Driving policies determination

Information

  • Patent Grant
  • 11760387
  • Patent Number
    11,760,387
  • Date Filed
    Wednesday, July 4, 2018
    5 years ago
  • Date Issued
    Tuesday, September 19, 2023
    8 months ago
Abstract
A method for determining driving policies for a vehicle includes: receiving, in real-time during a trip of a vehicle, at least a set of input multimedia content elements captured by at least one sensor deployed in proximity to the vehicle, determining a plurality of possible future scenarios based at least on the set of input multimedia content elements, determining a probability score for each of the plurality of possible future scenarios, determining at least one driving policy according to at least the probability score for at least one of the plurality of possible future scenarios, and controlling the vehicle according to the at least one driving policy.
Description
TECHNICAL FIELD

The present disclosure relates generally to vehicle driving systems, and more particularly to determining driving policies based on analysis of multimedia content.


BACKGROUND

In part due to improvements in computer processing power and in location-based tracking systems such as global positioning systems, autonomous and other assisted driving systems have been developed with the aim of providing driverless control or driver-assisted control of vehicles while in movement. An autonomous vehicle includes a system for controlling the vehicle based on the surrounding environment such that the system autonomously controls functions such as acceleration, braking, steering, and the like.


Existing solutions for autonomous driving may use a global positioning system receiver, electronic maps, and the like, to determine a path from one location to another. Understandably, fatalities and injuries due to vehicles colliding with people or obstacles during the determined path are significant concerns for developers of autonomous driving systems. To this end, autonomous driving systems may utilize sensors such as cameras and radar for detecting objects to be avoided.





BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter that is disclosed herein is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the disclosed embodiments will be apparent from the following detailed description taken in conjunction with the accompanying drawings.



FIG. 1 is a network diagram utilized to describe the various disclosed embodiments;



FIG. 2 is a schematic diagram of a driving policies' generator according to an embodiment;



FIG. 3 is a flowchart illustrating a method for generating driving policies based on multimedia content elements according to an embodiment;



FIG. 4 is a block diagram depicting the basic flow of information in the signature generator system of FIG. 1; and



FIG. 5 is a diagram showing a flow of patches generation, response vector generation, and signature generation in a large-scale speech-to-text system.





DESCRIPTION OF EXAMPLE EMBODIMENTS
Overview

A method for determining driving policies for a vehicle includes: receiving, in real-time during a trip of a vehicle, at least a set of input multimedia content elements captured by at least one sensor deployed in proximity to the vehicle, determining a plurality of possible future scenarios based at least on the set of input multimedia content elements, determining a probability score for each of the plurality of possible future scenarios, determining at least one driving policy according to at least the probability score for at least one of the plurality of possible future scenarios, and controlling the vehicle according to the at least one driving policy.


Description

It will be appreciated that as autonomous vehicles are introduced they will have to co-exist in the near future with non-autonomous vehicles, and even among autonomous vehicles, additional safety precautions may be necessary before they are safe enough for reliable, general use.


For example, some existing autonomous driving solutions engage in automatic or otherwise autonomous braking to avoid and/or minimize damage from collisions. However, such solutions may face challenges in accurately identifying obstacles. Moreover, such solutions typically employ a configured setting for braking or deceleration in response to the detection of a potential collision event. Such a setting does not necessarily account for the continued inertia and/or changes in movement of the obstacle being avoided. As a result, the automatically braking vehicle may stop unnecessarily quickly or conversely may not stop quickly enough.


Accordingly, in practice such solutions may not successfully prevent the collision event from occurring. In fact, in some cases the solutions may actually be a contributary factor in causing a collision, even if not necessarily the initially detected potential collision event. For example, stopping quickly to avoid an obstacle in front of the car may result in a rear-end collision caused by a vehicle behind the autonomously braking vehicle.


It will therefore be appreciated that such solutions typically suffer from a lack of proper consideration for the overall context for the detection of a potential collision event. It would therefore be advantageous to provide a solution for accurately detecting obstacles and determining possible scenarios respective thereof.


Reference is now made to FIG. 1 which is an exemplary network diagram 100 utilized to describe the various embodiments disclosed herein. Network diagram 100 comprises a driving control system (DCS) 120, a driving policies generator 130, a database 150, and at least one sensor 160, communicatively connected via a network 110. Network 110 may be implemented using one or more of the Internet, the world-wide-web (WWW), a local area network (LAN), a wide area network (WAN), a metro area network (MAN), and/or any other network(s) capable of enabling communication between the elements of network diagram 100.


Driving control system 120 is configured to control the vehicle (not shown), or at least a function thereof, either autonomously or at least semi-autonomously subject to driving policies determined by driving policies generator 130 in real-time during a trip of the vehicle based on sensor signals captured by sensors 160 deployed in proximity to the vehicle. While FIG. 1 depicts a single driving control system 120, it will be appreciated that in practice the overall functionality of driving control system 120 may be provided by a multiplicity of such systems. For example, driving control system 120 may interface with one or more of the vehicle's electronic control units (ECUs) to control the vehicle. Alternatively, in some implementations one or more of the vehicle's ECUs may be configured to function as additional driving control systems 120 that may communicate directly with driving policies generator 130.


In accordance with an exemplary embodiment, one, some, or all of driving control system 120, driving policies generator 130, sensor(s) 160 may be disposed in or affixed to the vehicle. It will be appreciated that the trip includes movement of the vehicle from at least a start location to a destination location. During the trip, at least visual multimedia content elements are captured by the sensors 160.


At least one of sensors 160 is configured to capture visual multimedia content elements demonstrating characteristics of at least a portion of the environment (e.g., roads, obstacles, etc.) surrounding the vehicle. In an example implementation, sensors 160 may include one or more cameras installed on a portion of a vehicle such as, but not limited to, a dashboard of the vehicle, a hood of the vehicle, a rear window of the vehicle, and the like. The visual multimedia content elements may include images, videos, and the like. The sensors 160 may be integrated in or communicatively connected to the driving control system 120 without departing from the scope of the disclosed embodiments.


In accordance with some embodiments described herein, one or more other sensors 160 may be configured to capture audio signals in the vicinity of the vehicle. For example, sensors 160 may include one or more microphones mounted in one or more locations on the vehicle's exterior. The microphone(s) may be disposed to capture ambient sounds in the driving environment, e.g., honking, shouting, brakes screeching, etc. Alternatively, or in addition, a microphone may also be located within the vehicle and disposed to capture sounds from, for example, passenger conversations, cellphone conversations, the vehicle's radio, and/or and an entertainment system (either as an integrated component of the vehicle and/or associated with an electronic device carried by one of the passengers).


Alternatively, or in addition, sensors 160 may be at least in part implemented using a vehicle's embedded electronic control units (ECUs). For example, ECUs controlling one or more of the vehicle's doors, windows, engine, power steering, seats, speed, telematics, transmission, brakes, battery, may also be leveraged to provide input regarding an environmental state for the vehicle. It will be appreciated that such ECUs may typically be connected to an onboard computer in the vehicle. In accordance with some embodiments described herein, driving control system 120 and/or driving policies generator 130 may be connected to, or even integrated as part of, the vehicle's onboard computer, such that no additional infrastructure may be necessary to receive sensor input from the vehicle's ECUs.


Alternatively, or in addition, one or more of sensors 160 may be implemented as a service, providing vehicle environment data from sensors operated independently of the vehicle. For example, a camera installed at a key intersection may provide “look ahead” images, or at least an angle or view not available to a camera mounted in or on the vehicle. In another example, the service may provide information regarding weather, traffic, and/or other environmental conditions.


Driving control system 120 may comprise an application 125 which may be implemented in software, hardware, firmware, or a combination thereof. Application 125 may be configured to send multimedia content elements and/or other environmental information captured by sensors 160 to driving policies' generator 130, and to receive policies therefrom. Application 125 may be further configured to receive collision avoidance instructions to be executed by driving control system 120 from driving policies' generator 130.


Database 150 may store a plurality of scenarios and associated potential causes and effects of collisions, probability scores, collision risk parameters, automatic braking instructions, and/or a combination thereof. Potential causes may include, but are not limited to, moving objects (e.g., other vehicles, pedestrians, animals, etc.), static objects (e.g., parked cars, buildings, boardwalks, trees, bodies of water, etc.), and/or current environmental conditions (rain, temperature, etc.). Each scenario represents a future possible series of events that leads to one or more outcomes. For example, given a pedestrian walking in proximity to an intersection in front of a vehicle in motion, one scenario may be that the pedestrian will cross the intersection, and one possible outcome may be a collision between the pedestrian and the vehicle. Another possible outcome may be that the pedestrian runs across the intersection and there is no collision. It will be appreciated that the possible outcomes listed herein are exemplary; in practice there may be other results as well.


