The present invention relates to a contact mechanism in a driving tool such as a nail driving tool and a screw driving tool for safety.
Generally, a driving tool is used to drive a fastener such as a nail or a screw into wood or concrete. Normally, the driving tool includes a contact mechanism which is used to secure the safety of the driving tool. Specifically, the contact mechanism is used to make effective or activate a start operation of a trigger valve for starting the driving tool only when a contact member, which can be relatively moved along a nose part including a fastener eject path, is pressed to a member to be fastener-driven. The contact member is normally urged by a spring in such a manner that it projects in a fastener driving direction beyond the leading end of the nose part; and, in a fastener driving operation, when the leading end of the contact member is pressed to the member to be fastener-driven until a leading end of the nose part is butted to the driving portion of the member to be fastener-driven, the contact member is relatively moved in an opposite direction to a pressing direction, and the relative movement of the contact member shows the detection that the leading end of the nose part has been butted to the member to be fastener-driven, thereby being able to activate the operation of a trigger.
As described above, since the contact member is spring urged such that it projects in the fastener driving direction beyond the leading end of the nose part, when the contact member is pressed to the member to be fastener-driven, it is strongly pressed with a force equal to or greater than the load of the spring. Therefore, when a fastener is driven into a facing material, for example, when a pin nail is driven into a groove formed in a skirting board, because the leading end of the nose part is formed fine so as to be engageable with the groove, there is a fear that, owing to an impact generated when the fine leading end is pressed to the member to be fastener-driven, a flaw such as an impression can be produced on the surface of the member to be fastener-driven. When the surface of the member to be fastener-driven is finished poor, in some cases, the fastener driving operation must be started again. In view of this, as a safety operation to be executed before the driving operation, the contact member must be pressed to the member to be fastener-driven with a force slightly greater than the spring force and thus an operator is required to pay very fine attention to an adjustment of the pressing force, which results in the troublesome operation.
In JP-A-2002-283253, there is disclosed a mechanism in which a contact member is normally held on the top dead center side thereof, that is, the leading end of the contact member and the leading end of the nose part are held at the same position and, simultaneously when a trigger is pulled, the contact member is projected downward; and, in this case, when the contact member is contacted with the member to be fastener-driven and is thereby unable to project, the operation of the trigger is activated, whereas, when the contact member is projected without being contacted with anything, the operation of the trigger is deactivated. According to this mechanism, the leading end of the nose part may only be pressed against the member to be fastener-driven and there is not required a safety operation separately from the operation of the trigger, which makes it possible to carry out the driving operation quickly.
However, in the structure in which the contact member is urged by the spring to the top dead center, when the leading end of the contact member is pressed to the member to be fastener-driven for the first time, there is provided no cushioning property by the spring at all. Therefore, when a fastener is driven into a soft member to be fastener-driven, for example, a facing material such as the above-mentioned skirting board, it is inevitable that the a flaw or a dent can be produced on the surface of such member.
One or more embodiments of the invention provide a contact mechanism for use in a driving tool which can prevent a member to be fastener-driven from an impression such as a flaw or an impression such as a dent and also can be operated easily.
According to one or more embodiments of the invention, a driving tool is provided with a contact member which can be moved in a vertical direction along an eject path formed in a nose part disposed in a lower portion of a tool body for driving a fastener. A lower end of the contact member is projected beyond a leading end of the nose part. In a fastener driving operation, by moving the contact member upward with respect to the nose part, an operation of a trigger for operating a starting trigger valve is activated. The contact member is held between two springs which are respectively disposed in upper and lower portions of a neighboring portion of the nose part. The lower end of the contact member is urged by an upper spring in such a manner that it is projected beyond the lower end of the nose part.
According to one or more embodiments of the invention, when the trigger is pulled, the contact member may also be moved downward against an urging force of the lower spring in linking with a valve stem of the trigger valve.
According to one or more embodiments of the invention, since the contact member is held between the upper and lower springs, the contact member has a cushioning property; and, since a stroke of the contact member, when a fastener is driven actually, may be short, it is easy to control a force necessary to press the contact member. Also, since the contact member is structured so as to extend along the eject path of the nose part and hardly meshes with other composing members or a fastener when it moves in the vertical direction, the contact member can be moved smoothly and the weight of the contact member can also be reduced, resulting in the small spring load of the upper spring. Therefore, since the contact member can be pressed against the member to be fastener-driven with a small force in a short stroke, even when a fastener is driven into a member to be fastener-driven made of soft material, not only the surface of the member to be fastener-driven is difficult to produce a flaw or a dent but also the contact member is easy to operate.
Also, in the pulling operation of the trigger, when the contact member is further moved downward against the urging force of the lower spring by the valve stem of the trigger valve, the driving tool is prevented from starting its operation even if the trigger is pulled. This can secure the safety of the driving tool.
Other aspects and advantages of the invention will be apparent from the following description and the appended claims.
Now, description will be given below of an exemplary embodiment of the invention with reference to the accompanying drawings.
In
To drive out a nail, by pulling a trigger 10 to actuate a starting trigger valve 12, compressed air supplied from an air compressor is fed to the striking mechanism and the above-mentioned leading nail is driven out by the pressure of the compressed air. Referring more specifically to the pulling operation of the trigger 10, when a contact arm 11 functioning as a contact member is actually pressed against a member to be nail-driven by a contact arm mechanism A functioning as a contact mechanism (which will be shown below), the trigger valve 12 can be operated effectively.
