The present invention relates to the field of liquid crystal display, and more particularly, to a driving method for a liquid crystal display device.
Liquid crystal display (LCD) device has the advantages of being good in image quality, small in size, light in weight, low in driving voltage, low in power consumption, free of radiation, and relatively low in manufacturing cost, and occupies domination in the field of flat panel display.
Liquid crystal display devices are gradually developing towards a wide viewing angle, for example, an in-plane switching mode (IPS) or fringe field switching mode (FFS) liquid crystal display device can achieve a wide viewing angle. However, people are currently paying more and more attention to protecting their privacy, and there are many things that they don't like to share with others. In public, people always hope that the content is kept secret when they are looking at their mobile phones or browsing computers. Therefore, the display device with a single viewing angle mode can no longer meet the needs of the user. In addition to the need for a wide viewing angle, it is also desirable to be able to switch the display device to a narrow viewing angle mode when anti-peeping is required.
Currently, there is a way to use a viewing angle control electrode on the color filter substrate (CF) to apply a vertical electric field to liquid crystal molecules to achieve switching between wide and narrow viewing angles. Referring to
That is, in the narrow viewing angle mode, by applying a bias voltage on the viewing angle control electrode of the CF side, the liquid crystal molecules are tilted to form light leakage from large observation angles, so as to control the viewing angle of the liquid crystal display device and realize the anti-peeping effect. However, in the narrow viewing angle mode, there is a problem of uneven display (i.e., mura) at large observation angles, which affects the user experience.
An object of the present invention is to provide a driving method for a liquid crystal display device, which can avoid the problem of uneven display at large observation angles of the liquid crystal display device in a narrow viewing angle mode, to improve the user experience.
An embodiment of the present invention provides a driving method for a liquid crystal display device having a wide viewing angle mode and a narrow viewing angle mode. The driving method includes:
in the wide viewing angle mode, all frames of the liquid crystal display device having the same display brightness;
in the narrow viewing angle mode, the odd frames and the even frames of the liquid crystal display device having different display brightness.
Further, in the narrow viewing angle mode, the display brightness of the odd frames of the liquid crystal display device is higher than that of the even frames, or the display brightness of the even frames of the liquid crystal display device is higher than that of the odd frames.
Further, in the narrow viewing angle mode, the liquid crystal display device adopts a way of varying the driving voltages to realize that the odd frames and the even frames have different display brightness.
Further, in the narrow viewing angle mode, the liquid crystal display device is driven with two sets of gamma voltages of different voltage values, one set of gamma voltages is used when the odd frames are displayed, and the other set of gamma voltages is used when the even frames are displayed.
Further, in the narrow viewing angle mode, the liquid crystal display device adopts a way of processing the image data to achieve that the odd frames and the even frames have different display brightness.
Further, the liquid crystal display device includes an image processor, the image processor is used to add or subtract the image data, and the processed image data is then transmitted to the liquid crystal display device for display.
Further, the liquid crystal display device includes a first substrate, a second substrate disposed opposite to the first substrate, and a liquid crystal layer located between the first substrate and the second substrate, an auxiliary electrode is provided on the first substrate, a common electrode and pixel electrodes are provided on the second substrate; wherein:
when a DC reference voltage is applied to the common electrode, and the voltage applied to the auxiliary electrode is same or similar as the common electrode, the voltage difference between the auxiliary electrode and the common electrode is less than a preset value, and the liquid crystal display device is in the wide viewing angle mode;
when a DC reference voltage is applied to the common electrode, and an AC voltage fluctuated up and down around the DC reference voltage is applied to the auxiliary electrode, the voltage difference between the auxiliary electrode and the common electrode is greater than a preset value, and the liquid crystal display device is in the narrow viewing angle mode.