A probability score for each of the plurality of scenarios may be stored in database 150. In accordance with embodiments described herein, the probability score may be calculated based on analysis of actual observations of the scenarios as they have occurred. For example, traffic videos may be used to identify scenarios and then to use them to populate database 150. The actual observed outcomes for each of the identified scenarios may be analyzed to calculate a probability score for each possible outcome. For example, given X occurrences observed for a given scenario with possible outcomes A and B: if outcome A is observed Y times, then its probability score may be calculated as Y/X; if outcome B is observed Z times, then its probability score may be calculated as Z/X, etc. Alternatively, or in addition, some or all of the probability scores may be input to database 150 manually. It will be appreciated that the embodiments described herein may support other methods of determining probability scores and populating database 150.


Using the abovementioned example, the speed and route of both the vehicle and the pedestrian, may be used to determine a probability score for each of the possible outcomes, where a risk score may represent the likelihood of a worst-case outcome, e.g., a collision between them the vehicle and the pedestrian. It will be appreciated that in scenarios there may be more than one undesirable outcome. For example, in a given scenario there may be a probability score reflecting the probability that the vehicle may make contact with a pedestrian or a second vehicle. In the same scenario there may also be a probability score reflecting the probability that the vehicle may hit a telephone pole when swerving to avoid the pedestrian or vehicle. In such a scenario, the risk score may be calculated to represent a combined, weighted probability for either undesirable outcome to occur.


As depicted in FIG. 1, network diagram 110 also comprises signature generator system (SGS) 140 and deep-content classification (DCC) system 170. In accordance with embodiments described herein SGS 140 and DCC system 170 are connected to the network 110 and may be utilized by the driving policies generator 130 to perform various embodiments described herein. It will be appreciated that each of SGS 140 and DCC system 170 may be connected to the Driving Policies Generator 130 either directly or through the network 110. In certain configurations, SGS 140, DCC system 170, and/or both may alternatively be embedded in driving policies generator 130.


SGS 140 is configured to generate signatures for multimedia content elements and comprises a plurality of computational cores, each computational core having properties that are at least partially statistically independent of each other core, where the properties of each core are set independently of the properties of each other core. Generation of signatures by the signature generator system is described further herein below with respect to FIGS. 4 and 5.


Deep content classification system 170 is configured to create, automatically and in an unsupervised fashion, concepts for a wide variety of multimedia content elements. To this end, deep content classification system 170 may be configured to inter-match patterns between signatures for a plurality of multimedia content elements and to cluster the signatures based on the inter-matching. Deep content classification system 170 may be further configured to generate reduced signature clusters by reducing the number of signatures in a cluster to a minimum while maintaining matching and enabling generalization to new multimedia content elements. Metadata of the multimedia content elements is collected to form, together with each of the reduced signature clusters, a concept. An example deep content classification system is described further in U.S. Pat. No. 8,266,185, which is assigned to the common assignee, the contents of which are hereby incorporated by reference. It will be appreciated that the configuration of SGS 140 and DCC 170 in network diagram 110 may be exemplary; the embodiments described herein may also support the use of other methods/systems to identify/classify the input multimedia content elements and/or to associate them with the scenarios and probability scores stored in database 150.


In an embodiment, driving policies generator 130 may be configured to send the input multimedia content elements to signature generator system 140, to deep content classification system 170, or both. Additionally, driving policies generator 130 may also be configured to receive a plurality of signatures generated for the input multimedia content elements from signature generator system 140, to receive a plurality of signatures (e.g., signature reduced clusters) of concepts matched to the input multimedia content elements from deep content classification system 170, or both. Alternatively, or in addition, driving policies' generator 130 may be configured to generate the plurality of signatures, identify the plurality of signatures (e.g., by determining concepts associated with the signature reduced clusters matching the multimedia content element to be tagged), or a combination thereof.


It will be appreciated that each signature is associated with at least one concept. A concept may be understood as a description of the content for which the signature was generated. Each concept comprises a collection of signatures representing associated multimedia content elements and metadata describing the concept. As a non-limiting example, a ‘Superman concept’ is a signature-reduced cluster of signatures describing elements (such as multimedia elements) related to, e.g., a Superman cartoon, and a set of metadata providing textual representation of the Superman concept. As another example, metadata of a concept represented by the signature generated for a picture showing a bouquet of red roses may be “flowers”. In yet another example, metadata of a concept represented by the signature generated for a picture showing a bouquet of wilted roses may be “wilted flowers”.


In accordance with embodiments described herein, driving policies generator 130 may be configured to determine a context of the input multimedia content elements based on their signatures, associated concepts, and/or both. Determination of the context allows for contextually matching between a potential cause of collision according to the input multimedia content elements and a predetermined potential cause of collision shown in a reference multimedia content element. Determining contexts of multimedia content elements is described further in U.S. patent application Ser. No. 13/770,603, assigned to the common assignee, the contents of which are hereby incorporated by reference.


In accordance with embodiments described herein, driving policies generator 130 may be configured to obtain, in real-time, or at least near real-time, input multimedia content elements from driving control system 120 that are captured by sensors 160 during the trip. It will be appreciated that at least some of the input multimedia content elements may be visual multimedia content elements showing obstacles that may lead to one or more future scenarios based on the current vehicle movement and the characteristics of the obstacle. For each future scenario, driving policies generator 130 may generate a probability score indicating the probability of that scenario occurring. The probability score may be generated by comparing one or more historical scenarios to each of the future possible scenarios that may occur based at least on the vehicle's movement and the obstacle's expected behavior. The obstacle may be, for example, pedestrians, animals, other vehicles, etc. It will be appreciated that the embodiments described herein may also support the use of other environmental factors as input when generating probability scores. For example, some of the historical scenarios may be associated with poor visibility and/or unsafe road conditions. These additional environmental factors may also be factored into the generation of probability scores, e.g., the presence of fog and/or slippery road conditions may increase the likelihood of an undesirable outcome.


In accordance with embodiments described herein, driving policies generator 130 may be configured to determine whether any reference multimedia content element matches the input multimedia content elements and, if so, to determine a probability score accordingly, e.g., per a probability score stored in database 150 for a scenario associated with the matched reference multimedia content element. For example, if the matched reference multimedia content element is a puddle on the road, the probability scores may reflect the likelihood for each possible outcome (e.g., how likely is it that the car may skid, the engine may be flooded, there may be no effect, etc.) as per the stored probability scores in database 150.


In accordance with embodiments described herein, determining whether there is a matching reference multimedia content element includes generating at least one signature for each input multimedia content element and comparing the generated input multimedia content signatures to signatures of the reference multimedia content elements. It will be appreciated that driving policies generator 130 may be configured to send the input multimedia content elements to SGS 140, to deep content classification system 170, and/or both. Driving policies generator 130 may further be configured to receive the generated signatures (e.g., from SGS 140) and/or at least one concept matching the input multimedia content elements (e.g., from DCC system 170). It will also be appreciated that the functionality attributed herein to SGS 140 and DCC 170 may be exemplary; the embodiments described herein may also support the use of other methods/systems determining whether there is a matching reference multimedia content element.


Each reference multimedia content element in database 150 is a previously captured multimedia content element representing an obstacle or other potential future scenario associated therewith. Each reference multimedia content element may be associated with at least one probability score, a risk score (e.g., reflecting one or more undesirable outcomes with possible damage that may occur), predetermined collision avoidance instructions, and the like. The collision avoidance instructions include, but are not limited to, one or more instructions for controlling the vehicle, e.g., to avoid an accident due to colliding with one or more obstacles.


Each reference multimedia content element may further be associated with a portion of a vehicle so as to indicate the location on the vehicle from which the reference multimedia content element was captured. To this end, in some embodiments, a reference multimedia content element may only match an input multimedia content element if, in addition to any signature matching, the reference multimedia content element is associated with the same or a similar portion of the vehicle (e.g., a portion on the same side of the vehicle).


As a non-limiting example, input multimedia content elements showing a dog approaching the car from 5 feet away that were captured by a camera deployed on a hood of the car may only match a reference multimedia content element showing a dog approaching the car from approximately 5 feet away that was captured by a camera deployed on the hood or other area on the front side of the car. The same reference multimedia content element may not match the input multimedia content element if the input multimedia content element was captured from a camera facing the rear of the vehicle. However, it will be appreciated that there may be a scenario in database 150 where the vehicle is in reverse (i.e., moving backwards) with a dog approaching from the rear. Accordingly, if the input multimedia content element showing a dog approaching from the rear is accompanied by additional information indicating that the vehicle is in reverse, it may still match a reference multimedia content element in database 150.


In accordance with embodiments described herein, when a potential collision is detected, driving policies generator 130 may be configured to generate an alert. The alert may indicate the potential cause of collision shown in the input multimedia content elements (i.e., a potential cause of collision associated with the matching reference multimedia content element), the at least one collision parameter associated with the matching reference multimedia content element (as stored in database 150), or both. The alert may further include one or more collision avoidance instructions to be executed by driving control system 120 to avoid the collision. The collision avoidance instructions may be instructions for configuring one or more portions of the driving control system such as, but not limited to, a braking system, a steering system, and the like.


