The present invention refers to a driving rod to be applied to a reciprocating compressor with an electric motor of the rotary or linear type, said driving rod being constructed to operatively couple a driving means to a piston to be reciprocated in the interior of a compression chamber of the compressor, according to the axis of said chamber.
The reciprocating compressors that are driven by a rotary or linear electric motor generally comprise a cylinder block defining, internally, a compression chamber inside which axially reciprocates a piston coupled to a driving means mounted to the cylinder block and operatively associated with the electric motor of the compressor.
The piston is coupled to the driving means so as to allow forces to be transferred therebetween and to make the piston move inside the compression chamber according to an axial direction coinciding with the axis of said compression chamber in order to minimize the transversal reaction forces of the cylinder block against the piston inside the compression chamber. As known, the transversal reaction forces of the cylinder block against the piston can provoke excessive friction between the piston and the cylinder block, leading to an increase of energy consumption, consequently reducing the efficiency of the compressor, and to an accelerated wear of the components submitted to high friction levels, reducing the useful life of the compressor.
A known reciprocating compressor with a linear electric motor, as illustrated in
In the known construction illustrated in
To the piston 20 is directly or indirectly coupled an end of a driving rod 50 whose opposite end is coupled to the springs 60, helical springs for example, which are mounted in such a way as to exert opposite axial forces on the piston 20 upon its axial reciprocating movement in the interior of the compression chamber 11 provoked by the driving means DM comprising the actuator 30 and the springs 60. The piston 20, the actuator 30 and the springs 60 form the resonant assembly of the compressor with a linear motor.
These compressors are designed and constructed so that the axis of the axial reciprocating movement of the piston 20 coincides with the axes of both the piston 20 and the compression chamber 11, aiming at minimizing or even suppressing the transversal reaction forces between the piston 20 and the cylinder block 10. However, in use, said axes can become misaligned and thus undesirable transversal reaction forces may occur between the piston 20 and the cylinder block 10 by reason of some constructive characteristics inherent to the compressors, such as the geometrical errors in the construction of the helical springs and the transversal rigidity thereof when they are axially and elastically deformed.
Besides the aspects above, one should consider the fact that misalignments commonly occur in the construction and assembly of mechanical components, as perfection is not usually reached in terms of dimensions and forms of the different components of a mechanical device.
In the construction illustrated in
However, the springs 60 exert over the piston-actuator assembly, not only the axial forces resulting from the compression thereof during the movement of the piston 20, but also transversal forces whose intensity varies as a function of the errors of construction and assembly of the springs 60. Such undesirable transversal forces, produced by the operational deformation of the springs, tend to misalign the piston 20 in relation to the axis of the compression chamber 11, giving rise to transversal reaction forces of the cylinder block 10, as well as a consequent higher friction between the latter and the piston 20 axially reciprocating within the compression chamber 11.
U.S. Pat. No. 5,525,845, from Sumpower Inc., describes a constructive solution for the problem cited above, according to which the driving rod, which can be mounted in different manners between the piston and the driving means, is constructed so as to present a required axial rigidity and also a transversal flexibility sufficient to prevent all the transversal forces acting on the piston, including the force exerted by the driving rod itself, from surpassing the centralizing transversal forces applied to the piston by a pneumatic bearing provided between the latter and the cylinder block.
This prior solution uses a single-piece driving rod dimensioned to present the necessary axial rigidity and a transversal flexibility in a degree compatible with the centralizing transversal forces produced on the piston by the pneumatic bearing. Said prior art solution do not permit an adequate flexibility in the dimensioning of the driving rod in relation to compressors in which the axial force to be transmitted or supported by the driving rod requires a cross-section area for the latter which hinders, in the length available for the single-piece driving rod, the latter from presenting the desired transversal flexibility. The use of multiple rods is suggested (
It should be further noted that the provision of multiple rods disposed spaced apart and symmetrical in relation to the axis of the compression chamber, as suggested in
As illustrated in
In the compressor of the type illustrated in
In the reciprocating compressors with a connecting rod-crankshaft mechanism, geometrical and assembly errors, as exaggeratedly illustrated in
Also in this type of compressor, the solution taught by the prior art is to dimension the driving rod 50 with a cross-section which, in the length defined in the compressor project, leads to the necessary axial rigidity of the driving rod, so that the latter can withstand the transmission of forces between the driving means DM (crankshaft) and the piston 20, but which however gives to the driving rod 50, in the form of a connecting rod, a flexibility in a transversal direction which minimizes the transmission of moment to the piston 20.
