1. Field of the Invention
This invention generally relates to a display device and, more particularly, to a driving method for a 3D image display.
2. Description of the Related Art
With the maturity of the liquid crystal display, an image display capable of displaying 3D images becomes a next-generation display technology.
For example
The display unit 8 includes an upper polarizer 81 and a lower polarizer 82 disposed oppositely, and the image signals ejecting from the upper polarizer 81 can have a polarization direction. The phase modulation unit 9 includes an upper transparent layer 91, a lower transparent layer 92 and an LC layer, e.g. VA mode liquid crystal, sandwiched between the two electrodes, wherein the upper transparent layer 91 is made of a whole piece of transparent electrode while the lower transparent layer 92 is composed of a plurality of parallel transparent electrodes respectively arranged associated with a plurality of pixel rows 83 included in the display unit 8 as shown in
Please refer to
In this way, the polarization directions of the image signals in odd image frames and even image frames are perpendicular to each other. The image signals having different polarization directions can be separated as left-eye image signals and right-eye image signals after passing through the perpendicularly polarized glasses. The left-eye image signals and right-eye image signals respectively enter the left eye and right eye of a user to show 3D images in the user's brain. However as shown in
Accordingly, it is necessary to provide a 3D image display and driving method therefor that can reduce the crosstalk between image signals having different polarization directions and lower the manufacturing complexity.
It is an object of the present invention to provide a driving method for a 3D image display with reduced manufacturing complexity.
It is another object of the present invention to provide a driving method for a display that can reduce the crosstalk between image signals having different polarization directions.
The present invention provides a driving method for a display. The display includes a display unit and a phase modulation unit. The display unit further includes a plurality of pixel rows and is configured to generate image signals having a polarization direction. The phase modulation unit further includes two oppositely disposed electrodes and an LC layer sandwiched between the two electrodes. The driving method changes a potential difference provided on the two electrodes of the phase modulation unit to control the twist of the LC layer thereby changing the polarization direction of the image signals generated by the display unit and passing through the phase modulation unit.
In one embodiment, the driving method for a display includes the steps of: sequentially driving, with a first frequency, all the pixel rows of the display unit to successively generate image frames, wherein the image frames are generated alternatively a normal image frame and a black frame insertion; and alternatively providing, with a second frequency, a high potential difference within a high potential interval and a low potential difference within a low potential interval on the two electrodes of the phase modulation unit, wherein each the high potential interval and each the low potential interval synchronize to a time interval of one normal image frame and one black frame insertion.
In another embodiment, the driving method for a display includes the steps of:
sequentially driving, with a first frequency, all the pixel rows of the display unit to successively generate image frames, wherein the image frames are generated alternatively a normal image frame and a black frame insertion, and each the image frame comprises an LC response time; and alternatively providing, with a second frequency, a high potential difference within a high potential interval and a low potential difference within a low potential interval on the two electrodes of the phase modulation unit, wherein each the high potential interval and each the low potential interval synchronize to a time interval between start points of the LC response time of two successive black frame insertions.
The present invention further provides a driving method for a display. The display includes a display unit, a phase modulation unit and a black light. The display unit further includes a plurality of pixel rows and is configured to generate image signals having a polarization direction. The phase modulation unit further includes two oppositely disposed electrodes and an LC layer sandwiched between the two electrodes. The driving method includes the steps of: sequentially driving, with a first frequency, all the pixel rows of the display unit to successively generate image frames, wherein each the image frame comprises an LC response time and a backlight enable time;
alternatively providing, with the first frequency, a high potential difference within a high potential interval and a low potential difference within a low potential interval on the two electrodes of the phase modulation unit, wherein each the high potential interval and each the low potential interval synchronize to a time interval of one image frame; and providing, with the first frequency, a backlight control signal to enable the back light, wherein the backlight control signal synchronizes to the backlight enable time.
In the image display of the present invention, the two electrodes of the phase modulation unit are made of a whole piece of transparent electrode.
