The present invention relates to DC electrical grids and DC operated devices powered via a DC voltage bus of such a DC electrical grid. In particular, some embodiments of the invention relate to a method and/or an apparatus or system for droop control and, more particularly, for droop control of DC operated application devices.
DC electrical grids are gaining more prominence due to a number of advantages that a DC-operated electrical grid may have over an alternating current (AC)-operated electrical grid. One advantage is the efficiency associated with DC energy generation, especially with sustainable energy sources such as e.g. solar power or wind power. Other advantages include efficiency associated with conversion of the DC voltage to higher or lower voltages and storage of the DC energy as e.g. in capacitors and batteries, and hence consume less energy.
In electrical grids with multiple loads and/or energy sources, whether renewable energy or not, supply and demand need be managed. For AC microgrids various methods have been developed, however such conventional AC methods are difficult and rather inefficient to apply, due to the low DC grid inertia. Where in order to facilitate operation when supply is scarce, enabling flexibility in demand and supply is crucial. And the more intermittent Renewable Energy Sources RES are introduced in a grid, the more relevant this becomes.
In AC electrical grids, the frequency of the AC signal may be used as control signal for signaling. With droop control, when the grid is operating at a maximum operating frequency, an energy source may reduce the power supplied, whereas when the grid is at a minimum operating frequency, the power supplied by the source is maximized. This is achieved with the help of power electronics However, with DC grids such control is impossible to the absence of any frequency.
It is an object of the invention to facilitate droop control in a DC operated system.
According to the invention, this object is achieved by providing a method for droop control in a DC system. The DC system including a DC source, a DC bus and at least two DC application devices. Each application device having a droop curve and the DC source providing a DC voltage over the DC bus to each application device. Each application device performs a first voltage measurement during a first load condition and performs a second voltage measurement during a second load condition. And each application device adjust its' respective settings of the droop curve in accordance with the first and second voltage measurements.
According to one aspect, there is provided a DC operated application device configured to facilitate droop control.
According to another aspect, there is provided a DC operated system including DC operated application devices that are configured to facilitate droop control.
Further objects, aspects, effects and details of particular embodiments of the invention are described in the following detailed description of a number of exemplary embodiments, with reference to the drawings.
By way of example only, the embodiments of the present disclosure will be described with reference to the accompanying drawings, wherein:
Protection Circuit
Referring to
The protection circuit 3 has a first stage 6 which includes a voltage measurement circuit 15, 16 coupled between the input terminals 4,4′. In the example of
The protection circuit 3 further includes a digital controller 10. The digital controller 10 is an active element that is powered by an auxiliary power source 14, at least temporarily until power is supplied by a local PSU of the application device. The auxiliary power source 14 may be common battery, it may be an active power source fed by the DC link that is connected to the first input terminal, such as a dependent current source that is fed from the DC link 20, or it may be any other suitable active power source for powering the digital controller 10. As an indication of power that may be provided e.g. in the order of 3 mA.
Any DC operated load or DC application will include electronics that need to be powered in order to operate. Thereto such devices will have a local power supply unit PSU 12 to facilitate delivery of the required power. In order to control power that is to be delivered to the application electronics, the protective circuit 3 is further provided with a digital controller 10. The digital controller 10 is arranged for controlling activating and de-activating of the local PSU 12 for supplying power to electronics of the load. The digital controller 10 may control activating and de-activating of the local PSU 12 by operating a power switch 11 for connecting the auxiliary power source 14 to a power input 23 of the local PSU 12. In addition, or instead, the digital controller 10 may operate a ground switch 13 for connecting a ground line, such as ground line 21, to a soft-start input 24 of the local PSU 12. In the case of connecting to ground only, no connection between source 14 and local PSU 12 is required. The digital controller 10 may further be arranged for monitoring operating conditions of the load, such as an overload condition, by means of a shunt resistor 30 connected in series with the ground line 21.
