This application claims priority to Japanese Patent Application No. 2010-268760 filed on Dec. 1, 2010. The entire disclosure of Japanese Patent Application No. 2010-268760 is hereby incorporated herein by reference.
1. Technical Field
The present invention relates to a driving method of an electrophoretic display device, an electrophoretic display device, and an electronic apparatus.
2. Related Art
In recent years, a display panel having a memory ability, which is capable of retaining an image even though power is cut off, has been developed and used for an electronic watch or the like. As the display panel having the memory ability, an EPD (electrophoretic display) device, a liquid crystal display device having a memory ability, or the like has been proposed.
In the electrophoretic display device, it is known that a display change occurs according to an environmental temperature. An electrophoretic display device disclosed in JP-A-2004-085606 changes the intensity of an electric field generated between a common electrode and a pixel electrode by controlling a driving voltage according to an environmental temperature. For example, in a case where the environmental temperature at which the electrophoretic display device is used is low (hereinafter, referred to as a low temperature), the driving voltage of a pulse signal applied to the electrodes is set to be high to strengthen the electric field, thereby preventing contrast from being lowered.
Here, the contrast has the same meaning as a contrast ratio. That is, in an electrophoretic display device which uses black and white as basic display colors, the contrast refers to the ratio of an arrival reflectance indicating white and an arrival reflectance indicating black. In the electrophoretic display device, even though the electric field is continuously applied between the common electrode and the pixel electrode, the reflectance is saturated. The arrival reflectance refers to the saturated reflectance. The arrival reflectance is changed according to an operation condition of the electrophoretic display device including the environmental temperature.
In this regard, it has been experimentally confirmed that even though electric power (driving voltage×driving time) of a pulse signal supplied to a common electrode and a pixel electrode is increased, in a case where partial driving is performed at a low temperature, contrast is lowered. That is, in a case where the partial driving for rewriting in only apart of a display section is performed at the low temperature, even though the driving voltage of the applied pulse signal becomes high or even though the driving time thereof becomes long, the contrast is lowered compared with the case of a temperature other than the low temperature. Thus, a display quality of the electrophoretic display device may deteriorate.
An advantage of some aspects of the invention is that it provides a driving method of an electrophoretic display device and the like which are capable of performing a high contrast display even at a low temperature.
(1) An aspect of the invention is directed to a driving method of an electrophoretic display device including a display section in which an electrophoretic element including electrophoretic particles is disposed between a pair of substrates and a plurality of pixels is arranged, wherein a pixel electrode corresponding to the pixel is formed between one of the substrates and the electrophoretic element and a common electrode which faces the plurality of pixel electrodes is formed between the other one of the substrates and the electrophoretic element. The method includes: an image rewriting process of rewriting an image displayed on the display section by applying a voltage based on a driving pulse signal, in which a first electric potential and a second electric potential which is different from the first electric potential are repeated, to the common electrode, by applying the voltage based on the driving pulse signal to each of the plurality of pixel electrodes, and by moving the electrophoretic particles by an electric field generated between the common electrode and the pixel electrodes. The rewriting process includes: a first pulse application using the driving pulse signal with the pulse width of the first electric potential being a first width; a driving stop stopping the generation of the electric field between the common electrode and the pixel electrodes, performed after the first pulse application; and a second pulse application using the driving pulse signal with the pulse width of the first electric potential being a second width, performed after the driving stop.
According to this aspect of the invention, since the rewriting includes the driving stop stopping the generation of the electric field between the common electrode and the pixel electrodes between the first pulse application and the second pulse application, it is possible to prevent the electric field between both the electrodes from being weakened, thereby making it possible to performing a high contrast display even at the low temperature.
(2) In the driving method of the electrophoretic display device, the rewriting may include a temperature determination determining whether an environmental temperature is a predetermined threshold temperature or higher, and in a case where it is determined in the temperature determination that the environmental temperature is the predetermined threshold temperature or higher, only the first pulse application may be performed.
(3) In the driving method of the electrophoretic display device, in a case where it is determined in the temperature determination that the environmental temperature is the predetermined threshold temperature or higher, a driving time of the first pulse application may be shortened in the rewriting.