While being of low cost and easy to execute, said construction, as already mentioned in relation to the driving rod of the linear motor compressors, makes the dimensioning of the cross-section a problematic task due to the length limitations of the driving rod and to the degree of transversal flexibility required to reduce the transmission of moments to the piston 20 to desirable levels.
Due to the dimensioning limitations of the cross-section of the driving rods of the reciprocating compressors with a linear or rotary motor, it is the object of the present invention to provide a driving rod presenting a construction that allows obtaining a flexibility, in at least one transversal direction, as well as an axial rigidity which can comply with the requirements of the compressor project regardless of the length defined for the driving rod.
The driving rod proposed by the present invention offers a simple solution that is easy to implement in the construction of reciprocating compressors, particularly those of the hermetic type used is refrigeration systems of household electric appliances in which the piston is designed to be axially displaced in a reciprocating movement inside a compression chamber, without being submitted to transversal reaction forces of the cylinder block caused by the acceptable geometrical or assembly errors of the component parts involved, but which are sufficiently relevant to cause friction that abbreviates the useful life of the compressor.
In order to attain the object cited above, the present driving rod comprises a bundle of “n” rods arranged side by side along the axis of the driving rod, each rod presenting a cross-section that is dimensioned and configured to impart to the driving rod, jointly with the other rods, an axial rigidity sufficient to transmit the reciprocating forces between the driving means and the piston, and a flexibility, in at least one transversal direction to the axis of the driving rod, sufficient to absorb, at least substantially, the forces applied to the piston, in said transversal direction, by both the driving rod and the driving means in the region of the compression chamber.
According to the solution proposed by the invention, the number and the cross-section of the rods that form the driving rod can be defined to impart to the latter optimized axial rigidity and transversal flexibility so that the reciprocating movement of the piston inside the compression chamber of the cylinder block occurs with little or no friction that abbreviates the useful life of the compressor.
The invention will be described below, with reference being made to the appended drawing, given by way of example of ways of carrying out the invention and in which:
As already mentioned, the construction of the driving rod of the present invention is designed to be applied to reciprocating compressors driven by a linear motor or by a rotary motor.
According to
The support 70 can be constructed in different manners, but bearing in mind the necessity of its axial reciprocating movement, in conjunction with the piston 20 and with the adjacent ends of the springs 60, being effected with no interference of the driving means 30. In the illustrated exemplary construction, the support 70 comprises a pair of shoes 71 disposed in planes that are parallel to each other, orthogonal to the axis 12 of the compression chamber 11 and located on opposite sides of the basic structure 30a of the actuator 30, said shoes 71 being axially interconnected by spacers 72 disposed through respective windows 33 provided in the basic structure 30a of the actuator 30.
The exemplary construction illustrated in
According to the invention, in order to absorb the expected transversal forces produced by the springs 60, the driving rod 50 comprises a bundle “n” of rods 51 disposed side by side along the displacement axis of the piston 20, each rod 51 presenting a cross-section that is dimensioned and configured to impart to the driving rod 50, jointly with the other rods 51, an axial rigidity that is sufficient to transmit the axial forces to be applied to the piston 20 by the springs 60 upon movement of the actuator 30, as well as a flexibility, in at least one direction transversal to the axis of the driving rod 50, which is sufficient to absorb, at least substantially, the forces exerted over the piston 20, in said transversal direction, by the driving rod 50 and by the driving means DM in the region of the compression chamber 11. The construction of the driving rod 50 in the form of a bundle of rods 51 in an adequate material, usually steel, allows each rod 51 to be dimensioned with a cross-section area that corresponds to 1/n of a cross-section area necessary to give to the driving rod 50, in the length determined in project, an axial rigidity sufficient to withstand the required transmission of axial forces between the piston 20 and the driving means DM, which in the construction illustrated in
Besides the characteristics above, the cross-section of the rods 51 should be dimensioned and configured so that the sum of the moments of inertia of the rods 51, in the determined transversal direction, is an integer fraction of the moment of inertia, of said transversal direction, of a single piece driving rod having a cross-section area corresponding to the sum of the cross-section areas of the rods 51.