In accordance with embodiments described herein, driving policies generator 130 may be configured to send the generated alert and/or the collision avoidance instructions to the driving control system 120. Alternatively, driving policies generator 130 may include driving control system 120 in an integrated module and may be further configured to control the vehicle based on the collision avoidance instructions.


It will be appreciated that only one driving control system 120 and one application 125 are described herein above with reference to FIG. 1 for the sake of simplicity and without limitation on the disclosed embodiments. Multiple driving control systems 120 may provide multimedia content elements via multiple applications 125, and appropriate driving decisions may be provided to each such instance of driving control system 120, without departing from the scope of the disclosure.


It should be noted that any of driving control system 120, sensors 160, driving policies generator 130, and database 150 may be integrated without departing from the scope of the disclosure.


Reference is now made to FIG. 2 which is an example schematic diagram of driving policies generator 130 according to an embodiment. Driving policies generator 130 comprises processing circuitry 210 coupled to memory 220, storage 230, and network interlace 240. The components of driving policies' generator 130 may be communicatively connected via bus 250.


Processing circuitry 210 may be Instantiated as one or more hardware logic components and circuits. For example, and without limitation, illustrative types of hardware logic components that may be used include field programmable gate arrays (FPGAs), application-specific integrated circuits (ASICs), Application-specific standard products (ASSPs), system-on-a-chip systems (SOCs), general-purpose microprocessors, microcontrollers, digital signal processors (DSPs), and the like, or any other hardware logic components capable of performing calculations and/or other manipulations of information. In accordance with embodiments described herein, processing circuitry 210 may be implemented as an array of at least partially statistically independent computational cores. The properties of each computational core may be set independently of those of each other core, as described further herein above.


Memory 220 may be volatile (e.g., RAM, etc.), non-volatile (e.g., ROM, flash memory, etc.), or a combination thereof. It will be appreciated that computer readable instructions to implement one or more embodiments disclosed herein may be stored in storage 230.


Memory 220 may also be configured to store software. Software shall be construed broadly to mean any type of instructions, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Instructions may include code (e.g., in source code format, binary code format, executable code format, or any other suitable format of code). The instructions, when executed by processing circuitry 210, instruct the processing circuitry 210 to perform the various processes described herein. Specifically, the instructions, when executed, facilitate at least the generation by processing circuitry 210 of driving alerts based on multimedia content as described herein.


Storage 230 may be magnetic storage, optical storage, and the like, and may be implemented, for example, as flash memory or other memory technology, CD-ROM, Digital Versatile Disks (DVDs), or any other suitable medium which may be used to store the desired information.


Network interface 240 enables driving policies generator 130 to communicate with the signature generator system 140 and/or DCC 170 for the purpose of, for example, sending multimedia content elements, receiving signatures, and the like. Further, network interface 240 enables driving policies' generator 130 to obtain multimedia content elements from sensors 160 as well in order to determine a plurality of possible scenarios that may occur in light of the obstacles and the vehicle's movement.


It should be understood that the embodiments described herein are not limited to the specific architecture illustrated in FIG. 2, and other architectures may be equally used without departing from the scope of the disclosed embodiments. In particular, driving policies generator 130 may further include an integrated signature generator system functionally similar to SGS 140 that may be configured to generate signatures as described herein without departing from the scope of the disclosed embodiments.


Reference is now made to FIG. 3 which depicts a flowchart 300 illustrating an exemplary method to be performed by driving policies generator 130 to generate driving policies based on multimedia content according to embodiments described herein. For example, as discussed hereinabove, driving policies generator 130 may generate driving policies based on multimedia content elements captured by sensors 160 (e.g., a camera) deployed in proximity to a vehicle such that the sensor signals indicate at least some features of the environment around the vehicle. The multimedia content elements may be captured during a trip, where the trip includes movement of the vehicle from a beginning location to a destination location.


Driving policies generator 130 may receive (step S310), input multimedia content elements (MMCEs) during a vehicle's trip. As described herein, the input multimedia content elements may be captured by sensors 160 deployed in proximity to the vehicle and may be, for example, received from sensors 160 via driving control system 120 which may be communicatively connected to sensors 160. The input multimedia content elements may be received in real-time, or near real-time, during the trip, thereby facilitating real-time provision of alerts to autonomous or assisted driving systems.


At least some of the input multimedia content elements may comprise obstacles shown therein. Such obstacles may include, both moving objects (e.g., pedestrians, other vehicles, animals, etc.) or stationary objects (e.g., signs, bodies of water, parked vehicles, statues, buildings, walls, etc.).


SGS 140 generates (step S320) signatures of the input multimedia content elements. The generation of signatures by SGS 140 is further described herein below with respect of FIGS. 4 and 5.


In accordance with embodiments described herein, step S320 may include SGS 140 generating (or at least causing generation) of at least one signature for each input multimedia content element and comparing the generated signatures for the input multimedia content element to signatures of the plurality of reference multimedia content elements. The reference multimedia content element signatures may be generated and stored in database 150 in a preprocessing step and/or during previous iterations of flowchart 300.


In accordance with embodiments described herein, step S320 may include generating the signatures via a plurality of at least partially statistically independent computational cores, where the properties of each core are set independently of the properties of the other cores. In another embodiment, S320 includes sending the multimedia content element(s) to signature generator system 140, to deep content classification system 170, or both, and receiving the plurality of signatures in return. Signature generator system 140 may comprise a plurality of at least statistically independent computational cores as described further herein. Deep content classification system 170 may be configured to autonomously define concepts for a wide variety of multimedia content elements in an unsupervised fashion.


In accordance with embodiments described herein, step S320 may include driving policies generator 130 querying DCC system 170 using the generated signatures to identify at least one concept matching the input multimedia content elements. The metadata of the matching concept may be used for correlation between a first signature (e.g., from the input MMCE) and at least a second signature (e.g., from a reference MMCE).


Driving policies generator 130 may determine (step S330), a plurality of future possible scenarios based on matches between the input and reference multimedia content elements. It will be appreciated that the vehicle's movement and the identification of one or more obstacles that may potentially collide with the vehicle may be factored into such a determination.


Driving policies generator 130 may determine (step S340) a probability score for each future scenario. The probability score can be determined by comparing the future scenarios to historical scenarios stored in the database 150 and determining the respective probability and characteristics associated therewith. It will be appreciated that at least some of the probability scores stored in database 150 may be determined and stored either in a preprocessing step and/or in previous iterations of flowchart 300; i.e., it will be appreciated that database may be at least partially populated with probability scores prior to a given iteration of flowchart 300. Driving policies generator 130 may then determine (step S350) driving policies for the future scenarios in light of their associated probability scores. The determination of the driving policies is further described hereinabove with respect of FIG. 1.


If additional input multimedia content elements have been received (step S360), process control may return to step S310. Otherwise, execution of flowchart 300 may terminate. Accordingly, execution of flowchart 300 may continue until the trip is completed by, for example, arriving at the destination location, the vehicle stopping at or near the destination location, and the like.


As a non-limiting example, input video may be received from a dashboard camera mounted on a car and facing forward such that the dashboard camera captures video of the environment in front of the car showing a pedestrian entering a crosswalk. The captured input video is obtained in real-time and analyzed to generate signatures therefore. The generated signatures are compared to signatures of reference videos. Based on the comparison, a plurality of possible future scenarios may be determined. Then, a probability of a collision between the vehicle and the pedestrian may be determined in light of at least current/expected movement of the vehicle and the pedestrian. A driving policy may then be determined based on the determined probability of collision. As an example, in case of high probability, a driving policy may be to slow down while arriving close to the crosswalk. In the case of an autonomous vehicle, the driving policy may be to brake, thereby avoiding collision with the pedestrian.


Reference is now made to FIGS. 4 and 5 which together illustrate an exemplary implementation for the generation of signatures for the multimedia content elements by SGS 140. An exemplary high-level description of the process for large scale matching is depicted in FIG. 4. In this example, the matching is for video content.


Video content segments 2 from a master database (DB) 6 and a target DB 1 are processed in parallel by a large number of independent computational cores 3 that constitute an architecture for generating the signatures (hereinafter the “architecture”). Further details on the computational cores generation are provided below. The independent cores 3 generate a database 5 of robust signatures 4 for video content-segments 2 from target DB 1 and a database 8 of robust signatures 7 for video content-segments 2 from master DB 6. An exemplary and non-limiting process of signature generation for an audio component is shown in detail in FIG. 4. Finally, target robust signatures 4 and/or signatures are effectively matched, by a matching algorithm 9, to master robust signatures 7 and/or signatures database to find matches between the two databases.


To demonstrate an example of the signature generation process, it is assumed, merely for the sake of simplicity and without limitation on the generality of the disclosed embodiments, that the signatures are based on a single frame, leading to certain simplification of the computational cores generation. The matching system is extensible for signatures generation capturing the dynamics in-between the frames. In an embodiment the driving policies generator 130 may be configured with a plurality of computational cores to perform matching between signatures.


