This application claims priority to Korean Patent Application No. 10-2014-0000749 filed in the Korean Intellectual Property Office on Jan. 3, 2014, the disclosure of which is incorporated by reference herein in its entirety.
Exemplary embodiments of the present invention relate generally to displays, and more specifically, to a driving voltage generating device, a display device including the same, and a method of generating a driving voltage.
A display device, such as a liquid crystal display (LCD) or an organic light emitting diode (OLED), includes driving devices. Examples of the driving devices include a driving voltage generator generating driving voltages, a gate driver generating gate signals, a data driver generating data voltages, a reference grayscale voltage generator supplying reference grayscale voltages to the data driver, and a signal controller controlling the driving voltage generator, the gate driver, the data driver, and the reference grayscale voltage generator. An increased gap between the driving voltages or between the driving voltages and a target driving voltage may deteriorate the display quality of the display device.
An exemplary embodiment of the present invention provides a driving voltage generating device. The driving voltage setting unit includes a driving voltage setting unit receiving initially set data on a driving voltage and a feedback voltage and outputting a control signal. A driving voltage trimmer receives finely adjusted data on the driving voltage and adjusts the feedback voltage. A DC to DC converter generates the driving voltage based on the control signal and an input voltage.
An exemplary embodiment of the present invention provides a display device includes a display panel including a plurality of pixels and a plurality of signal lines. A data driver applies a data voltage to the plurality of signal lines. A driving voltage generator includes at least one driving voltage generating device generating the driving voltage. A gamma voltage generator receives the driving voltage and generates a plurality of reference grayscale voltages. A timing controller controls the gamma voltage generator, the driving voltage generator, and the data driver. The driving voltage generating device includes a driving voltage setting unit receiving initially set data on the driving voltage and a feedback voltage and outputting a control signal. A driving voltage trimmer receives finely adjusted data on the driving voltage and adjusts the feedback voltage. A DC to DC converter generates the driving voltage based on the control signal and an input voltage.
The driving voltage trimmer may include a transistor allowing different currents to flow depending on the finely adjusted data.
The driving voltage setting unit may include a first digital to analog converter receiving the initially set data. A first amplifier receives a first reference voltage from the first digital to analog converter and the feedback voltage. A second amplifier receives an output voltage of the first amplifier and outputs the control signal. The driving voltage trimmer may include a second digital to analog converter receiving the finely adjusted data. A third amplifier receives a second reference voltage from the second digital to analog converter. The transistor includes a control terminal receiving an output voltage of the third amplifier.
The driving voltage generating device may further include a feedback sensing unit connected to an output terminal of the DC to DC converter. The feedback sensing unit may include first and second resistors connected in series with the output terminal. The feedback voltage may be sensed at a first node between the first resistor and the second resistor and be input to the second amplifier. A first terminal of the transistor may be connected to the first node.
The driving voltage trimmer may further include a third resistor connected to a second terminal of the transistor. The second terminal of the transistor may be connected to the third amplifier.
The driving voltage trimmer may further include a first memory storing the finely adjusted data.
The initially set data and the finely adjusted data may be received through an I2C interface.
The first to third resistors may satisfy the following equation:
R3=R2×{R1/(R1+R2)}×[{M−(default+1)}/2n],
where R1 indicates a resistance of the first resistor, R2 indicates a resistance of the second resistor, R3 indicates a resistance of the third resistor, M is a natural number larger than 1, and default indicates a default value of the finely adjusted data.
An exemplary embodiment of the present invention provides a method of generating a driving voltage by a driving voltage generating device. The driving voltage generating device includes a driving voltage setting unit, a driving voltage trimmer, and a DC to DC converter. The method includes receiving initially set data and finely adjusted data on a driving voltage from an outside source. The initially set data is converted into a first reference voltage by the driving voltage setting unit. The finely adjusted data is converted into a second reference voltage by the driving voltage trimmer. A magnitude of a current flowing in a transistor included in the driving voltage trimmer is adjusted by the driving voltage trimmer according to the second reference voltage. A difference between a feedback voltage depending on the current flowing in the transistor and the first reference voltage is amplified by the driving voltage setting unit, outputting a first output voltage. The first output voltage is compared with a reference signal by the driving voltage setting unit, outputting a control signal. The driving voltage is generated by the DC to DC converter according to the control signal.
The driving voltage generating device may further include a feedback sensing unit connected to an output terminal of the DC to DC converter. The feedback sensing unit may include first and second resistors connected in series with the output terminal. The feedback voltage may be sensed at a first node between the first resistor and the second resistor. A first terminal of the transistor may be connected to the first node.
