This application claims the benefit of Mexican Patent Application No. MX/a/2015/006661, filed on May 27, 2015, application which is incorporated herein by reference in its entirety for all purposes.
The present invention refers to mechanical transmissions in general, and more specifically to speed reducers and amplifiers.
When a great speed reduction ratio is required the worm gear speed reducer is one of the most frequently used. It has, however, some limitations: a low load capacity and excessive wear. The low load capacity and excessive wear are inherent to the particular geometry because the pitch cylinder of the worm has only one point of tangency with the pitch cylinder of the gear and, thus, very few teeth of the driven gear in contact with the driving worm.
During the two previous centuries many patents were granted referring to schemes to increase the load capacity of the worm gear reducers by increasing the contact surfaces. The most well-known schemes to achieve this purpose have been, on one hand, a concave configuration of the circumferential toothed surface of the driven gear so that it partially envelops the worm and, on the other hand, a driver worm with a concave silhouette that partially envelops the driven gear. Furthermore, there are doubly enveloping worm gears that incorporate simultaneously the two configurations described. These schemes have resulted in a tangible increase in the load capacity but still quite limited.
In 1897 patent U.S. Pat. No. 595,508 was granted to Wolander referring to the concept of a worm and chain reducer which resembles a worm gear,
In the schemes so far described the transmission of motion is carried out by sliding contact so the efficiency is low.
Patent U.S. Pat. No. 418,328 granted to Willett and published on December 1889 refers to a mechanism to drive a boat by means of pedals and it includes a speed amplifier made up of a chain with idler rollers that drives a translation screw. In this case the efficiency is raised by the idler rollers. A similar scheme is used in patent U.S. Pat. No. 594,511 granted to Auble and published on November 1897, but in this case it refers to the drive system of a land vehicle. Patents: U.S. Pat. No. 642,430 granted to Corcoran and published on January 1900; DE3305551 C2 granted to Reguzzi and published on September, 1990,
Patents: U.S. Pat. No. 626,515, granted to Whitney and published on June, 1899; and U.S. Pat. No. 747,463, granted to Moore and published on December 1903,
In the last few decades there has been a great deal of interest in energy savings in general. In the particular case of worm gear reducers, patents have been granted and continue being applied for that involve concepts to make them more efficient by means of a plurality of balls that roll between the threads of the driving worm and the driven gear in a closed circuit, i.e., after rolling in the helical threads they enter a conduit that returns them to the helical path to start over. In this manner the sliding contact between the worm and the gear is substituted by a rolling contact which raises the efficiency of the reducer. These patents include the mutual partial envelopment of worm and gear to increase the load capacity but, as has already been pointed out, it is still limited by the restrictions imposed by the basic geometry of the worm and gear. Examples of this are: patent U.S. Pat. No. 4,023,433, granted to Schutz on May, 1977; patent application JP60-168936A by Tatsuo and Kazuharu, published on September, 1985; patent EP 0426461B1 granted to Ohtsuka and published on January, 1994; patent U.S. Pat. No. 7,051,610, granted to Stoianovici and Kavoussi on May, 2006; and patent application DE102013007462 A1 by Klaus published on November, 2014,
Other patents which may be considered relevant prior art, as far as the roller screw used in the first embodiment of this invention is concerned, are U.S. Pat. No. 2,683,379, granted to Strandgren on July, 1954 and U.S. Pat. No. 8,082,818 granted to Sugitani on December, 2011. These patents do not refer to any speed reducer, they refer to the roller screw which is used in mechanical actuators and to activate the linear displacement of machine tool tables. The roller screw is driven by an internally threaded tube, but there are also inverted roller screws in which the tube is driven by the screw. The inverted roller screw refers basically to an assembly made up of a central sun screw, a plurality of threaded planetary rollers, and all of this is located inside an internally threaded tube. The threaded planetary rollers orbit around the central sun screw as they roll between it and the internally threaded pipe driving the threaded tube in a straight line.
Patent applications MX/a/2013/002354 and US2014/0238162A1 by Chicurel and Gutierrez refer to a screw and threaded chain speed reducer. The screw threads engage the threads of the single roller chain so that, as the screw turns, it drives the chain linearly. The force of the driving screw has a moment arm with respect to the chain rods, and this resulting moment may cause jamming between the driving screw and the threaded bodies. In contrast to this, in the speed reducer of the present invention, there is a threaded chain made up of a plurality of threaded bodies, similar to a nut, and mounted on two parallel roller chains with extended rods. The extended rods both serve as supports and pivots of the threaded bodies, and the centroid of the threaded surface of the threaded bodies is located in the plane of the extended rods, and therefore, the force that the screw exerts on the threaded chain is also located in that plane, thus in this arrangement there is no jamming moment.
In order to facilitate the description of the invention the following definitions will be used: “threaded body” is a block with a threaded bore; “roller chain”, the one used in this invention is provided with extended rods that support the threaded bodies; “threaded link” is an assembly of a threaded body and two links of roller chain, one on each side of the threaded body and four extended rods; “threaded chain” is a chain made up of threaded links.