The signatures generation process is now described with reference to FIG. 5. The first step in the process of signatures generation from a given speech-segment is to breakdown the speech-segment to K patches 14 of random length P and random position within the speech segment 12. The breakdown is performed by the patch generator component 21. The value of the number of patches K, random length P and random position parameters is determined based on optimization, considering the tradeoff between accuracy rate and the number of fast matches required in the flow process of driving policies generator 130 and SGS 140. Thereafter, all the K patches are injected in parallel into multiple computational cores 3 to generate K response vectors 22, which are fed into a signature generator system 23 to produce a database of robust signatures and signatures 4.


In order to generate robust signatures, i.e., signatures that are robust to additive noise L (where L is an integer equal to or greater than 1) by the computational cores 3, a frame ‘i’ is injected into the cores 3. Then, cores 3 generate two binary response vectors: custom character which is a signature vector, and {right arrow over (RS)} which is a robust signature vector.


For generation of signatures robust to additive noise, such as White-Gaussian-Noise, scratch, etc., but not robust to distortions typical in video elements, e.g., crop, shift and rotation, etc., a core Ci={ni}(1≤i≤L) may consist of a single leaky integrate-to-threshold unit (LTU) node or more nodes. The node ni equations are:







V
i

=



j




w

i

j




k
j










n
i

=

θ


(

Vi
-

Th
x


)






where, θ is a Heaviside step function; wij is a coupling node unit (CNU) between node i and image component j (for example, grayscale value of a certain pixel j); kj is an image component T (for example, grayscale value of a certain pixel j); Thx is a constant Threshold value, where ‘x’ is ‘S’ for signature and ‘RS’ for robust signature; and Vi is a Coupling Node Value.


The Threshold values Thx are set differently for signature generation and for robust signature generation. For example, for a certain distribution of Vi values (for the set of nodes), the thresholds for signature (ThS) and robust signature (ThRS) are set apart, after optimization, according to at least one or more of the following criteria:


For: Vi>ThRS


1−P(V>ThS)−1−(1−e)1<<1,


i.e., given that 1 nodes (cores) constitute a robust signature of a certain image I, the probability that not all of these 1 nodes will belong to the signature of same, but noisy image, p is sufficiently low (according to a system's specified accuracy).


2:1−P(Vi>ThRS)≈1/L


i.e., approximately 1 out of the total L nodes can be found to generate a robust signature according to the above definition.






    • 3: Both robust signature and signature are generated for certain frame i.





It should be understood that even though the generation of a signature uses lossless compression, where the characteristics of the compressed data are maintained, the uncompressed data of the underlying multimedia content element may not be reconstructed; a generated signature may be unidirectional in that the lossless compression may be used on only a portion of the multimedia content element such that the entire element may not be reconstructed by merely reversing the lossless compression. However, the use of lossless compression facilitates the purpose of comparison to another signature without the need of comparison to the original data. The detailed description of the Signature generation can be found in U.S. Pat. Nos. 8,326,775 and 8,312,031, assigned to the common assignee, which are hereby incorporated by reference.


A computational core generation is a process of definition, selection, and tuning of the parameters of the cores for a certain realization in a specific system and application. The process may be based on several design considerations, such as:

    • (a) The cores are designed so as to obtain maximal independence, i.e., the projection from a signal space should generate a maximal pair-wise distance between any two cores' projections into a high-dimensional space.
    • (b) The cores are optimally designed for the type of signals, i.e., the cores are maximally sensitive to the spatio-temporal structure of the injected signal, for example, and in particular, sensitive to local correlations in time and space. Thus, in some cases a core represents a dynamic system, such as in state space, phase space, edge of chaos, etc., which may be uniquely used herein to exploit their maximal computational power.
    • (c) The cores are optimally designed with regard to invariance to a set of signal distortions, of interest in relevant applications.


A detailed description of computational core generation and the process for configuring such cores is discussed in more detail in U.S. Pat. No. 8,655,801 which is assigned to the common assignee, the contents of which are hereby incorporated by reference.


It is important to note that the embodiments disclosed herein are only examples of the many advantageous uses of the innovative teachings herein. In general, statements made in the specification of the present application do not necessarily limit any of the various claimed inventions. Moreover, some statements may apply to some inventive features but not to others. In general, unless otherwise indicated, singular elements may be in plural and vice versa with no loss of generality. In the drawings, like numerals refer to like parts through several views.


It should be noted that various embodiments described herein are discussed with respect to autonomous driving decisions and systems are merely for simplicity and without limitation on the disclosed embodiments. The embodiments disclosed herein are equally applicable to other assisted driving systems such as, for example, accident detection systems, lane change warning systems, and the like. In such example implementations, the automated driving decisions may be generated, e.g., only for specific driving events.


The various embodiments disclosed herein may be implemented as hardware, firmware, software, or any combination thereof. Moreover, the software is preferably implemented as an application program tangibly embodied on a program storage unit or computer readable medium consisting of parts, or of certain devices and/or a combination of devices. The application program may be uploaded to, and executed by, a machine comprising any suitable architecture. Preferably, the machine is implemented on a computer platform having hardware such as one or more central processing units (“CPUs”), a memory, and input/output interfaces. The computer platform may also include an operating system and microinstruction code. The various processes and functions described herein may be either part of the microinstruction code or part of the application program, or any combination thereof, which may be executed by a CPU, whether or not such a computer or processor is explicitly shown. In addition, various other peripheral units may be connected to the computer platform such as an additional data storage unit and a printing unit. Furthermore, a non-transitory computer readable medium is any computer readable medium except for a transitory propagating signal.


The term “non-transitory”, as used herein, is a limitation of the medium itself (i.e., tangible, not a signal) as opposed to a limitation on data storage persistency (e.g., RAM vs. ROM).


All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the disclosed embodiments and the concepts contributed by the inventor to furthering the art and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.


It should be understood that any reference to an element herein using a designation such as “first,” “second,” and so forth does not generally limit the quantity or order of those elements. Rather, these designations are generally used herein as a convenient method of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements may be employed there or that the first element must precede the second element in some manner. Also, unless stated otherwise, a set of elements comprises one or more elements.


As used herein, the phrase “at least one of” followed by a listing of items means that any of the listed items can be utilized individually, or any combination of two or more of the listed items can be utilized. For example, if a system is described as including “at least one of A, B, and C,” the system can include A alone; B alone; C alone; A and B in combination; B and C in combination; A and C in combination; or A, B, and C in combination.

