodiment, in the overriding voltage signal table is a fixed and not allowed to be changed, the aim of reducing the response time by inputting the overdriving voltage in the present invention is reached by the adjustment of the Gamma reference voltage. Please refer to
Step 310: Control the control module 150 so as to have the display panel 140 merely display to a second gray scale;
Step 320: Lower a Gamma reference voltage having a first gray scale, which is a maximal gray scale in the present invention and is higher than the second gray scale, i.e., 255, and raise a Gamma reference voltage having the second gray scale so as to have the Gamma reference voltage having the second gray scale is higher than the Gamma reference voltage having the first gray scale, and thereby have the second gray scale acquire a transition overdriving voltage; and
Step 330: After performing voltage overdriving, lower the Gamma reference voltage having the second gray scale back to its original value so as to generate stable driving voltages.
Related control mechanism is conventionally used for fixing white dots and color temperatures. An effective range of the control mechanism may also be chosen by determining input parameters. Therefore, in Step 310, the control module 150 is used for control an available displaying range of gray scales of the display panel 140. In the present embodiment, through controls of the control module 150, a maximal gray scale displayed by the display panel 140 is 254, instead of the predetermined gray scale 255. Therefore, when the input gray scale is 255, a practical displayed luminance has a gray scale of 254. In other words, with the aid of the introduced control mechanism, a displayable range of gray scales of the display panel 140 is between 0 and 254. At this time, under conditions that the input gray scale is 254 or 255, the display panel 140 displays with a same stable driving voltage corresponding to the same gray scale 254.
Besides, when the gray scale signal VIN indicates a gray scale of 254 or 255, in Step 320, settings related to Gamma reference voltages are changed so that the display panel 140 is able to provide voltage overdriving while the maximal gray scale 254 is displayed. Please refer to
As mentioned above, when the control module 150 controls the display panel 140 to display gray values up to the gray scale 254, and when the gray scale signal VIN indicates the gray scale 254, Step 320 is executed so that the display panel 140 displays the maximal gray scale 254 with voltage overdriving. However, when the gray scale signal VIN indicates a gray scale between 0 and 253, a corresponding transition overdriving voltage still has to be referred from the overdriving voltage signal table shown in
Note that in the above embodiment, an available displaying range of the display panel 140 is between 0 and 254. However, in an other embodiment of the present invention, when the input gray scale is 0, a corresponding luminance of the input gray scale may be a luminance for the gray scale 1. In other words, a displayable range of gray scales of the display panel 140 is between 1 and 254. At this time, for both the input gray scales 0 and 1, a same stable driving voltage, which is corresponding to the gray scale 1, is used by the display panel 140 for displaying. The condition for both the gray scales 0 and 1 is similar with the condition for both the gray scales 254 and 255, and thus is not repeatedly described.
Besides, in the above embodiment of the present invention, no matter a display scene is stable or animated, the display panel 140 displays with 256 different gray scales for indicating 8-bit signal. However, in another embodiment of the present invention, a full color image control unit may further be added within the driving apparatus 100 shown in
First, under the condition that animated scenes are displayed, as mentioned above, the virtual bit transform unit 510 generates both the 3-bit gray scale division signal VF and the 6-bit gray scale signal VIN′, and the display panel 140 is driven by the overdriving voltage module 120 according to the 6-bit gray scale signal VIN′. As described in embodiments in
Under the condition that animated scenes are displayed, the jitter/frame rate conversion module 520 takes the 3-bit gray scale division signal VF to add 7 types of gray scales between two consecutive gray scales of the 6-bit gray scale signal VIN′. For the gray scale signal VIN′ ranged from 1 and 62, there are 489 (=62*8−8+1) types of gray scales with the aid of the 3-bit gray scale division signal VF and more than 256 types of gray scales indicated by a 8-bit gray sale signal. Therefore, 256 types of gray scales may be randomly chosen from the 489 types of gray scales to generate a gray scale signal VIN″ so as to drive the display panel 140 and to reach the 16.7 millions of colors.
Benefits of the present invention lie in the reduced response time. By adjusting both the Gamma reference voltages of the first gray scale and the second gray scale, a Gamma reference voltage corresponding to a larger gray scale, i.e. the first gray scale, is lower than a Gamma reference voltage corresponding to a smaller gray scale, i.e., the second gray scale. The display apparatus can merely display up to the second gray scale by color tracking. Therefore, an additional gray scale may be used for performing voltage overdriving without increasing loop capitals so as to reduce the response time.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention.
Number | Date | Country | Kind |
---|---|---|---|
97130344 A | Aug 2008 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
6107978 | Nagaoka et al. | Aug 2000 | A |
7432881 | Kawahaea et al. | Oct 2008 | B2 |
20050231492 | Shen et al. | Oct 2005 | A1 |
20070097064 | Okita et al. | May 2007 | A1 |
20070216623 | Kimura | Sep 2007 | A1 |
20080055226 | Huang et al. | Mar 2008 | A1 |
20080198115 | Lin | Aug 2008 | A1 |
20080198118 | Choi | Aug 2008 | A1 |
20080284773 | Baek et al. | Nov 2008 | A1 |
Number | Date | Country |
---|---|---|
101241690 | Aug 2008 | CN |
P2007248639 | Sep 2007 | JP |
200811828 | Mar 2008 | TW |
Number | Date | Country | |
---|---|---|---|
20100033507 A1 | Feb 2010 | US |