With this configuration, it is determined in the temperature determination whether the environmental temperature is the low temperature at which the contrast may be lowered, and only the first pulse application is performed in the case of the temperature other than the low temperature, and thus, the response at the time of image rewriting is quickened. Further, it is possible to perform a high contrast display regardless of the environmental temperature. Here, in the case of the temperature other than the low temperature, it is possible to reach the arrival reflectance in a short time compared with the case of the low temperature. Thus, in the case of the temperature other than the low temperature, the driving time of the pulse signal in the first pulse application may be shortened, and the response at the time of image rewriting may be quickened. Here, the threshold temperature is 10° C., for example.
(4) In the driving method of the electrophoretic display device, the first electric potential or the second electric potential may be applied to all of the common electrode and the pixel electrodes, in the driving stop.
(5) In the driving method of the electrophoretic display device, all of the common electrode and the pixel electrodes may be in a high impedance state, in the driving stop.
With this configuration, the driving stop stops the generation of the electric field between the pixel electrodes and the common electrode by the following method. Firstly, in the driving stop, a common fixed electric potential may be applied to all of the common electrode and the plurality of pixel electrodes. By applying the fixed electric potential, it is possible to reliably stop the generation of the electric field between the electrodes. Here, the fixed electric potential may be the second electric potential, but is preferably the first electric potential which is different from an electric potential of a reverse electric potential pulse (which will be described later). Further, all of the common electrode and the plurality of pixel electrodes may be in the high impedance state. At this time, it is possible to suppress power consumption by stopping the driving of the signal supplied to the electrodes.
(6) In the driving method of the electrophoretic display device, the second width which is longer than the first width may be used in the second pulse application.
With this configuration, by setting the second width to be longer than the first width, it is possible to sufficiently move the electrophoretic particles in the second pulse application, and as a result, to enhance the contrast.
(7) Another aspect of the invention is directed to an electrophoretic display device including: a display section in which an electrophoretic element including electrophoretic particles is disposed between a pair of substrates and a plurality of pixels is arranged; and a control section which controls the display section. The display section includes: a pixel electrode which is formed between one of the substrates and the electrophoretic element to correspond to the pixel; and a common electrode which is formed between the other one of the substrates and the electrophoretic element to face the plurality of pixel electrodes. The control section performs an image rewriting control for rewriting an image displayed on the display section by applying a voltage based on a driving pulse signal, in which a first electric potential and a second electric potential which is different from the first electric potential are repeated, to the common electrode, by applying the voltage based on the driving pulse signal to each of the plurality of pixel electrodes, and by moving the electrophoretic particles by an electric field generated between the common electrode and the pixel electrodes. In the image rewriting control, the control section performs: a first pulse application control for using the driving pulse signal with the pulse width of the first electric potential being a first width; a driving stop control for stopping the generation of the electric field between the common electrode and the pixel electrodes, performed after the first pulse application control; and a second pulse application control for using the driving pulse signal with the pulse width of the first electric potential being a second width, performed after the driving stop control.
According to this aspect of the invention, since the image rewriting control includes the driving stop control for stopping the generation of the electric field between the common electrode and the pixel electrodes between the first pulse application control and the second pulse application control, it is possible to prevent the electric field between both the electrodes from being weakened, thereby making it possible to performing a high contrast display even at the low temperature.
(8) In the electrophoretic display device, the control section may include a temperature determination circuit which determines whether an environmental temperature is a predetermined threshold temperature or higher, and in a case where it is determined by the temperature determination circuit that the environmental temperature is the predetermined threshold temperature or higher, only the first pulse application control may be performed in the image rewriting control.
With this configuration, it is determined in the temperature determining control whether the environmental temperature is the low temperature at which the contrast may be lowered, and only the first pulse application control is performed in the case of the temperature other than the low temperature, and thus, the response at the time of image rewriting is quickened. Further, it is possible to perform a high contrast display regardless of the environmental temperature.
(9) Still another aspect of the invention is directed to an electronic apparatus including the electrophoretic display device as described above.
According to this aspect of the invention, it is possible to provide an electronic apparatus which includes the electrophoretic display device which sequentially performs the first pulse application control, the driving stop control and the second pulse application control in the case of at least the low temperature and is thus capable of performing a high contrast display even at the low temperature, as the image rewriting control for the image rewriting.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
Hereinafter, embodiments of the invention will be described with reference to the accompanying drawings. With regard to a second embodiment and thereafter, the same reference numerals are given to the same configuration as in a first embodiment, and detailed descriptions thereof will be omitted.