The present invention may be considered as a transformation of a worm gear reducer, and it comprises three embodiments. The reducer is made up of a high speed assembly and a low speed assembly. In the high speed assembly the worm is substituted, in the first two embodiments, by rolling contact driving screws: an inverted roller screw in the first embodiment and a ball screw in the second embodiment. In the third embodiment the worm is substituted by a conventional translation screw with sliding contact.
In the low speed assembly the gear is substituted by a threaded chain transmission which is made up of a threaded chain and, at least, two pairs of sprockets, each pair mounted on an output shaft and, the bearings that support the shafts. The threaded transmission chain is driven by the screw. Of course, the threads of the threaded chain are different for each embodiment since they have to agree with the threads of the driving screw, which is different in each case.
Following is a comparison between the present invention and a worm gear reducer. In the first two embodiments of the present invention, the efficiency is, at least, as high as the efficiency of the worm gear reducer, because there is rolling contact between the inverted roller screw, or the ball screw, and the links of the threaded chain. The rolling contact makes it possible to use this invention also as an amplifier. The load capacity is increased in all three embodiments of the present invention because the contact of the threaded chain with the driving screw takes place in a straight portion of the threaded chain, which can be as long as desired, and thus, in a large surface. Furthermore, each threaded link envelops in a great proportion the threaded surface of the driving screw. While in the worm gear reducer it takes place in the very small areas of contact of very few teeth of the gear with the worm.
As in the case of the worm and gear reducer, one turn of the screw in each of the three embodiments of the present invention produces a small fraction of the turn in the output shafts, i.e., there is a great reduction or angular displacement and, consequently, a great reduction of speed.
In the three embodiments an additional reduction may be obtained using the principle of the differential screw.
For the same input speed, the same input power and the same reduction ratio, there is a greater load capacity and a greater wear resistance in the three embodiments of the present invention than in the worm and gear reducer.
The efficacy of the inverted roller screw, as far as the increase of both the load capacity and the efficiency are concerned, has been amply confirmed by its application in commercial mechanical actuators.
One objective of the present invention, in its three embodiments, is to provide a speed reducer with a high load capacity.
Another objective of the present invention, in its two first embodiments, is to provide a high efficiency speed reducer/amplifier.
Another objective of the present invention, in its three embodiments, is to provide a high reduction speed reducer.
Another objective of the present invention, in its three embodiments, is to provide a speed reducer with high wear resistance.
Another objective of the present invention, in the two first embodiments, is to provide a speed reducer/amplifier with a high load capacity, a high efficiency, a high reduction or amplification ratio and a high wear resistance, all of this simultaneously in a single unit.
Another objective of the present invention, in the third embodiment is to provide a speed reducer with a high load capacity, a high reduction or amplification ratio, a high wear resistance and a lower cost than that of the first two embodiments, all of this simultaneously in a single unit.
The speed reducer of the present invention is made up of a high speed assembly (100),
In what follows the three embodiments require a special numbering system. The driving screws are designated as follows: (1A), (1B), and (1C) corresponding to the first, second and third embodiment respectively. The threaded bodies are designated as: (3A), (3B) and (3C) corresponding to the first, second and third embodiment respectively. However, when referring to characteristics which are common to the three embodiments the driving screw is designated by number (1), and the threaded bodies are designated by number (3).
In the first embodiment the driving screw (1) is an inverted roller screw (1A),
Following is a description of the preferred first embodiment. With reference to
In the ends of the central sun screw (5) there are gears (13) integral with it. In the ends of the planetary threaded rollers (4) there are pinions (14) integral with them. The pinions (14) engage the gears (13). The gears (13) and the pinions (14) are used in order to avoid circumferential sliding between the planetary threaded rollers (4) and the central sun screw (5), thus promoting pure rolling. The planetary threaded rollers (4) are mounted on rings (15), these rings keep the rollers (4) at the correct separation. Since there is rolling contact between the central sun screw (5) and the planetary threaded rollers (4) and also between the planetary threaded rollers (4) and the threaded bodies (3A), the efficiency of the inverted roller screw (1) is as high as that of a worm gear reducer, i.e., around 90%, but the inverted roller screw has this efficiency in considerably greater intervals of speeds and helix angles than the worm gear reducer. This means that this first embodiment of the invention may be used also as a speed amplifier, in which case the reduction ratio is converted into an amplifying ratio.
When this first embodiment of the invention is used as a speed reducer, shaft (2) is the input shaft and (10) and (11) are the output shafts. When this first embodiment of the invention is used as an amplifier, one of the shafts (10) or (11), or both, are the input shafts, and (2) is the output shaft.
The roller screw (1A) can be located in either the upper or the lower straight portions of the threaded chain (16). There could also be two roller screws, one in the upper and one in the lower straight portion of the threaded chain (16).
Following is a description of the second embodiment of the invention.