Claims
  • 1. A method for determining driving policies for a vehicle, comprising: receiving, in real-time during a trip of a vehicle and during a current iteration of the method, at least a set of input multimedia content elements captured by at least one sensor deployed in proximity to the vehicle;determining, a plurality of possible future scenarios based at least on the set of input multimedia content elements; wherein at least two possible future scenarios of the plurality of possible future scenarios have undesirable outcomes;determining a probability score for each of the plurality of possible future scenarios to provide a plurality of probability scores;generating a risk score that represents a combined, weighted probability score of the at least two possible future scenarios;determining at least one driving policy, wherein the determining comprises selecting the at least one driving policy to decrease risk associated with the risk score; andcontrolling the vehicle according to the at least one driving policy.
  • 2. The method of claim 1, further comprising: generating, at least one signature for each one multimedia content element of the set of input multimedia content elements, wherein the plurality of possible future scenarios is determined by at least matching the at least one signature to at least one reference signature associated with at least one of the plurality of future scenarios; wherein the at least one reference signature is generated during the previous iteration of the method.
  • 3. The method of claim 2, wherein each of the at least one reference signature is associated with one or more concepts, wherein each concept of the one or more concepts is a collection of associated signatures and metadata.
  • 4. The method of claim 1, wherein the set of multimedia content elements includes at least one of: an image; a video, or at least an audio signal.
  • 5. The method of claim 1, wherein the least two possible future scenarios of the plurality of possible future scenarios comprise (a) a possible future scenario of colliding with an object captured in the set of input multimedia content elements have undesirable outcomes, and (b) colliding with another object when driving to avoid the colliding with the object.
  • 6. The method of claim 1, wherein the determining a plurality of possible future scenarios is also based on an environmental state for the vehicle as indicated by non-image based information provided by at least one electronic control unit (ECU) in the vehicle.
  • 7. The method of claim 6, wherein the at least one ECU controls at least one of the vehicle's doors, windows, engine, power steering, seats, speed, telematics, transmission, brakes, or battery.
  • 8. The method of claim 1, wherein the determining a plurality of possible future scenarios is also based on an environmental state for the vehicle as indicated by information provided by a service external to the vehicle.
  • 9. The method of claim 1, wherein the determining of a probability score of at least one possible future scenario is calculated during a previous iteration of the method; wherein the previous iteration of the method is executed during the trip of the vehicle.
  • 10. The method according to claim 1 wherein the set of input multimedia content elements are indicative of a scenario and wherein the determining of the probability score for each of the plurality of possible future scenarios comprises comparing between numbers of occurrences of each of the plurality of possible future scenarios given the scenario.
  • 11. A vehicle driving system, comprising: processing circuitry;at least one sensor operative to capture at least a set of input multimedia content elements in real-time during a trip of a vehicle;a driving policies generator application to be executed by the processing circuitry and operative to:determine, during a current iteration, a plurality of possible future driving scenarios based at least on the set of input multimedia content elements, wherein at least two possible future scenarios of the plurality of possible future scenarios have undesirable outcomes;determine a probability score for each of the plurality of possible future driving scenarios to provide a plurality of probability scores;generate a risk score that represents a combined, weighted probability score of the at least two possible future scenarios;anddetermine at least one driving policy by selecting the at least one driving policy to decrease risk associated with the risk score; anda driving control system operative to control the vehicle according to the at least one driving policy.
  • 12. The system of claim 11, further comprising: a signature generating system to be executed by the processing circuitry to generate at least one signature for each multimedia content element of the set of input multimedia content elements, wherein the driving policies generator application is further operative to determine the plurality of possible future driving scenarios by at least matching the at least one signature to at least one reference signature associated with at least one of the plurality of future scenarios; and wherein the at least one reference signature is generated during the previous iteration of the method.
  • 13. The system of claim 12, wherein each reference signature is associated one or more concepts, wherein each concept of the one or more concepts is a collection of associated signatures and metadata.
  • 14. The system of claim 11, wherein each multimedia content element of the set of input multimedia content elements is at least one of: an image, or a video, or at least an audio signal.
  • 15. The system of claim 11, wherein the driving policies generator application is also operative to determine the plurality of possible future driving scenarios based at least in part on an environmental state for the vehicle as indicated by non-image based information provided by at least one electronic control unit (ECU) in the vehicle.
  • 16. The system of claim 15, wherein the at least one ECU controls at least one of the vehicle's doors, windows, engine, power steering, seats, speed, telematics, transmission, brakes, or battery.
  • 17. The system of claim 11, wherein the driving policies generator application is also operative to determine the plurality of possible future driving scenarios based at least in part on an environmental state for the vehicle as indicated by information provided by a service external to the vehicle.
  • 18. The system of claim 11, wherein the least two possible future scenarios of the plurality of possible future scenarios comprise (a) a possible future scenario of colliding with an object captured in the set of input multimedia content elements have undesirable outcomes, and (b) colliding with another object when driving to avoid the colliding with the object.
  • 19. The system of claim 11, wherein the determining of a probability score of at least one possible future scenario is calculated during a previous iteration of the method; wherein the previous iteration of the method is executed during the trip of the vehicle.
  • 20. A vehicle driving system comprising: means for receiving, in real-time during a trip of a vehicle, at least a set of input multimedia content elements captured by at least one sensor deployed in proximity to the vehicle;means for determining, during a current iteration, a plurality of possible future scenarios based at least on the set of input multimedia content elements; wherein at least two possible future scenarios of the plurality of possible future scenarios have undesirable outcomes;means for determining a probability score for each of the plurality of possible future scenarios to provide a plurality of probability scores;means for generating a risk score that represents a combined, weighted probability score of the at least two possible future scenarios;means for determining at least one driving policy wherein the determining comprises selecting the at least one driving policy to decrease risk associated with the risk score; andmeans for controlling the vehicle according to the at least one driving policy.
RELATED APPLICATION INFORMATION