The driving voltage trimmer may include a third resistor connected to a second terminal of the transistor.
The initially set data and the finely adjusted data may be received through an I2C interface.
According to an exemplary embodiment of the present invention, a driving voltage generating device comprises a driving voltage setting unit configured to receive first data for initially setting a driving voltage and a feedback voltage and configured to output a control signal based on the initial data and the feedback voltage. The feedback voltage is a divided voltage of the driving voltage. A driving voltage trimmer is configured to receive second data for adjusting the driving voltage and configured to adjust the feedback voltage depending on the number of bits assigned to the second data. A DC to DC converter is configured to generate the driving voltage based on the control signal and an input voltage.
A more complete appreciation of the present disclosure and many of the attendant aspects thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
Exemplary embodiments of the present invention will be described in detail hereinafter with reference to the accompanying drawings. Like reference numerals may designate like or similar elements throughout the specification and the drawings.
It will be understood that when an element or layer is referred to as being “on,” “connected to,” or “adjacent to” another element or layer, it can be directly on, connected, or adjacent to the other element or layer, or intervening elements or layers may be present. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
Referring to
The DC to DC converter 710 receives an input voltage Vin through an input terminal IN and generates a driving voltage AVDD based on a control signal CS from the driving voltage controller 720. The DC to DC converter 710 outputs the generated driving voltage AVDD through an output terminal OUT.
Referring to
The DC to DC converter 710 may generate the driving voltage AVDD depending on magnetic energy of the inductor L1 and charging energy of the capacitor C1 that are generated as the switching element SW switches on and off depending on the control signal CS.
Referring to
Referring back to
Referring to
The receiver 701 receives the initially set data DATA_SET and the finely adjusted data Code from an outside source. The initially set data DATA_SET is data for setting a value of the driving voltage AVDD, and the finely adjusted data Code is data for finely adjusting a magnitude of the driving voltage AVDD. The initially set data DATA_SET and the finely adjusted data Code may be communicated through an interface such as an I2C (inter-integrated circuit) interface. A function of the I2C communication interface may be changed in software without changing hardware. The I2C communication interface may support a one-to-many communication function. The I2C interface may perform communication using two wires including a serial data (SDA) wire and a serial clock (SCL) wire. However, the communication interface for the initially set data DATA_SET and the finely adjusted data Code is not limited thereto, and various interfaces may be used.
The driving voltage setting unit 725 for setting the driving voltage AVDD generates the control signal CS. The driving voltage setting unit 725 may include a first digital to analog converter DAC1727, a first amplifier OA1, and a second amplifier OA2.
The first digital to analog converter 727 may further include a register (not shown) receiving and storing the initially set data DATA_SET from the receiver 701. The first digital to analog converter 727 converts the initially set data DATA_SET into a first reference voltage VREF1 that is an analog voltage and inputs the first reference voltage VREF1 to the first amplifier OA1.
The first amplifier OA1 includes a non-inverting terminal receiving the first reference voltage VREF1 from the first digital to analog converter 727 and an inverting terminal receiving a feedback voltage FB. The feedback voltage FB may be input from the feedback sensing unit 740 connected to the output terminal OUT of the DC to DC converter 710. Referring to
The second amplifier OA2 includes a non-inverting terminal receiving an output of the first amplifier OA1 and an inverting terminal receiving a reference signal RS having a predetermined waveform from an oscillator OSC. The reference signal RS may have a saw-tooth wave signal. The second amplifier OA2 compares the output of the first amplifier OA1 with the reference signal RS and generates a control signal CS with a duty ratio changed depending on the comparison result. The control signal CS may control the switch-on/off of the switching element SW of the DC to DC converter 710.
The driving voltage trimmer 730 for finely adjusting the driving voltage AVDD may include a memory 735, a second digital to analog converter DAC2737, a third amplifier OA3, a transistor Q1, and a third resistor R3.
The memory 735 receives and stores the finely adjusted data Code through the receiver 701. The capacity of the memory 735 may be 1 byte, but is not limited thereto. The memory 735 may be an electrically erasable and programmable read only memory (EEPROM).
Alternatively, the memory 735 may be omitted. In this case, the second digital to analog converter 737 may directly receive the finely adjusted data Code from the outside through the receiver 701 through, e.g., an I2C interface.