The efficiency of the ball screw is as high as that of the worm gear but the ball screw has this efficiency for greater intervals of speeds and reduction ratios than the worm gear reducer. This means that this second embodiment of the invention may also be used as a speed amplifier.
Just as in the case of the first embodiment, when this second embodiment of the invention is used as a speed reducer, shaft (2) is the input shaft and (10) and (11) are the output shafts. When this second embodiment of the invention is used as an amplifier, one of the shafts (10) or (11), or both, are the input shafts, and (2) is the output shaft.
The ball screw (1B) has a plurality of circulating balls (35),
Due to the gap (6) in the threaded bodies (3B),
The ball retainer (42) has a concave cylindrical upper surface,
The ball retainer (42) may be integral, or not, with its pedestal (47),
When the balls (35),
The third embodiment of this invention is a speed reducer made up of a conventional, sliding contact translation screw (1C) and a threaded chain (16),
The thread could be square, Acme or of any other form. Even though the square thread is more efficient, the preferred form is Acme because of the ease of manufacturing.
The sliding contact translation screw (1C) can be located in either the upper or the lower straight portions of the threaded chain (16). There could also be two translation screws, one in the upper and one in the lower straight portion of the threaded chain (16).
The low speed assemblies (200) are the same for the three embodiments of this invention except for the thread of the threaded bodies (3),
The low speed assembly (200),
The threaded chain (16),
It must be pointed out that the speed reducer of the patent applications MX/a/2013/002354 and US 2014/0238162 A1 by Chicurel and Gutierrez has a threaded chain that is made up of a single roller chain with brackets to support a plurality of threaded bodies, while in the reducer of the present invention the plurality of threaded bodies is supported by two parallel chains with extended rods (17),
The threaded chain (16), when mounted on the sprockets (9) has an oval shape made up of two semicircular arcs and two straight tracts,
The sprockets (9) rotate with their shafts (10) and (11) because they are either keyed or splined to them, or they are integral with them. Shafts (10) and (11) are the output, low speed, shafts and they are supported on bearings (not shown). The pair of sprockets (9) may have different diameters with the purpose of having two different reduction ratios, one for each of the output shafts (10) and (11). Of course, the two pairs of sprockets (9) may have equal diameters.
Each of the threaded bodies (3) has four grooves (38), two in the front and two in the back, with cross sections in the form of an arc of a circle,
Each threaded body (3) is mounted on two pairs of extended rods (17), one pair belonging to one parallel roller chain on one side, and the other pair belonging to the other parallel chain on the other side,
In contrast with the present invention, in the speed reducers of: the patent U.S. Pat. No. 595,508 by Wolander, the patent application JP2000-097293 by Yuuji and the patent applications MX/a/2013/002354 and US 2014/0238162 A1 by Chicurel and Gutierrez, the driving screw force is located at a considerable distance from the chain rods so that there is a moment which could cause jamming between the driving screw and the threaded bodies.
The driving screws (1) and the threaded bodies (3) can have either single or multiple threads.
The threaded bodies (3) have a gap (6) wide enough to let shaft (2), of the driving screw (1), through.
Parallel chains (8) may be either roller or silent (inverted tooth) chains or they may be toothed belts. If chains (8) are roller chains they may be either single strand or multiple strand: double, triple, etc., depending on the design load. The silent chains would have extended rods, with circular cross section, to support and act as pivots of the threaded bodies (3).
In other variants, the threaded chain (16) could drive 3, 4, or more pairs of sprockets of different diameters with their respective output shafts in order to have several different reduction ratios. For example in the variant of
As it has already been mentioned the use of the threaded chain (16) in this invention results in a great increase in the load capacity by comparison to the worm gear reducer. In addition to this, there is also a significant decrease of wear since the contact area of the power transmitting elements may be much greater and, consequently, the contact pressure may be much lower. It is also lower than in the case of the speed reducers described in the Wolander patent U.S. Pat. No. 595,508 and the patent application by Yuuji JP2000-097293.
In patent U.S. Pat. No. 595,508 by Wolander and in the patent application DE2406360 A1 by Werther brackets are included to maintain the contact between the driving screw and the driven chain. The brackets have rims to restrain the lateral displacement of the chain as well as its angular displacement about the driving screw axis. This is not necessary in the case of the present invention because the threaded bodies envelop the driving screw in an arc greater than 180° and because they are mounted on the extended rods of two parallel roller chains which are a considerable distance apart.
Comparing the inverted roller screw reducer of the first embodiment with the ball screw reducer of the second embodiment: for equal diameters and lengths of both screws the contact surface of the inverted roller screw is much greater than that of the ball screw so that the load capacity of the inverted roller screw is an order of magnitude greater than of the ball screw and its useful life expectancy is also an order of magnitude greater.
This invention has been described in terms of three embodiments and several variations, permutations and equivalencies that fall within the scope of this invention. Also, it is clear that there are many different ways to implement the devices and methods of the present invention. Therefore, it is expected that the following claims will be interpreted including all such alterations, permutations and equivalencies that fall within the spirit and scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
MX/A/2015/006661 | May 2015 | MX | national |