The present application claims the benefit of priority from U.S. Provisional Patent Application, Ser. No. 62/528,745 filed on Jul. 5, 2017 which is incorporated herein in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/IL2018/050724 7/4/2018 WO
Publishing Document Publishing Date Country Kind
WO2019/008581 1/10/2019 WO A
US Referenced Citations (457)
Number Name Date Kind
4733353 Jaswa Mar 1988 A
4932645 Schorey et al. Jun 1990 A
4972363 Nguyen et al. Nov 1990 A
5078501 Hekker et al. Jan 1992 A
5214746 Fogel et al. May 1993 A
5307451 Clark Apr 1994 A
5412564 Ecer May 1995 A
5436653 Ellis et al. Jul 1995 A
5568181 Greenwood et al. Oct 1996 A
5638425 Meador et al. Jun 1997 A
5745678 Herzberg et al. Apr 1998 A
5754938 Herz et al. May 1998 A
5763069 Jordan Jun 1998 A
5806061 Chaudhuri et al. Sep 1998 A
5835087 Herz et al. Nov 1998 A
5835901 Duvoisin et al. Nov 1998 A
5852435 Vigneaux et al. Dec 1998 A
5870754 Dimitrova et al. Feb 1999 A
5873080 Coden et al. Feb 1999 A
5887193 Takahashi et al. Mar 1999 A
5926812 Hilsenrath et al. Jul 1999 A
5978754 Kumano Nov 1999 A
5991306 Burns et al. Nov 1999 A
6052481 Grajski et al. Apr 2000 A
6070167 Qian et al. May 2000 A
6076088 Paik et al. Jun 2000 A
6122628 Castelli et al. Sep 2000 A
6128651 Cezar Oct 2000 A
6137911 Zhilyaev Oct 2000 A
6144767 Bottou et al. Nov 2000 A
6147636 Gershenson Nov 2000 A
6163510 Lee et al. Dec 2000 A
6243375 Speicher Jun 2001 B1
6243713 Nelson et al. Jun 2001 B1
6275599 Adler et al. Aug 2001 B1
6314419 Faisal Nov 2001 B1
6329986 Cheng Dec 2001 B1
6381656 Shankman Apr 2002 B1
6411229 Kobayashi Jun 2002 B2
6422617 Fukumoto et al. Jul 2002 B1
6507672 Watkins et al. Jan 2003 B1
6523046 Liu et al. Feb 2003 B2
6524861 Anderson Feb 2003 B1
6546405 Gupta et al. Apr 2003 B2
6550018 Abonamah et al. Apr 2003 B1
6557042 He et al. Apr 2003 B1
6594699 Sahai et al. Jul 2003 B1
6601026 Appelt et al. Jul 2003 B2
6611628 Sekiguchi et al. Aug 2003 B1
6618711 Ananth Sep 2003 B1
6640015 Lafruit Oct 2003 B1
6643620 Contolini et al. Nov 2003 B1
6643643 Lee et al. Nov 2003 B1
6665657 Dibachi Dec 2003 B1
6681032 Bortolussi et al. Jan 2004 B2
6704725 Lee Mar 2004 B1
6732149 Kephart May 2004 B1
6742094 Igari May 2004 B2
6751363 Natsev et al. Jun 2004 B1
6751613 Lee et al. Jun 2004 B1
6754435 Kim Jun 2004 B2
6763069 Divakaran et al. Jul 2004 B1
6763519 McColl et al. Jul 2004 B1
6774917 Foote et al. Aug 2004 B1
6795818 Lee Sep 2004 B1
6804356 Krishnamachari Oct 2004 B1
6813395 Kinjo Nov 2004 B1
6819797 Smith et al. Nov 2004 B1
6877134 Fuller et al. Apr 2005 B1
6901207 Watkins May 2005 B1
6938025 Lulich et al. Aug 2005 B1
6985172 Rigney et al. Jan 2006 B1
7013051 Sekiguchi et al. Mar 2006 B2
7020654 Najmi Mar 2006 B1
7023979 Wu et al. Apr 2006 B1
7043473 Rassool et al. May 2006 B1
7158681 Persiantsev Jan 2007 B2
7215828 Luo May 2007 B2
7260564 Lynn et al. Aug 2007 B1
7289643 Brunk et al. Oct 2007 B2
7299261 Oliver et al. Nov 2007 B1
7302089 Smits Nov 2007 B1
7302117 Sekiguchi et al. Nov 2007 B2
7313805 Rosin et al. Dec 2007 B1
7340358 Yoneyama Mar 2008 B2
7346629 Kapur et al. Mar 2008 B2
7353224 Chen et al. Apr 2008 B2
7376672 Weare May 2008 B2
7383179 Alves et al. Jun 2008 B2
7433895 Li et al. Oct 2008 B2
7464086 Black et al. Dec 2008 B2
7529659 Wold May 2009 B2
7657100 Gokturk et al. Feb 2010 B2
7660468 Gokturk et al. Feb 2010 B2
7801893 Gulli Sep 2010 B2
7805446 Potok et al. Sep 2010 B2
7860895 Scofield et al. Dec 2010 B1
7872669 Darrell et al. Jan 2011 B2
7921288 Hildebrand Apr 2011 B1
7933407 Keidar et al. Apr 2011 B2
8023739 Hohimer et al. Sep 2011 B2
8266185 Raichelgauz et al. Sep 2012 B2
8275764 Jeon Sep 2012 B2
8285718 Ong et al. Oct 2012 B1
8312031 Raichelgauz et al. Nov 2012 B2
8315442 Gokturk et al. Nov 2012 B2
8345982 Gokturk et al. Jan 2013 B2
8386400 Raichelgauz et al. Feb 2013 B2
8396876 Kennedy et al. Mar 2013 B2
8418206 Bryant et al. Apr 2013 B2
RE44225 Aviv May 2013 E
8442321 Chang et al. May 2013 B1
8457827 Ferguson et al. Jun 2013 B1
8495489 Everingham Jul 2013 B1
8527978 Sallam Sep 2013 B1
8634980 Urmson Jan 2014 B1
8635531 Graham et al. Jan 2014 B2
8655801 Raichelgauz et al. Feb 2014 B2
8655878 Kulkarni et al. Feb 2014 B1
8781152 Momeyer Jul 2014 B2
8782077 Rowley Jul 2014 B1
8799195 Raichelgauz et al. Aug 2014 B2
8799196 Raichelquaz et al. Aug 2014 B2
8818916 Raichelgauz et al. Aug 2014 B2
8868861 Shimizu et al. Oct 2014 B2
8886648 Procopio et al. Nov 2014 B1
8954887 Tseng et al. Feb 2015 B1
8990199 Ramesh et al. Mar 2015 B1
9009086 Raichelgauz et al. Apr 2015 B2
9104747 Raichelgauz et al. Aug 2015 B2
9165406 Gray et al. Oct 2015 B1
9298763 Zack Mar 2016 B1
9311308 Sankarasubramaniam et al. Apr 2016 B2
9323754 Ramanathan et al. Apr 2016 B2
9440647 Sucan Sep 2016 B1
9466068 Raichelgauz et al. Oct 2016 B2
9646006 Raichelgauz et al. May 2017 B2
9679062 Schillings et al. Jun 2017 B2
9701307 Newman Jul 2017 B1
9734533 Givot Aug 2017 B1
9807442 Bhatia et al. Oct 2017 B2
9875445 Amer et al. Jan 2018 B2
9984369 Li et al. May 2018 B2
10133947 Yang Nov 2018 B2
10347122 Takenaka Jul 2019 B2
10491885 Hicks Nov 2019 B1
10671076 Kobilarov Jun 2020 B1
20010019633 Tenze et al. Sep 2001 A1
20010034219 Hewitt et al. Oct 2001 A1
20010038876 Anderson Nov 2001 A1
20020004743 Kutaragi et al. Jan 2002 A1
20020010682 Johnson Jan 2002 A1
20020010715 Chinn et al. Jan 2002 A1
20020019881 Bokhari et al. Feb 2002 A1
20020032677 Morgenthaler et al. Mar 2002 A1
20020038299 Zernik et al. Mar 2002 A1
20020042914 Walker et al. Apr 2002 A1
20020072935 Rowse et al. Jun 2002 A1
20020087530 Smith et al. Jul 2002 A1
20020087828 Arimilli et al. Jul 2002 A1
20020091947 Nakamura Jul 2002 A1
20020105423 Rast Aug 2002 A1
20020107827 Benitez-Jimenez et al. Aug 2002 A1
20020113812 Walker et al. Aug 2002 A1
20020126002 Patchell Sep 2002 A1
20020126872 Brunk et al. Sep 2002 A1
20020129140 Peled et al. Sep 2002 A1
20020147637 Kraft et al. Oct 2002 A1
20020157116 Jasinschi Oct 2002 A1
20020163532 Thomas et al. Nov 2002 A1
20020174095 Lulich et al. Nov 2002 A1
20020184505 Mihcak et al. Dec 2002 A1
20030004966 Bolle et al. Jan 2003 A1
20030005432 Ellis et al. Jan 2003 A1
20030037010 Schmelzer Feb 2003 A1
20030041047 Chang et al. Feb 2003 A1
20030089216 Birmingham et al. May 2003 A1
20030093790 Logan et al. May 2003 A1
20030101150 Agnihotri et al. May 2003 A1
20030105739 Essafi et al. Jun 2003 A1
20030110236 Yang et al. Jun 2003 A1
20030115191 Copperman et al. Jun 2003 A1
20030126147 Essafi et al. Jul 2003 A1
20030140257 Peterka et al. Jul 2003 A1
20030165269 Fedorovskaya et al. Sep 2003 A1
20030174859 Kim Sep 2003 A1
20030184598 Graham Oct 2003 A1
20030200217 Ackerman Oct 2003 A1
20030217335 Chung et al. Nov 2003 A1
20030229531 Heckerman et al. Dec 2003 A1
20040059736 Willse Mar 2004 A1
20040091111 Levy May 2004 A1
20040095376 Graham et al. May 2004 A1
20040098671 Graham et al. May 2004 A1
20040111432 Adams et al. Jun 2004 A1
20040117638 Monroe Jun 2004 A1
20040128511 Sun et al. Jul 2004 A1
20040153426 Nugent Aug 2004 A1
20040162820 James et al. Aug 2004 A1
20040230572 Omoigui Nov 2004 A1
20040267774 Lin et al. Dec 2004 A1
20050021394 Miedema et al. Jan 2005 A1
20050080788 Murata Apr 2005 A1
20050114198 Koningstein et al. May 2005 A1
20050131884 Gross et al. Jun 2005 A1
20050163375 Grady Jul 2005 A1
20050172130 Roberts Aug 2005 A1
20050177372 Wang et al. Aug 2005 A1
20050193015 Logston Sep 2005 A1
20050226511 Short Oct 2005 A1
20050238198 Brown et al. Oct 2005 A1
20050238238 Xu et al. Oct 2005 A1
20050249398 Khamene et al. Nov 2005 A1
20050256820 Dugan et al. Nov 2005 A1
20050262428 Little et al. Nov 2005 A1
20050281439 Lange Dec 2005 A1
20050289163 Gordon et al. Dec 2005 A1
20050289590 Cheok et al. Dec 2005 A1
20060004745 Kuhn et al. Jan 2006 A1
20060015580 Gabriel et al. Jan 2006 A1
20060020958 Allamanche et al. Jan 2006 A1
20060033163 Chen Feb 2006 A1
20060050993 Stenliford Mar 2006 A1
20060069668 Braddy et al. Mar 2006 A1
20060080311 Potok et al. Apr 2006 A1
20060100987 Leurs May 2006 A1
20060112035 Cecchi et al. May 2006 A1
20060120626 Perlmutter Jun 2006 A1
20060129822 Snijder et al. Jun 2006 A1
20060217818 Fujiwara Sep 2006 A1