In the driving method for a display of the present invention, polarities of two successive high potential differences are opposite to each other such that the phase modulation unit may perform polarity inversion.
Other objects, advantages, and novel features of the present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
It should be noted that, wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
In the drawings of the present invention, only a part of the components are shown and other components that are not directly related to the present invention are omitted.
Please refer to
The phase modulation unit 13 includes an upper electrode 131, a lower electrode 132 and an LC layer (not shown), which may be twisted nematic (TN) mode, offset codebook (OCB) mode or valley alignment (VA) mode liquid crystal, sandwiched between the upper electrode 131 and the lower electrode 132. The upper electrode 131 and the lower electrode 132 are transparent electrodes formed of, for example, indium tin oxide (ITO), indium zinc oxide (IZO), indium oxide (IO), tin oxide (TO), zinc oxide (ZO), aluminum zinc oxide (AZO) and etc., but not limited thereto. The present invention utilizes the phase modulation unit 13 to modulate the predetermined polarization direction of the image signals generated by the display unit 12 and, through polarized glasses, two eyes of a user is able to respectively receive image signals having different polarization directions within different time intervals so as to see 3D images.
In the present invention, the upper electrode 131 (the one close to the user) is made of a whole piece of transparent electrode, and the lower electrode 132 (the one close to the display unit 12) is also made of a whole piece of transparent electrode, wherein an area of the lower electrode 132 preferably covers at least all pixel rows 125 included in the display unit 12 as shown in
Please refer to
Please refer to
During the operation of the display unit 12, the synchronizing unit 14 controls a phase control signal to be inputted to the phase modulation unit 13, for example a time-varying signal is inputted to one of the upper electrode 131 and the lower electrode 132, and the other electrode receives a fixed voltage such that a time-varying, e.g. 120 Hz, potential difference can be formed between the two electrodes. The phase control signal includes a high potential interval VH corresponding to a high potential difference and a low potential interval VL corresponding to a low potential difference, and the high potential difference and the low potential difference are alternatively provided to the two electrodes of the phase modulation unit 13, wherein a value of the potential difference within the high potential interval VH is used to twist LC layer between the two electrodes to a predetermined position within a predetermined time interval and has no particular limitation. The potential difference within the low potential interval VL may be substantially zero, but not limited thereto. In addition, polarities of the potential difference fed to the phase modulation unit 13 in two successive high potential intervals VH are opposite to each other such that the voltage polarity provided on the LC layer between the two electrodes can be inverted. The synchronizing unit 14 controls the high potential interval VH of the phase control signal and two successive image frames (including one normal image frame and a black frame insertion, e.g. F1+F2, F5+F6 . . . ) to synchronize; and controls the low potential interval VL and other two successive image frames (including one normal image frame and a black frame insertion, e.g. F3+F4 . . . ) to synchronize.
In one embodiment, the LC layer sandwiched between the upper electrode 131 and the lower electrode 132 may be TN mode or OCB mode liquid crystal such that image signals do not have a phase shift within the high potential interval VH and have substantially a 7E phase shift within the low potential interval VL. In this manner, according to the driving signal shown in
Please refer to
During the operation of the display unit 12, the synchronizing unit 14 controls a phase control signal to be inputted to the phase modulation unit 13, for example a time-varying signal is inputted to one of the upper electrode 131 and the lower electrode 132, and the other electrode receives a fixed voltage such that a time-varying, e.g. 120 Hz, potential difference can be formed between the two electrodes. The phase control signal includes a high potential interval VH and a low potential interval VL, and the high potential difference and the low potential difference are alternatively provided to the two electrodes of the phase modulation unit 13, wherein a value of the potential difference within the high potential interval VH and the low potential interval VL may be set similar to the first embodiment. In this embodiment, the synchronizing unit 14 controls the high potential interval VH and the low potential interval VL of the phase control signal to synchronize to a time interval between start points T of the LC response time RT of two successive black frame insertions. In addition, the LC response time RT of the display unit 12 in the black frame insertion is substantially synchronized to the LC response time of the phase modulation unit 12 such that left-eye image signals and right-eye image signals are generated after the twisting of liquid crystal molecules of the phase modulation unit 13 is accomplished such that no image signal will be generated during the twisting of liquid crystal molecules. It is appreciated that, an actual value of the LC response time RT may be determined according to the LC layer actually being used, e.g. the LC response time RT may be at least 3 ms.
