The present invention is related generally to an electroluminescent display and, more particularly, to a driving system and method for an electroluminescent display.
A typical electroluminescent display comprises an array of electroluminescent elements arranged in rows and columns in which the anodes of the electroluminescent elements on each row are electrically connected to one of a plurality of anode lines and the cathodes of the electroluminescent elements on each column are electrically connected to one of a plurality of cathode lines, and a driving system to switch the anode lines and the cathode lines between two phases according to display data for specifically lighting up one or ones of the electroluminescent elements.
To speed up the electroluminescent elements in an electroluminescent display to light up, the driving system disclosed by U.S. Pat. No. 5,844,368 to Okuda et al. precharges the electroluminescent element that is to be lighted up. In this driving scheme, however, all the anodes and cathodes of the electroluminescent elements are grounded for the electric charges thereon to be completely discharged before an electroluminescent element is lighted up and as a result, each time the electroluminescent element is charged from 0 V when it is to be lighted up, which requires greater power consumption. Furthermore, the current supplied to the electroluminescent elements by the current source of the driving system is so small that the electroluminescent display slowly responds to the driving control.
On the other hand, the driving system proposed by U.S. Pat. No. 6,501,226 to Lai et al. comprises switches each of which is inserted between two adjoining cathode lines of the electroluminescent element array, and turns on the corresponding one or ones of the switches between the cathode line being scanned and the next cathode line to be scanned to equalize the electric charges in the electroluminescent elements on the currently scanned cathode line and on the next cathode line to be scanned, so as to reduce the power demand of lighting up the electroluminescent elements.
There is still a need of reduced power demand and enhanced performance in response speed for an electroluminescent display.
An object of the present invention is to provide a driving system and method for an electroluminescent display to attain less power demand and faster response.
In an electroluminescent display having a driving system to drive an array of electroluminescent elements according to a display data, the anodes of the electroluminescent elements on the same column are electrically connected to one of a plurality of anode lines, and the cathodes of the electroluminescent elements on the same row are electrically connected to one of a plurality of cathode lines. In the driving system, according to the present invention, a row and column control circuit generates two control signals from the display data, an anode line driving circuit in response to the first control signal switches each of the anode lines among connections of a current source, a first node and ground, and a cathode line scanning circuit in response to the second control signal switches each of the cathode lines among connections of a reverse voltage, a second node and ground, wherein the first and second nodes are electrically connected together. When one or more of the electroluminescent elements are to be lighted up, the anode lines connected to their anodes and the anode lines connected to the electroluminescent elements currently being canned are switched to connect to the respective first nodes, and the cathode lines connected to their cathodes and the cathode lines connected to the electroluminescent elements currently being canned are switched to connect to the respective second nodes, such that part of the electric charges in the electroluminescent elements currently being lighted up are recycled and transferred to the electroluminescent elements to be lighted up. Therefore, the power demand to light up the electroluminescent elements is reduced. Further, before the anode line is switched from the first node to the current source, it is switched to connect to a power source to precharge thereto, so as to enhance the response speed of lighting up the electroluminescent elements to be lighted up.
These and other objects, features and advantages of the present invention will become apparent to those skilled in the art upon consideration of the following description of the preferred embodiments of the present invention taken in conjunction with the accompanying drawings, in which:
In the next step, as shown in
As shown in
In the process of lighting up the electroluminescent elements, by switching the anode lines and the cathode lines among the three phases of operation, the electric charges in the electroluminescent elements which have been lighted up are recycled and transferred to the electroluminescent elements to be lighted up, thus reducing the power demand, and the subsequent precharging step further improve the response speed thereof.
While the present invention has been described in conjunction with preferred embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and scope thereof as set forth in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
94130146 A | Sep 2005 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
5844368 | Okuda et al. | Dec 1998 | A |
6201520 | Iketsu et al. | Mar 2001 | B1 |
6339415 | Ishizuka | Jan 2002 | B2 |
6351255 | Ishizuka et al. | Feb 2002 | B1 |
6473064 | Tsuchida et al. | Oct 2002 | B1 |
6486607 | Yeuan | Nov 2002 | B1 |
6501226 | Lai et al. | Dec 2002 | B2 |
6914388 | Shin et al. | Jul 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20070052366 A1 | Mar 2007 | US |