The second digital to analog converter 737 may further include a register (not shown) receiving and storing the finely adjusted data Code. The second digital to analog converter 737 converts the finely adjusted data Code into a second reference voltage VREF2, which is an analog voltage, and inputs the second reference voltage VREF2 to the third amplifier OA3.
The third amplifier OA3 includes a non-inverting terminal receiving the second reference voltage VREF2 from the second digital to analog converter 737 and an inverting terminal receiving a feedback voltage.
The transistor Q1 includes a control terminal receiving an output of the third amplifier OA3, a first terminal connected to the first node N1 of the feedback sensing unit 740, and a second terminal connected to the third resistor R3. One of the first and second terminals may be a source terminal, and the other thereof may be a drain terminal. The transistor Q1 may be a field effect transistor (FET), but is not limited thereto.
The third resistor R3 may be connected between the second terminal of the transistor Q1 and a predetermined voltage source or a ground. The third resistor R3 may determine a magnitude of a drain current of the transistor Q1.
The inverting terminal of the third amplifier OA3 may be connected to the second terminal of the transistor Q1.
Referring to
Ir3=VREF2/R3
Ir1=VREF1/R1
Ir2=Ir3+Ir1 [Equation 1]
In the above Equation 1, R1 indicates a resistance of the first resistor R1, R2 indicates a resistance of the second resistor R2, and R3 indicates a resistance of the third resistor R3.
The driving voltage AVDD may be calculated by the following Equation 2:
In the above Equation 2, (R2/R3)×VREF2 contributes to increasing or decreasing a current flowing in the transistor Q1, allowing the driving voltage AVDD to be finely adjusted.
When the number of bits allocated to the finely adjusted data Code is n (n indicates a natural number), the finely adjusted data Code may have values of 0 to 2n−1. For example, when the number of bits allocated to the finely adjusted data Code is 7 (n=7), the finely adjusted data Code may have values of 0 to 127, as shown in
Using the first reference voltage VREF1, the second reference voltage VREF2 may be represented as shown in the following Equation 3:
VREF2=VREF1×(1+Code)/2n
VREF2=VREF1×(1+Code)/128,when n=7 [Equation 3]
When the above Equation 3 is applied to the above Equation 2, the AVDD for the Code is represented by the following Equation 4:
AVDD(Code)={(R1+R2)/R1+(R2/R3)}×(default+1)/2n}×VREF1+{(R2/R3)×(Code−default)/2n)×VREF1
AVDD(Code)={(R1+R2)/R1+(R2/R3×(65/128)}×VREF1+{(R2/R3)×(Code−64)/128)×VREF1,when n=7 and default=2(n−1)=64 [Equation 4]
In the above Equation 4, the first term ({(R1+R2)/R1+(R2/R3)}×(default+1)/2n}×VREF1) represents a driving voltage AVDD before finely adjusted and indicates a magnitude of a default driving voltage (default AVDD) when the finely adjusted data Code is a default. In the above Equation 4, the second term ({(R2/R3)×(Code−default)/2n)×VREF1) contributes to finely adjusting the driving voltage AVDD.
Referring to
When a finely adjusted ratio of the second term of the above Equation 4 with respect to a default driving voltage (default AVDD) or an adjusting resolution is, for the purpose of description, 1/M (M indicates a natural number larger than 1), the following Equation 5 is satisfied.
{(R2/R3)×(1/2n)×VREF1=(1/M)×(R1+R2)/R1+(R2/R3}×(default+1)/2n}×VREF1
{(R2/R3)×(1/128)×VREF1=(1/M)×{(R1+R2)/R1+(R2/R3}×(65/128}×VREF1,when n=7 and default=2(n−1)=64 [Equation 5]
According to the above Equation 5, the third resistance R3 is determined by the following Equation 6.
R3=R2×{R1/(R1+R2)}×[{M−(default+1)}/2n]
R3=R2×{R1/(R1+R2)}×{(M−65}/128),when n=7 and default=64
R3=R2×{R1/(R1+R2)}×{(1000−65}/128),when n=7,default=64,M=1000 [Equation 6]
For example, the third resistance R3 is set as shown in the above Equation 6, and thus, the driving voltage AVDD may be adjusted by 1/M based on the default driving voltage (default AVDD) when a default value in n bits of finely adjusted data Code is a default. For example, when M is 1000, the driving voltage AVDD may be finely adjusted by ±0.1% with respect to the default driving voltage (default AVDD), as shown in
Referring to
The initially set data DATA_SET is data for setting an initial driving voltage AVDD before finely adjusted, and the initially set data DATA_SET is stored in a register of the driving voltage setting unit 725 included in the driving voltage generating device 700 depending on addresses allocated to the initially set data DATA_SET.