Further, the liquid crystal display device includes a first substrate, a second substrate disposed opposite to the first substrate, and a liquid crystal layer located between the first substrate and the second substrate, an auxiliary electrode is provided on the first substrate, a common electrode and pixel electrodes are provided on the second substrate; wherein:
when a DC reference voltage is applied to the auxiliary electrode, and the voltage applied to the common electrode is same or similar as the auxiliary electrode, the voltage difference between the common electrode and the auxiliary electrode is less than a preset value, and the liquid crystal display device is in the wide viewing angle mode;
when a DC reference voltage is applied to the auxiliary electrode, and an AC voltage fluctuated up and down around the DC reference voltage is applied to the common electrode, the voltage difference between the common electrode and the auxiliary electrode is greater than a preset value, and the liquid crystal display device is in the narrow viewing angle mode.
Further, the AC voltage changes its polarity once every two frames, and the period of the AC voltage is four times the display time of each frame of the liquid crystal display device.
Further, the AC voltage changes its polarity twice per frame, and the period of the AC voltage is equal to the display time of each frame of the liquid crystal display device.
Further, the common electrode and the pixel electrodes are located on different layers and are separated by an insulating layer. The pixel electrodes are located above the common electrode. Each pixel electrode has a comb-shaped structure, and the common electrode is a whole surface structure.
Further, in the narrow viewing angle mode, an image refresh rate of the liquid crystal display device is 120 frames per second.
Further, the liquid crystal display device is provided with a viewing angle switching button configured for users to switch different viewing angle modes of the liquid crystal display device.
Further, the liquid crystal display device is provided with a detection sensor configured for detecting whether there is a person near the liquid crystal display device, and the liquid crystal display device is controlled to switch between different viewing angle modes automatically according to the detection result.
Further, the liquid crystal display device detects the usage scenarios of the users, and the liquid crystal display device is controlled to switch between different viewing angle modes automatically according to the detection result.
The driving method of the liquid crystal display device provided by embodiments of the present invention, in the narrow viewing angle mode, by using the driving method of bright frames and dark frames alternating with each other, the image quality in the bias mode is better than that of the original, the mura degree is significantly slight, to improve the mura problem of the existing liquid crystal display device at large observation angles in the bias mode, thereby improving the smoothness of dynamic picture display and improving the user experience.
In order to make the objectives, technical solutions, and advantages of the present invention clear, the embodiments of the present invention will be further described below with reference to the accompanying drawings.
Referring to
The first substrate 21 is provided with a color resist layer 212, a black matrix 213, an overcoat layer 214, and an auxiliary electrode 215 on the side facing the liquid crystal layer 23. In this embodiment, the color resist layer 212 and the black matrix 213 are staggered and formed on the surface of the first substrate 21 facing the liquid crystal layer 23. The color resist layer 212 includes, for example, three color resist materials of red (R), green (G), and blue (B). The overcoat layer 214 covers the color resist layer 212 and the black matrix 213. The auxiliary electrode 215 is formed on the overcoat layer 214, and the auxiliary electrode 215 may be a whole surface structure or a patterned structure.
The second substrate 22 is provided with scan lines 222, data lines 223, thin film transistors (TFT) 224, a common electrode 225, an insulating layer 226, and pixel electrodes 227 on the side facing the liquid crystal layer 23. A plurality of scan lines 222 and a plurality of data lines 223 are crossed each other to define a plurality of pixel units P. Each pixel unit P is provided with a pixel electrode 227, which is connected to a corresponding scan line 222 and a corresponding data line 223 through a thin film transistor 224. The common electrode 225 and the pixel electrodes 227 are spaced apart and insulated from each other by the insulating layer 226, and the pixel electrodes 227 may be located above or below the common electrode 225. In this embodiment, the pixel electrodes 227 are located above the common electrode 225, the common electrode 225 is a whole surface structure, and each pixel electrode 227 has a comb-shaped structure, so that the liquid crystal display device is formed into a fringe field switching (FFS) mode to obtain a wide viewing angle in normal display.
In other embodiments, the common electrode 225 and the pixel electrodes 227 may be located in the same layer and insulated from each other. In this embodiment, the insulating layer 226 may be omitted. The pixel electrode 227 has a comb-shaped structure, and the common electrode 225 is formed into a comb-shaped structure at a position corresponding to each pixel electrode 227 in order to mutually insert with each other, so that the liquid crystal display device is formed into an in-plane switching (IPS) mode, which can also obtain a wide viewing angle during normal display.