20060217828 Hicken Sep 2006 A1
20060218191 Gopalakrishnan Sep 2006 A1
20060224529 Kermani Oct 2006 A1
20060236343 Chang Oct 2006 A1
20060242130 Sadri et al. Oct 2006 A1
20060248558 Barton et al. Nov 2006 A1
20060251338 Gokturk et al. Nov 2006 A1
20060251339 Gokturk Nov 2006 A1
20060253423 McLane et al. Nov 2006 A1
20060288002 Epstein et al. Dec 2006 A1
20070022374 Huang et al. Jan 2007 A1
20070033170 Sull et al. Feb 2007 A1
20070038614 Guha Feb 2007 A1
20070042757 Jung et al. Feb 2007 A1
20070061302 Ramer et al. Mar 2007 A1
20070067304 Ives Mar 2007 A1
20070074147 Wold Mar 2007 A1
20070083611 Farago et al. Apr 2007 A1
20070091106 Moroney Apr 2007 A1
20070130159 Gulli et al. Jun 2007 A1
20070136782 Ramaswamy et al. Jun 2007 A1
20070156720 Maren Jul 2007 A1
20070196013 Li Aug 2007 A1
20070244902 Seide et al. Oct 2007 A1
20070253594 Lu et al. Nov 2007 A1
20070298152 Baets Dec 2007 A1
20080049789 Vedantham et al. Feb 2008 A1
20080072256 Boicey et al. Mar 2008 A1
20080079729 Brailovsky Apr 2008 A1
20080109433 Rose May 2008 A1
20080152231 Gokturk Jun 2008 A1
20080159622 Agnihotri et al. Jul 2008 A1
20080165861 Wen et al. Jul 2008 A1
20080166020 Kosaka Jul 2008 A1
20080201299 Lehikoinen et al. Aug 2008 A1
20080201314 Smith et al. Aug 2008 A1
20080201361 Castro et al. Aug 2008 A1
20080228995 Tan et al. Sep 2008 A1
20080237359 Silverbrook et al. Oct 2008 A1
20080247543 Mick et al. Oct 2008 A1
20080253737 Kimura et al. Oct 2008 A1
20080263579 Mears et al. Oct 2008 A1
20080270373 Oostveen et al. Oct 2008 A1
20080270569 McBride Oct 2008 A1
20080294278 Borgeson Nov 2008 A1
20080307454 Ahanger et al. Dec 2008 A1
20080313140 Pereira et al. Dec 2008 A1
20090022472 Bronstein Jan 2009 A1
20090024641 Quigley et al. Jan 2009 A1
20090034791 Doretto Feb 2009 A1
20090037088 Taguchi Feb 2009 A1
20090043637 Eder Feb 2009 A1
20090043818 Raichelgauz Feb 2009 A1
20090080759 Bhaskar Mar 2009 A1
20090096634 Emam et al. Apr 2009 A1
20090125544 Brindley May 2009 A1
20090157575 Schobben et al. Jun 2009 A1
20090165031 Li et al. Jun 2009 A1
20090172030 Schiff et al. Jul 2009 A1
20090208106 Dunlop et al. Aug 2009 A1
20090208118 Csurka Aug 2009 A1
20090216761 Raichelgauz Aug 2009 A1
20090220138 Zhang et al. Sep 2009 A1
20090245573 Saptharishi et al. Oct 2009 A1
20090254572 Redlich et al. Oct 2009 A1
20090278934 Ecker Nov 2009 A1
20090282218 Raichelgauz et al. Nov 2009 A1
20090297048 Slotine et al. Dec 2009 A1
20100042646 Raichelqauz Feb 2010 A1
20100082684 Churchill Apr 2010 A1
20100104184 Bronstein et al. Apr 2010 A1
20100111408 Matsuhira May 2010 A1
20100125569 Nair et al. May 2010 A1
20100162405 Cook et al. Jun 2010 A1
20100191391 Zeng Jul 2010 A1
20100198626 Cho et al. Aug 2010 A1
20100212015 Jin et al. Aug 2010 A1
20100284604 Chrysanthakopoulos Nov 2010 A1
20100293057 Haveliwala et al. Nov 2010 A1
20100306193 Pereira Dec 2010 A1
20100312736 Kello Dec 2010 A1
20100318493 Wessling Dec 2010 A1
20100325138 Lee et al. Dec 2010 A1
20100325581 Finkelstein et al. Dec 2010 A1
20110029620 Bonforte Feb 2011 A1
20110035373 Berg et al. Feb 2011 A1
20110038545 Bober Feb 2011 A1
20110055585 Lee Mar 2011 A1
20110164180 Lee Jul 2011 A1
20110164810 Zang et al. Jul 2011 A1
20110216209 Fredlund et al. Sep 2011 A1
20110218946 Stern et al. Sep 2011 A1
20110246566 Kashef Oct 2011 A1
20110276680 Rimon Nov 2011 A1
20110296315 Lin et al. Dec 2011 A1
20120131454 Shah May 2012 A1
20120133497 Sasaki May 2012 A1
20120136853 Kennedy et al. May 2012 A1
20120167133 Carroll et al. Jun 2012 A1
20120179642 Sweeney et al. Jul 2012 A1
20120179751 Ahn Jul 2012 A1
20120185445 Borden et al. Jul 2012 A1
20120207346 Kohli et al. Aug 2012 A1
20120221470 Lyon Aug 2012 A1
20120227074 Hill et al. Sep 2012 A1
20120239690 Asikainen et al. Sep 2012 A1
20120239694 Avner et al. Sep 2012 A1
20120265735 McMillan et al. Oct 2012 A1
20120294514 Saunders et al. Nov 2012 A1
20120299961 Ramkumar et al. Nov 2012 A1
20120301105 Rehg et al. Nov 2012 A1
20120331011 Raichelgauz et al. Dec 2012 A1
20130043990 Al-Jafar Feb 2013 A1
20130066856 Ong et al. Mar 2013 A1
20130067364 Berntson et al. Mar 2013 A1
20130086499 Dyor et al. Apr 2013 A1
20130089248 Remiszewski et al. Apr 2013 A1
20130103814 Carrasco Apr 2013 A1
20130124076 Bruni May 2013 A1
20130151522 Aggarwal et al. Jun 2013 A1
20130159298 Mason et al. Jun 2013 A1
20130212493 Krishnamurthy Aug 2013 A1
20130226820 Sedota, Jr. Aug 2013 A1
20130226930 Amgren et al. Aug 2013 A1
20130227023 Raichelgauz et al. Aug 2013 A1
20130283401 Pabla et al. Oct 2013 A1
20130346412 Raichelgauz et al. Dec 2013 A1
20140019264 Wachman et al. Jan 2014 A1
20140025692 Pappas Jan 2014 A1
20140037138 Sato Feb 2014 A1
20140059443 Tabe Feb 2014 A1
20140095425 Sipple Apr 2014 A1
20140111647 Atsmon Apr 2014 A1
20140125703 Roveta et al. May 2014 A1
20140147829 Jerauld May 2014 A1
20140149918 Asokan et al. May 2014 A1
20140152698 Kim et al. Jun 2014 A1
20140156691 Conwell Jun 2014 A1
20140169681 Drake Jun 2014 A1
20140176604 Venkitaraman et al. Jun 2014 A1
20140193077 Shiiyama et al. Jul 2014 A1
20140198986 Marchesotti Jul 2014 A1
20140201330 Lozano Lopez Jul 2014 A1
20140250032 Huang et al. Sep 2014 A1
20140282655 Roberts Sep 2014 A1
20140300722 Garcia Oct 2014 A1
20140330830 Raichelgauz et al. Nov 2014 A1
20140341476 Kulick et al. Nov 2014 A1
20140363044 Williams et al. Dec 2014 A1
20140379477 Sheinfeld Dec 2014 A1
20150033150 Lee Jan 2015 A1
20150052089 Kozloski et al. Feb 2015 A1
20150100562 Kohlmeier et al. Apr 2015 A1
20150117784 Lin Apr 2015 A1
20150120627 Hunzinger et al. Apr 2015 A1
20150127516 Studnitzer et al. May 2015 A1
20150134688 Jing May 2015 A1
20150248586 Gaidon et al. Sep 2015 A1
20150254344 Kulkarni et al. Sep 2015 A1
20150286742 Zhang et al. Oct 2015 A1
20150286872 Medioni et al. Oct 2015 A1
20150324356 Gutierrez et al. Nov 2015 A1
20150332588 Bulan et al. Nov 2015 A1
20150363644 Wnuk Dec 2015 A1
20160004742 Mohan Jan 2016 A1
20160007083 Gurha Jan 2016 A1
20160026707 Ong et al. Jan 2016 A1
20160132194 Grue et al. May 2016 A1
20160210525 Yang Jul 2016 A1
20160221592 Puttagunta Aug 2016 A1
20160275766 Venetianer et al. Sep 2016 A1
20160306798 Guo et al. Oct 2016 A1
20160342683 Kwon Nov 2016 A1
20160357188 Ansari Dec 2016 A1
20170010618 Shashua Jan 2017 A1
20170017638 Satyavarta et al. Jan 2017 A1
20170032257 Sharifi Feb 2017 A1
20170041254 Agara Venkatesha Rao Feb 2017 A1
20170109602 Kim Apr 2017 A1
20170154241 Shambik et al. Jun 2017 A1
20170255620 Raichelgauz Sep 2017 A1
20170262437 Raichelgauz Sep 2017 A1
20170323568 Inoue Nov 2017 A1
20180081368 Watanabe Mar 2018 A1
20180101177 Cohen Apr 2018 A1
20180108258 Dilger Apr 2018 A1
20180157903 Tu et al. Jun 2018 A1
20180157916 Doumbouya Jun 2018 A1
20180158323 Takenaka Jun 2018 A1
20180189613 Wolf et al. Jul 2018 A1
20180204111 Zadeh Jul 2018 A1
20180233047 Mandeville-Clarke Aug 2018 A1
20180268695 Agnew Sep 2018 A1
20180373929 Ye Dec 2018 A1
20190005726 Nakano Jan 2019 A1
20190039627 Yamamoto Feb 2019 A1
20190043274 Hayakawa Feb 2019 A1
20190045244 Balakrishnan Feb 2019 A1
20190056718 Satou Feb 2019 A1
20190065951 Luo Feb 2019 A1
20190096135 Mutto et al. Mar 2019 A1
20190171912 Vallespi-Gonzalez et al. Jun 2019 A1
20190188501 Ryu Jun 2019 A1
20190220011 Della Penna Jul 2019 A1
20190279046 Han et al. Sep 2019 A1
20190304102 Chen et al. Oct 2019 A1
20190317513 Zhang Oct 2019 A1
20190364492 Azizi Nov 2019 A1
20190377354 Shalev-Shwartz Dec 2019 A1
20190384303 Muller Dec 2019 A1
20190384312 Herbach Dec 2019 A1
20190385460 Magzimof Dec 2019 A1
20190389459 Berntorp Dec 2019 A1
20200004248 Healey Jan 2020 A1
20200004251 Zhu Jan 2020 A1
20200004265 Zhu Jan 2020 A1
20200005631 Visintainer Jan 2020 A1
20200018606 Wolcott Jan 2020 A1
20200018618 Ozog Jan 2020 A1
20200020212 Song Jan 2020 A1
20200050973 Stenneth Feb 2020 A1
20200073977 Montemerlo Mar 2020 A1
20200090484 Chen Mar 2020 A1
20200097756 Hashimoto Mar 2020 A1
20200133307 Kelkar Apr 2020 A1
20200043326 Tao Jun 2020 A1
20200189574 Vignard Jun 2020 A1
Foreign Referenced Citations (1)
Number Date Country
1085464 Jan 2007 EP
Non-Patent Literature Citations (48)
Entry