The finely adjusted data Code is data for finely adjusting the driving voltage AVDD, and the finely adjusted data Code is stored in a register of the driving voltage trimmer 730 included in the driving voltage generating device 700 depending on addresses allocated to the finely adjusted data Code. The finely adjusted data Code may also be stored in the memory 735.
The first digital to analog converter 727 included in the driving voltage setting unit 725 converts the initially set data DATA_SET stored in the register into the first reference voltage VREF1, which is an analog voltage, and outputs the first reference voltage VREF1 to the first amplifier OA1.
The first amplifier OA1 amplifies a difference between the first reference voltage VREF1 and the feedback voltage FB that depends on the current flowing through the first and second resistors R1 and R2 of the feedback sensing unit 740 and the current flowing through the third resistor R3 of the driving voltage trimmer 730, and the first amplifier OA1 outputs the amplified voltage to the second amplifier OA2.
The second amplifier OA2 compares the output of the first amplifier OA1 with the reference signal RS input from the oscillator OSC and generates the control signal CS depending on the comparison result.
The driving voltage trimmer 730 adjusts a current flowing in the transistor Q1 depending on an increase and decrease in the finely adjusted data Code based on the set driving voltage AVDD when the finely adjusted data Code stored in the register of the second digital to analog converter 737 is the default value, allowing a magnitude of the driving voltage AVDD to be finely adjusted.
For example, when the finely adjusted data Code increases with respect to the default value, the current of the transistor Q1 is decreased, and thus, a voltage applied to the third resistor R3 is decreased. In this case, the feedback voltage FB input to the inverting terminal of the first amplifier OA1 becomes smaller than the first reference voltage VREF1. Accordingly, a duty ratio of the control signal CS output from the second amplifier OA2 is controlled, and thus, a magnitude of the driving voltage AVDD output from the DC to DC converter 710 is increased. Such change in the driving voltage AVDD may also be confirmed from the above Equation 4.
When the finely adjusted data Code decreases with respect to the default value, the current of the transistor Q1 is increased, and thus, a voltage applied to the third resistor R3 is increased. In this case, the feedback voltage FB input to the inverting terminal of the first amplifier OA1 becomes larger than the first reference voltage VREF1. Accordingly, a duty ratio of the control signal CS output from the second amplifier OA2 is controlled, decreasing a magnitude of the driving voltage AVDD output from the DC to DC converter 710. Such change in the driving voltage AVDD may also be confirmed from the above Equation 4.
When a finely adjusted rate of the driving voltage AVDD is set to 1/1000, and the finely adjusted data Code is changed by 1 with respect to the default value, the magnitude of the driving voltage AVDD may be changed by about 0.1%, and a driving voltage AVDD having a desired level may be output.
According to an exemplary embodiment of the present invention, the driving voltage AVDD generated by the driving voltage generating device 700 is finely adjusted, allowing the driving voltage AVDD to be closer to a target value.
Referring to
Referring to
However, referring to
According to an exemplary embodiment of the present invention, the driving voltage AVDD may be adjusted in units of about 0.1% of the driving voltage AVDD (for example, 15 V) when the finely adjusted data Code is the default value, with respect to the same initially set data DATA_SET. When considering all of the initially set data DATA_SET and all of the finely adjusted data Code, the driving voltage AVDD may be finely adjusted even in units of about 0.005 V or less. For example, referring to
Therefore, the finely adjusted data Code is adjusted, allowing the driving voltage AVDD to be precisely adjusted. Accordingly, a difference from a target driving voltage AVDD may be reduced, and a difference between the plurality of driving voltages AVDD generated by the plurality of driving voltage generating devices 700 may be adjusted in up to 0.001 V units.
The units in which the driving voltage AVDD is finely adjusted may be variously changed by controlling magnitudes of the resistors R1, R2, and R3 included in the driving voltage generating device 700, the number of bits of the finely adjusted data Code, and the like.
Referring to
The display panel 300 includes a plurality of signal lines and a plurality of pixels PX connected to the plurality of signal lines. The pixels PX are arranged substantially in a matrix form. When the display device according to an exemplary embodiment of the present invention is a liquid crystal display, the display panel 300 may include lower and upper display panels (not shown) facing each other and a liquid crystal layer (not shown) interposed between the lower and upper display panels.