In this embodiment, no matter what is the LC layer between the two electrodes, two eyes of the user may respectively receive the image signals having different polarization directions through polarized glasses. In addition, the generated frequency of the image signals and the frequency of the phase control signal are only exemplary and the present invention is not limited thereto.
Please refer to
During the operation of the display unit 12, the synchronizing unit 14 controls a phase control signal to be inputted to the phase modulation unit 13, for example a time-varying signal is inputted to one of the upper electrode 131 and the lower electrode 132, and the other electrode receives a fixed voltage such that a time-varying, e.g. 120 Hz, potential difference can be formed between the two electrodes. The phase control signal includes a high potential interval VH and a low potential interval VL, and the high potential difference and the low potential difference are alternatively provided to the two electrodes of the phase modulation unit 13, wherein a value of the potential difference within the high potential interval VH and the low potential interval VL may be set similar to the first embodiment. In this embodiment, the synchronizing unit 14 controls the high potential interval VH and the low potential interval VL of the phase control signal to synchronize to every frame interval of the display unit 12.
During the operation of the display unit 12 and the phase modulation unit 13, the synchronizing unit 14 further controls a backlight control signal to be inputted to the back light 11 and controls the enable time of the back light 11 to synchronize to the backlight enable time TBL of the display unit 12. Since all pixel rows have been driven by the clock signal and liquid crystal molecules have been twisted to the predetermined position within enough LC response time RT before the back light 11 turns on (i.e. TBL), two eyes of the user will not receive the image signals during the liquid crystal molecules in twisting. It is appreciated that an actual value of the LC response time RT may be determined according to the LC layer actually being used, e.g. at least 3 ms. The backlight enable time TBL may be controlled by the synchronizing unit 14. Because the working frequency of the display unit 12 is 120 Hz in this embodiment, a total sum of an enable time of driving all pixel rows, an LC response time RT and a backlight enable time TBL is 1/120 ms (8.33 ms). If the enable time of driving all pixel rows and/or the LC response time RT is reduced, the backlight enable time TBL can be increased to enhance the brightness efficiency of the display unit 12.
In this embodiment, no matter what is the LC layer between the two electrodes, two eyes of the user may respectively receive the image signals having different polarization directions through polarized glasses. Compared to the first and second embodiments, the timing controller 120 of the third embodiment drives all pixel rows with a lower frequency (e.g. 120 Hz) so as to reduce the control loading of the timing controller 120. In addition, the generated frequency of the image signals and the frequency of the phase control signal are only exemplary and the present invention is not limited thereto.
It is appreciated that, although right-eye image signals are previous to left-eye image signals as shown in
As mentioned above, as conventional 3D image displays need accurate alignment during manufacturing such that they have the problem of increased manufacturing complexity. The present invention further provides a driving method for a display that can be applied to an image display without the need of accurate alignment during manufacturing. The driving method of the present invention further has the effect of being able to reduce the crosstalk between image signals having different polarization directions.
Although the invention has been explained in relation to its preferred embodiment, it is not used to limit the invention. It is to be understood that many other possible modifications and variations can be made by those skilled in the art without departing from the spirit and scope of the invention as hereinafter claimed.
Number | Date | Country | Kind |
---|---|---|---|
099136013 | Oct 2010 | TW | national |
This application is a divisional of U.S. application Ser. No. 13/234,553, filed Sep. 16, 2011, and claims the priority benefit of Taiwan Patent Application Serial Number 099136013, filed on Oct. 22, 2010, the full disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 13234553 | Sep 2011 | US |
Child | 14455216 | US |