Description of Light-Vehicle Pre-Crash Scenarios for Safety Applications Based on Vehicle-to-Vehicle Communications:, NHTSA DOT HS 811 731, May 2013 (Year: 2013).
Zhou et al, “Ensembling neural networks: Many could be better than all”, National Laboratory for Novel Software Technology, Nanjing University, Hankou Road 22, Nanjing 210093, PR China, Available online Mar. 12, 2002, pp. 239-263.
Zhou et al, “Medical Diagnosis With C4 5 Rule Preceded by Artificial Neural Network Ensemble”, IEEE Transactions on Information Technology in Biomedicine, vol. 7, Issue: 1, Mar. 2003, pp. 37-42.
Zhu et al., “Technology-Assisted Dietary Assesment”, Proc SPIE. Mar. 20, 2008, pp. 1-15.
Jasinschi et al., A Probabilistic Layered Framework for Integrating Multimedia Content and Context Information, 2002, IEEE, p. 2057-2060. (Year: 2002).
Jones et al., “Contextual Dynamics of Group-Based Sharing Decisions”, 2011, University of Bath, p. 1777-1786. (Year: 2011).
Iwamoto, “Image Signature Robust to Caption Superimpostion for Video Sequence Identification”, IEEE, pp. 3185-3188 (Year: 2006).
Cooperative Multi-Scale Convolutional Neural, Networks for Person Detection, Markus Eisenbach, Daniel Seichter, Tim Wengefeld, and Horst-Michael Gross Ilmenau University of Technology, Neuroinformatics and Cognitive Robotics Lab (Year; 2016).
Chen, Yixin, James Ze Wang, and Robert Krovetz. “CLUE: cluster-based retrieval of images by unsupervised learning.” IEEE transactions on Image Processing 14.8 (2005); 1187-1201. (Year: 2005).
Wusk et al (Non-Invasive detection of Respiration and Heart Rate with a Vehicle Seat Sensor; www.mdpi.com/journal/sensors; Published: May 8, 2018). (Year: 2018).
Chen, Tiffany Yu-Han, et al. “Glimpse: Continuous, real-time object recognition on mobile devices.” Proceedings of the 13th ACM Confrecene on Embedded Networked Sensor Systems. 2015. (Year: 2015).
“Computer Vision Demonstration Website”, Electronics and Computer Science, University of Southampton, 2005, USA.
Boari et al, “Adaptive Routing for Dynamic Applications in Massively Parallel Architectures”, 1995 IEEE, Spring 1995, pp. 1-14.
Burgsteiner et al., “Movement Prediction from Real-World Images Using a Liquid State machine”, Innovations in Applied Artificial Intelligence Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence, LNCS, Springer-Verlag, BE, vol. 3533, Jun. 2005, pp. 121-130.
Cernansky et al, “Feed-forward Echo State Networks”, Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, Jul. 31-Aug. 4, 2005, pp. 1-4.
Chinchor, Nancy A. et al.; Multimedia Analysis + Visual Analytics = Multimedia Analytics; IEEE Computer Society 2010; pp. 52-60. (Year: 2010).
Fathy et al, “A Parallel Design and Implementation for Backpropagation Neural Network Using MIMD Architecture”, 8th Mediterranean Electrotechnical Conference, 19'96. MELECON '96, Date of Conference: May 13-16, 1996, vol. 3 pp. 1472-1475, vol. 3.
Freisleben et al, “Recognition of Fractal Images Using a Neural Network”, Lecture Notes in Computer Science, 1993, vol. 6861, 1993, pp. 631-637.
Garcia, “Solving the Weighted Region Least Cost Path Problem Using Transputers”, Naval Postgraduate School, Monterey, California, Dec. 1989.
Guo et al, AdOn: An Intelligent Overlay Video Advertising System (Year: 2009).
Hogue, “Tree Pattern Inference and Matching for Wrapper Induction on the Worid Wide Web”, Master's Thesis, Massachusetts Institute of Technology, Jun. 2004, pp. 1-106.
Howlett et al, “A Multi-Computer Neural Network Architecture in a Virtual Sensor System Application”, International journal of knowledge-based intelligent engineering systems, 4 (2). pp. 86-93, 133N 1327-2314.
Hua et al., “Robust Video Signature Based on Ordinal Measure”, Image Processing, 2004, 2004 International Conference on Image Processing (ICIP), vol. 1, IEEE, pp. 685-688, 2004.
Johnson et al, “Pulse-Coupled Neural Nets: Translation, Rotation, Scale, Distortion, and Intensity Signal Invariance for Images”, Applied Optics, vol. 33, No. 26, 1994, pp. 6239-6253.
Lau et al., “Semantic Web Service Adaptation Model for a Pervasive Learning Scenario”, 2008 IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications, 2008, pp. 98-103.
Lin et al., “Generating robust digital signature for image/video authentication”, Multimedia and Security Workshop at ACM Multimedia '98, Bristol, U.K., Sep. 1998, pp. 245-251.
Lyon, “Computational Models of Neural Auditory Processing”, IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '84, Date of Conference: Mar. 1984, vol. 9, pp. 41 44.
May et al, “The Transputer”, Springer-Verlag Berlin Heidelberg 1989, vol. 41.
McNamara et al., “Diversity Decay in opportunistic Content Sharing Systems”, 2011 IEEE International Symposium an a World of Wireless, Mobile and Multimedia Networks, pp. 1-3.
Morad et al., “Performance, Power Efficiency and Scalability of Asymmetric Cluster Chip Multiprocessors”, Computer Architecture Letters, vol. 4, Jul. 4, 2005, pp. 1-4, XP002466254.
Nagy et al, “A Transputer, Based, Flexible, Real-Time Control System for Robotic Manipulators”, UKACC International Conference on Control '96, Sep. 2-5, 1996, Conference Publication No. 427, IEE 1996.
Natschlager et al., “The “Liquid Computer”: A novel strategy for real-time computing on time series”, Special Issue an Foundations of Information Processing of telematik, vol. 8, No. 1, 2002, pp. 39-43, XP002466253.
Odinaev et al, “Cliques in Neural Ensembles as Perception Carriers”, Technion—Institute of Technology, 2006 International Joint Conference on neural Networks, Canada, 2006, pp. 285-292.
Ortiz-Boyer et al, “CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features”, Journal of Artificial Intelligence Research 24 (2005) Submitted Nov. 2004; published Jul. 2005, pp. 1-48.
Pandya etal. A Survey on QR Codes: in context of Research and Application. International Journal of Emerging Technology and U Advanced Engineering. ISSN 2250-2459, ISO 9001:2008 Certified Journal, vol. 4, Issue 3, Mar. 2014 (Year: 2014).
Queluz, “Content-Based Integrity Protection of Digital Images”, SPIE Conf. on Security and Watermarking of Multimedia Contents, San Jose, Jan. 1999, pp. 85-93.
Santos et al., “SCORM-MPEG: an Ontology of Interoperable Metadata for multimediaand E-Leaming”, 23rd International Conference on Software, Telecommunications and Computer Networks (SoftCom), 2015, pp. 224-228.
Scheper et al, “Nonlinear dynamics in neural computation”, ESANN'2006 proceedings—European Symposium on Artificial Neural Networks, Bruges (Belgium), Apr. 26-28, 2006, d-side publication, ISBN 2-930307-06-4, pp. 1-12.
Schneider et al, “A Robust Content based Digital Signature for Image Authentication”, Proc. ICIP 1996, Lausane, Switzerland, Oct. 1996, pp. 227-230.
Stolberg et al (“Hibrid-Soc: A Multi-Core Soc Architecture for Multimedia Signal Processing” (2003).
Stolberg et al, “Hibrid-Soc: a Mul Ti-Core Soc Architecture for Mul timedia Signal Processing”, 2003 IEEE, pp. 189-194.
Theodoropoulos et al, “Simulating Asynchronous Architectures on Transputer Networks”, Proceedings of the Fourth Euromicro Workshop on Parallel and Distributed Processing, 1996 PDP '96, pp. 274-281.
Vallet et al (“Personalized Content Retrieval in Context Using Ontological Knowledge” Mar. 2007) (Year: 2007).
Wang et al., “Classifying Objectionable Websites Based onImage Content”, Stanford University, pp. 1-12.
Ware et al, “Locating and Identifying Components in a Robot's Workspace using a Hybrid Computer Architecture” Proceedings of the 1995 IEEE International Symposium on Intelligent Control, Aug. 27-29, 1995, pp. 139 144.
Whitby-Strevens, “The transputer”, 1985 IEEE, pp. 292-300.
Wilk et al., “The Potential of Social-Aware Multimedia Prefetching on Mobile Devices”, International Conference and Workshops on networked Systems (NetSys), 2015, pp. 1-5.
Yanagawa et al, “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts”, Columbia University Advent Technical Report # 222-2006-8, Mar. 20, 2007, pp. 1-17.
Related Publications (1)
Number Date Country
20200283030 A1 Sep 2020 US
Provisional Applications (1)
Number Date Country
62528745 Jul 2017 US