The signal lines include a plurality of gate lines G1 to Gn transferring gate signals (also referred to as “scanning signals”) and a plurality of data lines D1 to Dm transferring data voltages. The gate lines G1 to Gn may extend in parallel with each other in a row direction. The data lines D1 to Dm may extend in parallel with each other in a column direction.
One pixel PX may include at least one switching element connected to at least one data line D1 to Dm and at least one gate line G1 to Gn, and at least one pixel electrode (not shown) connected to the switching element. The switching element may include at least one thin film transistor, and the switching element may be controlled by a gate signal transferred through its corresponding one of the gate lines G1 to Gn and transfers a data voltage from its corresponding one of the data lines D1 to Dm to the pixel electrode of each pixel PX.
Each pixel PX may display a primary color (spatial division) or alternately display primary colors over time (time division), and a desired color is displayed by a spatial or temporal sum of primary colors. Examples of the primary colors may include red, green, blue, yellow, cyan, and magenta. A plurality of pixels PXs that display different primary colors and that are adjacent to each other or not may form a set (referred to as a dot), and one dot may display a white image.
The timing controller 600 receives an input image signal IDAT and an input control signal ICON from a graphics controller (not shown) or the like and controls operations of the gate driver 400, the data driver 500, the gamma voltage generator 800, the driving voltage generator 777, and the like.
The input image signal IDAT includes information on the luminance of each pixel PX, and the luminance may be represented in a predetermined number of grays, for example 1024=210, 256=28, or 64=26 grays. The input image signal IDAT may be provided for each primary color represented by the pixel PX. Examples of the input control signal ICON may include a vertical synchronization signal, a horizontal synchronization signal, a main clock signal, a data enable signal, and the like.
The memory 650 may store information such as the initially set data DATA_SET, the finely adjusted data Code, and the like. The memory 650 may further store gamma information.
The timing controller 600 processes the input image signal IDAT based on the input image signal IDAT and the input control signal ICON and converts the input image signal IDAT into an output image signal DAT, and the timing controller 600 generates a gate control signal CONT1, a data control signal CONT2, a gamma control signal CONT3, a driving voltage control signal, CONT4, and the like.
The gate control signal CONT1 includes a scanning start signal STV instructing the gate driver 400 to start scanning of the gate signal and at least one gate clock signal controlling an output period of a gate-on voltage Von. The data control signal CONT2 includes a horizontal synchronization start signal informing the data driver 500 that transmission of the output image signal DAT to one row of pixels PXs starts, a data load signal instructing the data driver 500 to apply an analog data voltage to the data lines D1 to Dm, and the like. The gamma control signal CONT3 includes information on the gamma information. The driving voltage control signal CONT4 may include information on the driving voltage AVDD stored in the memory 650, for example, the initially set data DATA_SET and the finely adjusted data Code.
The driving voltage generator 777 generates at least one driving voltage AVDD depending on the driving voltage control signal CONT4 from the timing controller 600. The driving voltage generator 777 may include at least one driving voltage generating device 700 according to an exemplary embodiment of the present invention.
The driving voltage generator 777 may transmit the driving voltage AVDD to the gamma voltage generator 800 and the data driver 500.
The gamma voltage generator 800 generates all or a limited number of the grayscale voltages (such a limited number of grayscale voltages are referred to as “reference grayscale voltages”) GMA associated with transmittance of the pixels PXs using the driving voltage AVDD, or the like, depending on the gamma control signal CONT3. The grayscale voltages may include positive grayscale voltages and negative grayscale voltages with respect to a common voltage Vcom. The gamma voltage generator 800 transmits all the grayscale voltages or the reference grayscale voltages GMA to the data driver 500.
The gate driver 400 is connected to the gate lines G1 to Gn depending on the gate control signal CONT1 from the timing controller 600, generates a gate signal configured of a combination of a gate-on voltage Von and a gate-off voltage Voff, and applies the generated gate signal to the gate lines G1 to Gn.
The data driver 500 is connected to the data lines D1 to Dm, selects a grayscale voltage from the gamma voltage generator 800 based on the output image signal DAT received from the timing controller 600, and applies the selected grayscale voltage as the data voltage to the data lines D1 to Dm. However, when the gamma voltage generator 800 provides the reference grayscale voltages GMA, the data driver 500 may divide the reference grayscale voltages GMA to thus generate the grayscale voltages for all the grays and convert the output image signal DAT into the data voltage.