It should be understood that in this embodiment, only the film layers related to the present invention are illustrated on the first substrate 21 and the second substrate 22, and the unrelated film layers are omitted.
In this embodiment, the liquid crystal layer 23 adopts positive liquid crystal molecules, that is, the liquid crystal molecules with positive dielectric anisotropy. In the initial state (i.e., no voltage is applied to the liquid crystal display device), the positive liquid crystal molecules in the liquid crystal layer 23 assume a lying posture which is substantially parallel to the first substrate 21 and the second substrate 22, and the length direction of the positive liquid crystal molecules is substantially parallel to the surface of the first substrate 21 and the second substrate 22 (as shown in
Referring to
For example, when a DC reference voltage Vref is applied to the common electrode 225, and the voltage applied to the auxiliary electrode 215 is same or similar as the common electrode 225, the voltage difference between the auxiliary electrode 215 and the common electrode 225 is less than a preset value (e.g., less than 1V), the tilt angle of the liquid crystal molecules in the liquid crystal layer 23 nearly does not change and the liquid crystal molecules remain in a substantially lying posture, so the liquid crystal display device is in a normal wide viewing angle mode (as shown in
Alternatively, when a DC reference voltage Vref is applied to the auxiliary electrode 215, and the voltage applied to the common electrode 225 is same or similar as the auxiliary electrode 215, the voltage difference between the common electrode 225 and the auxiliary electrode 215 is less than a preset value (e.g., less than 1V), the tilt angle of the liquid crystal molecules in the liquid crystal layer 23 nearly does not change and the liquid crystal molecules remain in a substantially lying posture, so the liquid crystal display device is in a normal wide viewing angle mode (as shown in
As shown in
In the wide viewing angle mode, the voltage difference between the auxiliary electrode 215 and the common electrode 225 may be in the range of from 0V to 1V. Preferably, the same voltage is applied to both the auxiliary electrode 215 and the common electrode 225, so that the voltage difference between the auxiliary electrode 215 and the common electrode 225 is zero, and a better wide viewing angle display effect can be achieved.
In the narrow viewing angle mode, the voltage difference between the auxiliary electrode 215 and the common electrode 225 may be in the range of from 3V to 7V. For example, the voltage difference between the auxiliary electrode 215 and the common electrode 225 can be selected as 4V, 5V, 6V, etc. as needed to achieve the desired narrow viewing angle display effect.
Referring to
As described above, when a DC reference voltage Vref is applied to one of the auxiliary electrode 215 and the common electrode 225 and a voltage that is the same as or close to the DC reference voltage Vref is applied to the other one of the auxiliary electrode 215 and the common electrode 225, the liquid crystal display device is in the wide viewing angle mode. When a DC reference voltage Vref is applied to one of the auxiliary electrode 215 and the common electrode 225 and an AC voltage Vac fluctuated up and down around the DC reference voltage Vref is applied to the other one of the auxiliary electrode 215 and the common electrode 225, the liquid crystal display device is in the narrow viewing angle mode.
Specifically, in the wide viewing angle mode, all the frames of the liquid crystal display device have the same display brightness; but in the narrow viewing angle mode, the odd frames and the even frames of the liquid crystal display device have different display brightness.
Specifically, in the narrow viewing angle mode, the odd frames and the even frames of the liquid crystal display device have different display brightness, either the display brightness of the odd frames of the liquid crystal display device is higher than that of the even frames or the display brightness of the even frames of the liquid crystal display device is higher than that of the odd frames.
In the narrow viewing angle mode, in order to make the odd frames and the even frames of the liquid crystal display device have different display brightness, it can be achieved by varying the driving voltages in the odd frames and the even frames, because the display brightness of the liquid crystal display device is related to the driving voltages Vpixel applied to the data lines 223. Specifically, a way of varying the driving voltages may be any one of the following a1-a6:
a1: in the odd frames, the driving voltages Vpixel on the data lines 223 are increased so that the odd frames become bright frames; while in the even frames, the driving voltages Vpixel on the data lines 223 are reduced so that the even frames become dark frames.
a2: in the even frames, the driving voltages Vpixel on the data lines 223 are increased so that the even frames become bright frames; while in the odd frames, the driving voltages Vpixel on the data lines 223 are reduced so that the odd frames become dark frames.