In the constructions illustrated in
In the case of rods 51 with the same circular cross-section, the sum of the moments of inertia of the rods 51, in the axial direction, corresponds to a fraction “n” of the moment of inertia, in the same axial direction, of a single-piece driving rod 50 with its cross-section area corresponding to the sum of the cross-section areas of the “n” rods 51, as explained below, considering:
Rigidity (K) proportional to the moment of inertia
Thus, the transversal rigidity (K2 res.) of the bundle of “n” rods 51 of circular section will correspond only to a fraction “n” of the transversal rigidity (K1) of a single-piece driving rod, with a cross-section area (A1) of the “n” rods 51 that form the bundle that defines the driving rod.
As illustrated in
In case the project of the driving rods 50 leads to a larger number “n” of thinner rods 51, i.e., with a reduced cross-section, one or more rods 51 of the bundle of rods submitted to axial forces may be deformed, provoking collapse of the driving rod. In these cases, the rods 51 of the bundle can be jointly and medianly surrounded by one or more sleeves 80, occupying part of the longitudinal extension of the driving rod 50. In
51, one against the others. In
As illustrated in
In the case of the driving rods 50 applied to the compressors driven by linear motors, the terminal blocks 90 are configured to define the mounting means of the driving rod 50 in the piston 20 and in the support 70 of the springs 60.
In the embodiment illustrated in
In the embodiment of
The plates 93 of each pair are preferably provided with orifices 93b for the passage of tightening screws (not illustrated).
As already mentioned above and illustrated in
In the assemblies in which the actuator 30 is defined by a crankshaft 35, the driving rod 50 comprises a number “n” of rectilinear parallel rods 51 which are laterally seated in relation to each other, each rod 51 having a rectangular cross-section with a dimension L corresponding to a dimension “L” of the rectangular cross-section of a single-piece driving rod and with the other dimension “h” corresponding to the fraction “n” of the other dimension “H” of the cross-section of said single-piece driving rod. Thus, the same rectangular cross-section area of each rod 51 corresponds to the fraction “n” of the cross-section area of said single-piece driving rod. The same ratio is applied to the relation between the moment of inertia, in the axial direction of each rod 51 and the moment of inertia in the axial direction of the single-piece driving rod. The sum of the cross-section areas of the rods 51 corresponds to the cross-section area of said reference single-piece driving rod. Thus, the driving rod 50 with “n” rods 51 has an axial rigidity equivalent to that obtained with the driving rod formed by only one rod having a cross-section area corresponding to the sum of the cross-section areas of the “n” rods 51 of the driving rod 50 with multiple rods.
In the construction of
However, in the direction of the other dimension “h” of the rectangular cross-section of the rods 51, which direction is parallel and coplanar to the axis of the articulating pin 21 of the piston 20, the sum of the moments of inertia of the rods 51 in said other direction, orthogonal to the anterior direction, corresponds to a fraction “n2” of the moment of inertia, in the same transversal direction, of a single-piece driving rod, with the corresponding cross-section dimension “L”, in the same direction, being equal to the sum of the dimensions “h” of the rods 51 in the same direction, as exposed below, and further considering:
Thus:
Considering that the single-piece driving rod and the rods 51 of the driving rod 50 with multiple rods present the same dimension “L” for the larger side of the rectangular cross-section.
Thus, the transversal rigidity (K2res.) of the bundle of “n” rods 51 with a rectangular section will correspond only to a fraction “n2” of the transversal rigidity (K1) of a single-piece driving rod presenting a cross-section area (A1) corresponding to the sum of the cross-section areas (A2) of the “n” rods 51 that form the bundle that defines the driving rod 50 of the invention, as well as a cross-section dimension “H”, in said direction, corresponding to the sum of the corresponding cross-section dimensions (h) of the rods 51 that form the driving rod 50.
It should be understood that the bundle of rods 51 of the driving rod 50 illustrated in
Number | Date | Country | Kind |
---|---|---|---|
PI0500338-5 | Feb 2005 | BR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/BR06/00011 | 2/1/2006 | WO | 00 | 7/27/2007 |