By the way, the trigger valve 12 is the same as a conventionally known trigger valve in which, when the compressed air is supplied from the air compressor, a valve stem 13 is pushed downward out of the trigger valve 12 and this valve stem 13 is then pushed upward into the trigger valve 12 by the trigger 10, whereby the trigger valve 12 is operated so as to start the nail driving operation of the nail driving tool.
The contact arm mechanism A includes a contact arm 11 provided integrally with a shaft member 14 movable parallel to the axis of the nose part 4, and an upper arm 15 disposed upwardly of the contact arm 11. As shown in
The contact arm 11, as shown in
As shown in
As shown in
On the upper portion of the upper arm 15, there is disposed the trigger 10. As shown in
The middle portion of the first contact lever 26 is situated downwardly of the valve stem 13 of the starting trigger valve 12, while the leading end thereof, as described above, is situated upwardly of the upper arm 15. And, in a state where the upper arm 15 has moved upward, when the trigger 10 is pulled up by pushing up the leading end side of the first contact lever 26, the contact arm 11 pushes the valve stem 13 into the trigger valve 12 to thereby operate the trigger valve 12.
Also, the second contact lever 27 is urged by a spring in such a manner that, when the trigger 10 is pulled, it can be projected upwardly of the upper arm 15 in linking with the pulling operation of the trigger 10.
In the above-mentioned structure, normally, the contact arm 11 is situated at the lower position thereof by the upper spring 23, while the contact portion 18 of the leading end of the contact arm 11 is projected downwardly of the nose part 4.
When the trigger 10 is pulled up in this state, as shown in
Also, when the trigger 10 is pulled in this manner, as described above, the upper arm 15 is projected downward; and, therefore, simultaneously with the downward projecting movement of the upper arm 15, the second contact lever 27 is rotated and its leading end 27a projects upwardly of the upper arm 15. After then, even when the contact portion 18 of the contact arm 11 is pressed against the member to be nail-driven P, as shown in
By the way, without the second contact lever 27, the contact driving operation is possible.
To drive a nail into the member to be nail-driven correctly, as shown in
By the way, when, after the upper arm 15 has moved upward, the trigger 10 is pulled up, the second contact lever 27 is unable to project upwardly of the upper arm 15 because the upper arm 15 is in the way of the second contact lever 27.
As described above, since the contact arm 11 is held between the two upper and lower springs 23 and 24, the contact arm 11 itself has a cushioning property and the stroke of the contact arm 11 in the actual nail driving operation may be short, which makes it easy to control a force necessary to press the contact arm 11 against the member to be nail-driven. And, because the stroke of the contact arm 11 is small and also the contact arm 11 is provided independently of the eject path 6 of the nose part 4, when the contact arm 11 moves up and down, it hardly meshes with other members or the nail, so that it is allowed to move smoothly. Also, since the contact arm 11 is simple in structure and light in weight, the spring load of the upper spring 23 may be set small. Therefore, even when driving a fastener into a member to be fastener-driven which is made of soft material, the contact arm 11 can be pressed against the member to be fastener-driven with a small force, which makes it difficult to generate a flaw or a dent on the surface of the member to be fastener-driven.
By the way, when the stroke of the contact arm 11 is long, the spring load is large and the pressing force is strong. Therefore, when the leading end of the nose part 4 is butted against the surface of the member to be fastener-driven, the impact is strong. In order to avoid such strong impact, attention must be paid to the pressing force, which results in the troublesome operation of the driving tool. On the other hand, according to the present embodiment, since the stroke of the contact arm 11 is short and the spring load of the upper spring 23 is small, the operation efficiency of the driving tool can be enhanced.
Here, the contact arm 11 may be structured such that it can move parallel to the axis of the nose part 4, that is, it can move along the eject path 6. Therefore, the lower shaft member 14b, connecting arm 17 and operation arm 19 may be structured such that they can move in linking with each other in the vertical direction; and, therefore, they are not limited to their shapes and connecting modes. The upper arm 15 and operation arm 19 may also be formed separately from each other. Or, there may also be employed a structure in which the upper arm 15 and operation arm 19 are formed as an integral body, while the operation arm 19 is bent and extended upwardly of the upper arm 15. In this structure, provision of the spring 25 is not necessary.
Further, the stroke of the contact arm 11 is not always limited to half the stroke of the conventional contact arm. That is, it may be longer or shorter than half the stroke of the conventional arm.
By the way, in the above-mentioned embodiment, description has been given of an example of the contact mechanism in which there is used the contact arm formed separately from the nose part. However, there may also be used a contact nose in which the leading end of the nose part plays the role of a contact.
Also, the invention is not limited to a nail driving tool. The invention can also be applied not only to a screw driving tool or a pneumatic tool but also to a driving tool which is driven by electric power.
Although the invention has been described heretofore in detail with reference to its specific embodiment, it is obvious to a person skilled in the art that other various changes and modifications are also possible without departing from the spirit and scope of the invention.
The present application is based on the Japanese Patent Publication (Patent Application 2005-152034) filed on May 25, 2005 and thus the contents thereof are incorporated herein.
The invention can be applied to a contact mechanism employed in a driving tool such as a nail driving tool or a screw driving tool for safety.
Number | Date | Country | Kind |
---|---|---|---|
2005-152034 | May 2005 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2006/310159 | 5/22/2006 | WO | 00 | 11/20/2007 |