The first embodiment of the invention will be described with reference to
1.1. Electrophoretic Display Device
1.1.1. Configuration of Electrophoretic Display Device
The electrophoretic display device 100 includes a control section 6, a storing section 160 and a display section 5. The control section 6 controls the display section 5, and includes a scanning line driving circuit 61, a data line driving circuit 62, a controller 63, and a common power modulation circuit 64. The scanning line driving circuit 61, the data line driving circuit 62, and the common power modulation circuit 64 are connected to the controller 63, respectively. The controller 63 generally controls these sections on the basis of image signals or the like read from the storing section 160 or sync signals supplied from the outside. The control section 6 may be configured to include the storing section 160. For example, the storing section 160 may be a memory which is built into the controller 63.
Here, the storing section 160 may be an SRAM, a DRAM or a different memory, and stores at least data (image signals) about images displayed on the display section 5. Further, information to be controlled by the controller 63 may be stored in the storing section 160.
A plurality of scanning lines 66 which extends from the scanning line driving circuit 61 and a plurality of data lines 68 which extends from the data line driving circuit 62 are formed in the display section 5, and a plurality of pixels 40 is formed to correspond to intersections thereof.
The scanning line driving circuit 61 is connected to respective pixels 40 by m scanning lines 66 (Y1, Y2, . . . , Ym). By sequentially selecting the scanning lines 66 from the first line to the m-th line under the control of the controller 63, the scanning line driving circuit 61 supplies a selection signal which regulates an on-timing of a driving TFT 41 (see
The data line driving circuit 62 is connected to the respective pixels 40 by n data lines 68 (X1, X2, . . . , Xn). The data line driving circuit 62 supplies, to the pixel 40, an image signal which regulates image data of one bit corresponding to each of the pixels 40, under the control of the controller 63. In the present embodiment, if image data “0” is regulated, an image signal of a low level is supplied to the pixel 40, and if image data “1” is regulated, an image signal of a high level is supplied to the pixel 40.
A low electric potential power line 49 (Vss), a high electric potential power line 50 (Vdd), a common electrode wiring 55 (Vcom), a first pulse signal line 91 (S1) and a second pulse signal line 92 (S2), which extend from the common power modulation circuit 64, are disposed in the display section 5.
The respective wirings are connected to the pixel 40. The common power modulation circuit 64 generates a variety of signals which are supplied to the respective wirings under the control of the controller 63, and also performs electric connection and disconnection of the respective wirings (high impedance, Hi-Z).
1.1.2. Circuit Configuration of Pixel Portion
The driving TFT (Thin Film Transistor) 41, a latch circuit 70, and a switch circuit 80 are disposed in the pixel 40. The pixel 40 has a configuration of an SRAM (Static Random Access Memory) type which holds an image signal as an electric potential by the latch circuit 70.
The driving TFT 41 is a pixel switching element including an N-MOS transistor. Agate terminal of the driving TFT 41 is connected to the scanning line 66, and a source terminal thereof is connected to the data line 68. Further, a drain terminal thereof is connected to a data input terminal of the latch circuit 70. The latch circuit 70 includes a transfer inverter 70t and a feedback inverter 70f. Power voltage is supplied to the inverters 70t and 70f from the low electric potential power line 49 (Vss) and the high electric potential power line 50 (Vdd).
The switch circuit 80 includes transmission gates TG1 and TG2, and outputs a signal to a pixel electrode 35 (see
If the image data “1” (image signal of the high level) is stored in the latch circuit 70 and the transmission gate TG1 is turned on, the switch circuit 80 supplies a signal S1 as Va. On the other hand, if the image data “0” (image signal of the low level) is stored in the latch circuit 70 and the transmission gate TG2 is turned on, the switch circuit 80 supplies a signal S2 as Va. With such a circuit configuration, the control section 6 can control the electric potential (signal) supplied to the pixel electrode of each pixel 40. The circuit configuration of the pixel 40 is an example, and thus is not limited to that shown in
1.1.3. Display Method
The electrophoretic display device 100 according to the present embodiment employs an electrophoretic method of a two-particle system microcapsule type. If a dispersion liquid is colorless and transparent and electrophoretic particles are white or black, at least two colors can be displayed using two colors of black and white as base colors. Here, it is assumed that the electrophoretic display device 100 can display black and white as the base colors. Further, displaying a pixel which displays black with white and displaying a pixel which displays white with black are referred to as inversion.