Precharging
When a load, or more generally any application device, is initially connected and to be powered by the main DC power source 1, the electronics 12 of the application device i.e. load, need to be powered before main power is delivered to the application device. And prior to this activation of the electronics, e.g. via the local power source controller, a DC link capacitor 8 needs to be charged. Such DC link capacitor is part of any application device and connected between a DC link 20 and ground line 21. In operation, the DC link capacitor 8 is intended to supply fast current requested by the device, when e.g. mosfets in the device switch fast. It further provides a hold-up time for the device in case the grid voltage should drop. During activation, it needs to be ensured that this DC link capacitor 8 is charged gradually over time, so no abrupt voltage or current spike occurs. This in order to prevent tripping of any upstream fast breaking circuit or protection devices. This is referred to as pre-charging of the application.
Referring still to
The bypass switch 19 is to be operated in dependence of a pre-charge condition, i.e. indicating that the pre-charging is completed. Thereto the digital controller 10 is further arranged for determining the pre-charge condition by measuring a voltage level 31 in the second stage 7. And the digital controller 10 is further arranged for operating the bypass switch 19 based on the pre-charge condition. When the pre-charging is completed, the bypass switch 19 is closed to connect the DC link capacitor 8 with the ground line 21. Basically, the pre-charge condition is determined by the voltage across the capacitor 8 matching the input voltage on the input terminals 2, 2′ or when no current is flowing through pre-charging circuit 9.
In the embodiment of
Blackstart & Safety Wire
As will be apparent from the above, the starting up and activating of a DC grid or other DC system with DC operated devices requires different approaches from known AC systems. This also applies to the first step of energizing or activating a DC source that is to supply power to a DC grid, a DC bus and basically any DC system. Thereto, a DC system operating according to the above protocols will perform a procedure indicated as blackstart procedure. In addition, and in particular when the DC system includes multiple sources, the DC system may include a safety wire.
The safety wire is a line voltage connection that provides a voltage level of e.g. 48V to DC sources, indicating that the DC sources may supply power to the DC bus i.e. the supply line 2 of
Referring to
Referring to
The black start procedure may be initiated and performed by a dedicated device, such as a stand-alone battery powered device, that contains enough energy to boot the DC bus and the safety wire.
Calibration—with Communication
In order to ensure that the various loads along an extended supply line, as in e.g. the lighting system of
In an electrical system where communication means between the source and the various loads are available, the source may simply communicate the voltage level it is supplying and each protection circuit may measure its' local voltage level and associate that with the communicated level of voltage currently being supplied. In such a system with communication available between source and application devices, such as loads, each application device may perform a method for calibrating its' voltage measurements. Accordingly, the application device connected to the DC bus that is supplied by the DC source, will receive from the DC source a communication with a measurement value of the DC voltage presently provided by the DC source. Then the application device will perform a first measurement of local voltage, see t1 in
Once the inrush and pre-charge are completed and the supply line is at its' nominal operational value, calibration may be performed which is initialized by the DC source rising to maximum voltage Vmax. Then each application device may respond by starting to demand full power. This maximum or ‘full load’ condition will influence the voltage level available along the length of the supply line; and it may also show a local dip in the Vmax, see Uin in
With the measurements t1 at 0% demand and t2 at 100% demand each application device may perform the calibration required to allow coherent behavior among all the application devices i.e. loads of the whole DC system.
The same method as described above, may be adapted and applied when the nominal voltage level is known in advance with each application device and no communication between DC source and application device is available.
Calibration—without Communication
In an electrical system without any communication means available between the source and the various loads, another method for calibration is required to have each application device calibrate its voltage measurements. Instead of a communication, the DC source may apply a trigger pattern of voltage levels, such as e.g. a sequence of rising and falling voltage. Accordingly, the application device connected to the DC bus that is supplied by the DC source, may detect the pattern and initiate a calibration procedure. Such an approach may also be applied in electrical systems where the supply voltage may not be known in advance as e.g. with a solar panel or battery which may be partially depleted.
Referring to
During the inrush phase, the DC source may provide the trigger pattern that may be detected by the application device. In addition, the trigger pattern may include a data sequence to e.g. indicate the level of droop at which the source will operate. More in general, the droop describes the linear relationship between the voltage level and the amount of power provided. In response to the trigger pattern, each application device will perform a first measurement, see t3 in
After a pre-determined delay, each application device will start demanding power. The pre-determined delay is to allow the pre-charge to start and to be completed so the supply line is at its' nominal operational value. The level of power that each application device will start to demand, will correspond the droop indicated by the data sequence of the trigger pattern. This may be maximum i.e. full load or another level or percentage of the droop.