Each driving device, such as the gate driver 400 and the data driver 500 may be mounted in at least one integrated circuit (IC) chip on the display panel 300 or may be mounted on a flexible printed circuit film (not shown) in the form of a tape carrier package (TCP) or on a separate printed circuit board (PCB) (not shown). According to an exemplary embodiment of the present invention, the gate driver 400, together with the signal lines G1 to Gn and D1 to Dm and the thin film transistors, may be integrated in the display panel 300.
Referring to
The first and second data drivers 500a and 500b may receive reference grayscale voltages or all the grayscale voltages from different gamma voltage generators (not shown), and a plurality of gamma voltage generators may receive separate driving voltages AVDD from different driving voltage generating devices. A plurality of data driving circuits included in the first data driver 500a may receive reference grayscale voltages or all the grayscale voltages from a gamma voltage generator receiving driving voltages AVDD from a plurality of driving voltage generating devices 701 to 704, respectively, and a plurality of data driving circuits included in the second data driver 500b may receive all the reference grayscale voltages or grayscale voltages from a gamma voltage generator receiving driving voltages AVDD from a plurality of driving voltage generating devices 705 to 708, respectively. The driving voltage generating devices 701 to 708 may be positioned on the first and second flexible printed circuit films 510a and 510b. Although eight driving voltage generating devices 701 to 708 are shown in
As the size and resolution of the display device increase, the display device may include more driving voltage generating devices.
When one display device includes a plurality of driving voltage generating devices, a deviation between a plurality of driving voltages AVDD generated by the plurality of driving voltage generating devices may be generated. The deviation between the driving voltages AVDD may lead to a deviation between the grayscale voltages, thus causing dispersion in the gamma curves.
Referring to
In this case, when the driving voltages AVDD are independently received and data voltages are generated based on the driving voltages to display an image, a large deviation may be generated between gamma curves, as shown in
For example, when each driving voltage generating device and each gamma voltage generating unit are disposed at upper and lower portions of the display panel 300 as shown in
However, the display device including the driving voltage generating device 700 according to an exemplary embodiment of the present invention may adjust the finely adjusted data Code, allowing the driving voltage AVDD to be finely adjusted to a predetermined minimum unit, for example, 0.001 V. Therefore, the display device including the driving voltage generating device 700 according to an exemplary embodiment of the present invention may finely adjust the driving voltages AVDD generated by the plurality of driving voltage generating devices, allowing a difference between the driving voltages AVDD to be, for example, 0.1% or less.
Therefore, even when the grayscale voltages are generated based on the driving voltages AVDD generated by different driving voltage generating devices, a deviation between gamma curves of images displayed by different data driving circuits may be substantially removed, as shown in
Before photographing a display image, a driving voltage AVDD deviating from a target driving voltage AVDD is finely adjusted using the finely adjusted data Code as in an exemplary embodiment of the present invention, and thus, a difference between an actually output driving voltage AVDD and the target driving voltage AVDD is adjusted to be about 0.1% or less (S10).
Data on the finely adjusted driving voltage AVDD is stored in a memory (S20). The data on the finely adjusted driving voltage AVDD may be stored in all of the memories 650 and 735 and the registers of the driving voltage setting unit 725 and the driving voltage trimmer 730.
An image is photographed (S30), and a gamma curve is measured and analyzed based on the luminance of the photographed image (S40).
A target gamma curve is generated (S50), and a corrected value of the measured gamma curve is calculated based on the target gamma curve (S60).
According to an exemplary embodiment of the present invention, the deviation between the driving voltages AVDD may be previously removed and a spot may be prevented from occurring in advance.
While this invention has been shown and described in connection with exemplary embodiments thereof, it is to be understood by those of ordinary skill in the art that various changes in form and detail may be made thereto without departing from the spirit and scope of the present invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2014-0000749 | Jan 2014 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
7561087 | Mechnig | Jul 2009 | B2 |
20090243989 | Lee et al. | Oct 2009 | A1 |
20100033415 | Bae | Feb 2010 | A1 |
20110175892 | Lee | Jul 2011 | A1 |
20120326725 | Sugeno et al. | Dec 2012 | A1 |
20130088477 | Seong et al. | Apr 2013 | A1 |
20130093746 | Zhao | Apr 2013 | A1 |
20130187624 | Wakasugi | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
2011-027959 | Feb 2011 | JP |
2012141477 | Jul 2012 | JP |
Number | Date | Country | |
---|---|---|---|
20150194085 A1 | Jul 2015 | US |