On the other hand, the opposing substrate 31 is a transparent substrate, and an image is displayed on the side of the opposing substrate 31 in the display section 5. The display section 5 includes a common electrode layer 370 which includes a planar common electrode 37, on a side of the facing substrate 31 which faces the electrophoretic element 32. The common electrode 37 is a transparent electrode. The common electrode 37 is an electrode which is common to all pixels, differently from the pixel electrode 35, and is supplied with an electric potential Vcom.
The electrophoretic element 32 is disposed in an electrophoretic display layer 360 which is disposed between the common electrode layer 370 and the driving electrode layer 350, and the electrophoretic display layer 360 forms a display area. According to an electric potential difference between the common electrode 37 and the pixel electrode (for example, 35A or 35B), it is possible to display a desired color for each pixel.
In
In
1.2. Driving Method of Electrophoretic Display Device
1.2.1. Problems in Partial Driving at a Low Temperature
Here, a case where partial driving for rewriting in only a part of the display section 5 at a low temperature will be taken into consideration. At this time, it has been experimentally confirmed that even though electric power (driving voltage×driving time) of a pulse signal supplied to the common electrode 37 and the pixel electrode 35 is increased, contrast is lowered at the low temperature, compared with a temperature other than the low temperature. At this time, the reason why the contrast is lowered regardless of the size of the electric power of the pulse signal is that the electric field applied to the electrophoretic particles is weakened and the electrophoretic particles are thus not moved.
The adhesion layer 38 is formed of an adhesive agent of an excellent insulation property, but for example, ions included in the adhesion layer 38 serve as carriers and have a certain level of conductivity. By the existence of such ions, it can be considered that the pixel electrode 35A is disposed to be in contact with the electrophoretic particles.
In addition to the influence of the adhesive agent used in the adhesion layer 38, it is considered that in a case where the electric field is applied in a certain direction, the ions are likely to act repulsively. Further, if the partial driving is performed, a state where the electric field is not applied to the adjacent pixel may occur (pixel 40B in
Here, since the viscosity of the dispersion liquid increases, for example, at the low temperature, the weakening of the electric field significantly influences the movement amount of the electrophoretic particles. Thus, particularly, in the partial driving at the low temperature, the lowering of the contrast causes a problem. According to some experiments, the low temperature is, for example, 10° C. or lower.
1.2.2. Reverse Electric Potential Driving Pulse
In the electrophoretic display device, the partial driving (hereinafter, referred to as “reverse electric potential driving”) which uses a pulse signal including a reverse electric potential driving pulse may be performed in order to increase the response speed.
In this example, Va supplied to the pixel electrode of the pixel 40A is a reverse signal of Vcom, and Vb supplied to the pixel electrode of the pixel 40B is the same signal as Vcom. The pixel 40A is rewritten from black to white in the pulse application process (white color display), and is rewritten from white to black in the pulse application process (black color display). On the other hand, in the pixel 40B, since the electric field is not generated between the common electrode and the pixel electrode, rewriting is not performed, and the black color display is continued.
On the other hand, the pixel 40B continuously maintains the black color display before the section t1 without causing the electric potential difference since the same signal as the Vcom is constantly supplied to the pixel electrode. In this way, it is possible to reduce the driving time at the partial rewriting time by using the reverse electric potential driving pulse having the short width.
However, as shown in
Thus, the driving method of the electrophoretic display device according to the present embodiment which solves the above-mentioned problem will be described with reference to
1.2.3. Flowchart
When the controller 63 (see
Next, the controller 63 performs an image rewriting process of rewriting the image to be displayed on the display section 5 on the basis of the image signal by the common power modulation circuit 64 (S6). In the image rewriting process, in order to perform a high contrast display at the low temperature, the following sub routine flowchart is given.
In the first pulse application process S60, a voltage based on the first pulse signal in which the pulse width of the first electric potential is a first width is applied as the driving pulse signal. The first electric potential is the high level (VH) in the case of the white display, and is the low level (VL) in the case of the black display. In the first pulse application process S60, since the electric field which is biased in a specific direction is applied to the electrophoretic element, the phenomenon occurs that the electric field is weakened, which is considered to be caused by outflow of the ions of the adhesion layer 38. Thus, even though the first pulse application process S60 is terminated at the low temperature, the obtained contrast is low.