This increased demand, which may be maximum or ‘full load’ condition, may influence the DC source and the voltage level available along the length of the supply line. Each application device will then perform a second measurement of the local voltage under this increased or full load condition, see t4 in
With the measurements t3 at 0% demand and t4 at a indicated percentage e.g. 80%, 90% or 100% of droop each application device may perform the calibration required to allow coherent behavior among all the application devices i.e. loads of the whole DC system.
With the voltage measurements as set out above, each application device may calibrate its' voltage thresholds for determining whether voltage has fallen below a certain minimum voltage for operation and shut down or at least reduce power demand, or whether the voltage has risen above a threshold and start demanding full power.
Socializing Droop
With the calibrations performed as described above, operation of the system as a whole may be improved further, by having the application devices adapt their droop settings, also referred to as droop curves, in accordance with the outcome of the calibration.
Referring to
Prior to adaptation, each application device may be configured to respond to a change in voltage on the supply line by adapting its' energy/power demand. For example, in case of a voltage drop some first low priority application devices may respond by lowering their energy/power demand. And with a further drop additional application devices may lower demand or even shut down. This configurable, step wise behavior, referred to as droop control, will ensure that higher priority and/or critical application devices may continue to function when energy supply as indicated by voltage drops falls. In the opposite case, when the voltage level on the supply line increases, application devices may increase their energy demand. Or if previously shut down, application devices may be activated again.
As indicated earlier above, in systems with extended supply lines the voltage level may fall gradually along the length of the supply line. Meaning, that even though the energy supply remains constant, some application devices further downstream along the supply line may measure a lower voltage level than devices upstream. In order to ensure that application devices operate coherently, the droop behavior may be socialized.
Referring to
Next, a threshold for re-activating may be adjusted 703. Under normal operation each application device may have a voltage threshold above which, following earlier de-activation, the device will be able to work properly again and may be re-activated. With the calibrated maximum voltage under full load condition, this threshold for re-activating may be adjusted 703. The re-activation threshold may differ from the de-activation threshold in order to prevent an immediate de-activation upon (re-)activation of several application device sat once.
Should the application device be able to lower its' power demand gradually, whether e.g. linear or stepwise, a droop curve or power demand curve which prescribes how much power to demand at a certain voltage level may be adjusted 704.
The adjustment of the droop curve, or droop settings, will be based on the power corresponding with the calibrated voltage levels, see eq. 1. Herein the adjusted power Pcal is calculated based on the first voltage measurements t1, t3 and second voltage measurements t2, t4, e.g. under no load i.e. 0% and e.g. maximum load 100%.
As an illustrative example, for a 100 W droop between 380V and 350V, measured at 360V the calculation results in:
So, in order to socialize the droop the V100% and V0% voltage thresholds are adjusted in accordance with the calibrated values and load operating point under normal droop. Hence, for the set up described in reference to
V
0%
=V
t1−(V100%−Vt2) Eq. 3
V
100%
=V
t2 Eq. 4
And likewise, for the set up described in reference to
V
0%
=V
t3−(V100%−Vt4) Eq. 5
V
100%
=V
t4 Eq. 6
In this manner, calibration of the application devices may be complemented by socializing the droop control.
In further embodiments, the droop curve may be composed of multiple segments. Instead of one linear relation between Voltage and Power from 0%-100%, it may have e.g. two segments, one from 0%-70% and another for 70%-100%, ro from 0%-50% and from 50%100%. Or any other combination of multiple segments and other split of these segments along the droop curve.
Although the present invention has been described above with reference to specific embodiments, it is not intended to be limited to the specific form set forth herein. Rather, the invention is limited only by the accompanying claims and, other embodiments than the specific above are equally possible within the scope of these appended claims.
Furthermore, although exemplary embodiments have been described above in some exemplary combination of components and/or functions, it should be appreciated that, alternative embodiments may be provided by different combinations of members and/or functions without departing from the scope of the present disclosure.
The present application claims priority to U.S. Provisional Patent Application Ser. No. 63/333,140, filed on Apr. 21, 2022, and entitled DROOP CONTROL IN A DC OPERATED SYSTEM, which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
63333140 | Apr 2022 | US |