a3: in the odd frames, the driving voltages Vpixel on the data lines 223 are increased so that the odd frames become bright frames; but in the even frames, the original driving voltages Vpixel are maintained on the data lines 223 so that the even frames become dark frames.
a4: in the even frames, the driving voltages Vpixel on the data lines 223 are increased so that the even frames become bright frames; but in the odd frames, the original driving voltages Vpixel are maintained on the data lines 223 so that the odd frames become dark frames.
a5: in the odd frames, the driving voltages Vpixel on the data lines 223 are reduced so that the odd frames become dark frames; but in the even frames, the original driving voltages Vpixel are maintained on the data lines 223 so that the even frames become bright frames.
a6: in the even frames, the driving voltages Vpixel on the data lines 223 are reduced so that the even frames become dark frames; but in the odd frames, the original driving voltages Vpixel are maintained on the data lines 223 so that the odd frames become bright frames.
Specifically, a resistor string or a gamma chip may be used to generate different sets of required gamma voltages, namely the above-mentioned Gamma1 and Gamma2.
As shown in
As shown in
In
Optionally, in the narrow viewing angle mode, in order to make the odd frames and the even frames of the liquid crystal display device have different display brightness, it can also be realized by processing the image data (i.e., the data to be displayed). Referring to
For example, assuming that the original display gray level corresponding to the image data is Ln (Ln is any gray level from L0 to L255), when the image data is subjected to an adding process, the display gray level corresponding to the image data may be L(n+1), which is equivalent to increasing its display gray level to improve the display brightness; when the image data is subjected to a subtracting process, the display gray level corresponding to the image data may be L(n−1), which is equivalent to reducing its display gray scale to reduce the display brightness. That is, adding the image data values can increase the display brightness, and subtracting the image data values can reduce the display brightness. Thus, the ways of processing the image data can be any one of the following b1-b6:
b1: the image data values of the odd frames are added so that the odd frames become bright frames; the image data values of the even frames are subtracted so that the even frames become dark frames.
b2: the image data values of the even frames are added so that the even frames become bright frames; the image data values of the odd frames are subtracted so that the odd frames become dark frames.
b3: the image data values of the odd frames are subtracted so that the odd frames become bright frames; but the image data values of the even frames are unchanged so that the even frames become dark frames.
b4: the image data values of the even frames are added so that the even frames become bright frames; but the image data values of the odd frames are unchanged so that the odd frames become dark frames.
b5: the image data values of the odd frames are subtracted so that the odd frames become dark frames; but the image data values of the even frames are unchanged so that the even frames become bright frames.
b6: the image data values of the even frames are subtracted so that the even frames become dark frames; but the image data values of the odd frames are unchanged so that the odd frames become bright frames.
Referring to
Referring to
In other embodiments, the liquid crystal display device can also be controlled to switch between wide and narrow viewing angle modes automatically, according to the user's usage scenarios. For example, when it is detected that the user is using an e-mail or inputting a password, and other usage scenarios that require anti-peeping, the liquid crystal display device is controlled to switch to the narrow viewing angle mode automatically; when the user is not in these usage scenarios that require anti-peeping, the liquid crystal display device is controlled to switch to the wide viewing angle mode automatically.
The embodiments of the present invention provide driving methods of a liquid crystal display device, in the narrow viewing angle mode, by alternately driving bright and dark frames, the display quality of the images in the bias mode is better than that of the original images, and the degree of mura is obviously reduced, to improve the large observation angle mura problem of the existing liquid crystal display device in the bias mode and improve the smoothness of the dynamic picture display, thereby improving the user experience.
The liquid crystal display device provided by the embodiments of the present invention can easily switch between the wide viewing angle mode and the narrow viewing angle mode under different occasions, has good operation flexibility and convenience, to achieve a multifunctional liquid crystal display device integrated with the functions of entertainment and privacy protection.
The above are only the preferred embodiments of the present invention and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. within the spirit and principle of the present invention should be included in the protection scope of the present invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2018/114023 | 11/5/2018 | WO | 00 |