Thus, in the present embodiment, the driving stop process S80 which stops the driving of the pulse signal with respect to the electrode is performed subsequent to the first pulse application process S60. During the driving stop process S80, since the same fixed electric potential is applied to the common electrode and the pixel electrode, the electric field is not generated. Then, it is considered that the ions which act repulsively against the electric field in a specific direction and move from the proximity of the pixel electrode to a different area are diffused by removal of the electric field, and then are again present in the proximity of the pixel electrode. Thus, after the driving stop process S80, the electric field is not weakened. In the driving stop process S80, the common electrode and the pixel electrode are in the high impedance state, and thus, the electric field does not have to be generated.
In the second pulse application process S82, a voltage based on the second pulse signal in which the pulse width of the first electric potential is a second width is applied as the driving pulse signal. The second width is longer than the first width of the first pulse signal, and the time when the electric field acts on the electrophoretic particles is long. Thus, it is possible to increase the arrival reflectance indicating white or to decrease the arrival reflectance indicating black, and to improve the contrast. In the second pulse application process S82, the reflectance becomes close to a desired reflectance to some extent due to the first pulse application process S60, and even though the voltage based on the pulse signal of the long pulse width is applied, flickering does not occur.
1.2.4. Example of waveform diagram and color change
In the first pulse application process, Va is a signal obtained by reversing Vcom, and Vb is the same signal as Vcom. Here, in the case of the white color display, the first electric potential is VH. By shortening the pulse width T2 of the second electric potential, compared with the pulse width (first width) T1 of the first electric potential, it is possible to reduce the driving time of the first pulse application process.
At the low temperature (for example, 10° C. or lower), the first pulse application process uses the first pulse signal in which a pulse having T1 of 500 ms and T2 of 10 ms, for example, is repeated ten times.
In the driving stop process, Vcom, Va and Vb are all a fixed electric potential VH, and the electric field is not generated. In the period T3 of the driving stop process, since the ions separated from the area around the pixel electrode of the pixel 40A return by diffusion, the cause of weakening the electric field is removed, and thus, the electrophoretic particles are easily moved. For example, the period T3 is 500 ms, and it can be experimentally understood that a preferable result is obtained when T3 is 500 ms or longer.
In the second pulse application process, in a similar way to the first pulse application process, Va is a signal obtained by reversing Vcom, and Vb is the same signal as Vcom. In order to move the electrophoretic particles until a sufficient reflectance is obtained, T4 (second width) is set to a value which is equal to or larger than T1 (first width). For example, T4 is 1,500 ms, and it can be experimentally understood that a preferable result is obtained when T4 is set to 500 ms to 1,500 ms. In the second pulse application process of
A second embodiment of the invention will be described with reference to
2.1. Temperature Determination Circuit
The electrophoretic display device 100 according to the second embodiment includes a temperature determination circuit in addition to the configuration of the electrophoretic display device 100 in the first embodiment. The electrophoretic display device 100 according to the second embodiment measures an environmental temperature by the temperature determination circuit and performs a driving stop control and a second pulse application control only at the low temperature. In the case of the temperature other than the low temperature, the driving time is reduced to quicken the response at the time of image rewriting with such a control. Further, it is possible to perform a high contrast display regardless of the environmental temperature. Here, the temperature determination circuit may be apart of the control section, for example.
The temperature determination circuit 65 compares a threshold electric potential VTH corresponding to a threshold temperature with an electric potential which is resistance-divided by a comparator 132, and then outputs a temperature determining signal 130 to the controller 63. In a case where the environmental temperature is lower than the threshold temperature, the contrast is lowered due to the low temperature. For example, in a case where the environmental temperature is reduced to be lower than the threshold temperature, the resistance-divided electric potential which is input to a non-reverse input terminal of the comparator 132 becomes higher than the threshold electric potential VTH. At this time, the temperature determination circuit 65 outputs the temperature determining signal 130 of a low level. The controller 63 of the electrophoretic display device 100 according to the second embodiment changes the driving method according to whether the temperature determining signal 130 is the low level (low temperature) or the high level (temperature other than the low temperature) as described later.
2.2. Flowchart
In the present embodiment, the image rewriting process S6 includes a temperature determining process S50 and the first pulse application process S60, and the driving stop process S80 and the second pulse application process S82 are performed only when the environmental temperature is lower than the threshold temperature (low temperature).
The temperature determining process S50 is a process in which the controller 63 determines whether the environmental temperature is the low temperature or not on the basis of the temperature determining signal 130.
The first pulse application process S60 is performed regardless of whether the environmental temperature is the low temperature or not. Thereafter, if it is determined in the temperature determining process S50 that the environmental temperature is the low temperature (S70: Y), the driving stop process S80 and the second pulse application process S82 are performed. At this time, it is possible to perform a high contrast display even at the low temperature.
If it is determined in the temperature determining process S50 that the environmental temperature is the temperature other than the low temperature, the driving stop process S80 and the second pulse application process S82 are not performed (S70: N). In the case of the temperature other than the low temperature, since the contrast is not lowered, it is not necessary to perform the driving stop process S80. Further, since a sufficient contrast is obtained only in the first pulse application process S60, it is not necessary to perform the second pulse application process S82. In this way, since the image rewriting process in the second embodiment includes the temperature determining process S50, the unnecessary processes are omitted at the temperature other than the low temperature. Thus, the driving time is reduced to thereby quicken the response at the image rewriting time.
The first pulse application process S60 may change the driving time at the low temperature and at the temperature other than the low temperature. For example, in a case where the reflectance reaches the arrival reflectance in the middle of the first pulse application process S60 in the case of the temperature other than the low temperature, the driving time may be reduced. Thus, it is possible to further quicken the response at the image rewriting time. Further, in the present embodiment, in the case of the temperature other than the low temperature, the driving stop process S80 and the second pulse application process S82 are omitted, but only the driving stop process S80 may be omitted. At this time, it is possible to reliably perform a high contrast image display regardless of the environmental temperature.
2.3. Example of Waveform Diagrams
An application example of the invention will be described with reference to
For example,
Further,
The electronic apparatus which includes the electrophoretic display 100 can display a high quality image with high contrast even at the low temperature.
In the above-described embodiments, the electrophoretic display device is not limited to an electrophoretic display device of a two-particle system of black and white which uses black and white particles, but may be an electrophoretic display device of a single particle system of blue, white or the like, or may be an electrophoretic display device having a color combination other than the black and white combination. Further, the driving method is not limited to the active matrix type, and may be a segment type.
Further, the invention is not limited to the electrophoretic display device, and the driving method may be applied to a display device with a memory ability. For example, the driving method may be applied to an ECD (electrochromic display), a ferroelectric liquid crystal display, a cholesteric liquid crystal display or the like.
The invention is not limited to the exemplary embodiments, and includes substantially the same configuration (for example, configuration having the same functions, methods and results or configuration having the same objects and effects) as the configuration described in the embodiments. Further, the invention includes a configuration in which sections which are not essential in the configuration described in the embodiments are replaced. Further, the invention includes a configuration having the same effects as the configuration described in the embodiments or a configuration capable of achieving the same objects. Further, the invention includes a configuration in which any known technology is added to the configuration described in the embodiments.
Number | Date | Country | Kind |
---|---|---|---|
2010-268760 | Dec 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20070229443 | Sawada et al. | Oct 2007 | A1 |
20080024431 | Ishii | Jan 2008 | A1 |
20080238867 | Maeda et al. | Oct 2008 | A1 |
20090073111 | Miyazaki | Mar 2009 | A1 |
20090189850 | Murayama | Jul 2009 | A1 |
20090237392 | Kajino | Sep 2009 | A1 |
20090322735 | Takei | Dec 2009 | A1 |
20100001946 | Murayama | Jan 2010 | A1 |
20100073282 | Murayama | Mar 2010 | A1 |
20100118046 | Miyasaka et al. | May 2010 | A1 |
20100188395 | Uchida et al. | Jul 2010 | A1 |
20110304654 | Murayama | Dec 2011 | A1 |
20120139891 | Murayama | Jun 2012 | A1 |
20120139896 | Murayama | Jun 2012 | A1 |
20140071183 | Murayama | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
2004-085606 | Mar 2004 | JP |
2009-069467 | Apr 2009 | JP |
2009-258614 | Nov 2009 | JP |
2010-044397 | Feb 2010 | JP |
2010-223876 | Oct 2010 | JP |
2011-099898 | May 2011 | JP |
Number | Date | Country | |
---|---|---|---|
20120139896 A1 | Jun 2012 | US |