Inkjet printing devices use a printing fluid such as an ink to print text, graphics, and images onto a print media. Inkjet printers may use print bars which eject the printing fluid onto a print medium such as paper. Each print bar has a number of printheads that each includes a number of nozzles. Each nozzle has an orifice through which the drops of the printing fluid are fired. The ink ejection mechanism within the printhead may take on a variety of different forms such as thermal printhead technology or piezoelectric technology.
The accompanying drawings illustrate various examples of the principles described herein and are a part of the specification. The illustrated examples are given merely for illustration, and do not limit the scope of the claims.
Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements.
As described above, inkjet printing devices comprise print bars comprising a number of printheads. Each printhead comprises a number of nozzles out of which is ejected an amount of printing fluid. The printing fluid may comprise an amount of evaporable constituent such as a solvent which, over time, may evaporate and cause caking of a non-evaporable substance on a surface of or within the nozzles of the printhead. When caking occurs, the nozzles may be blocked causing those nozzles to not fire or misfire. When nozzles misfire or do not fire, print quality is reduced which may be represented in defects in the printed image on the print media.
In order to monitor if nozzles are not firing or misfiring, an optical drop detector may be used to monitor the ejection of droplets of printing fluid out of each nozzle. The present specification describes a low cost through-beam optical drop detector (TBODD) that allows a number of drops ejected from the printhead to pass through a number of holes defined in a printed circuit board (PCB). Across the holes, a number of optical channels are formed by a number of light emitting devices and light detectors. In an example, the light emitting devices are light emitting diodes (LEDs). The size of the hole may be defined by the size of the printhead. In an example, each of the number of holes defined in a PCB are sized to contour to the shape of a number of a printheads. In an example, the number of holes may be two: a first hole for a first “even” printhead and a second hole for a second “odd” printhead. In an example, the number of holes may be 1 with the single hole contouring both a first “even” printhead and a second “odd” printhead.
The present specification, therefore describes a drop detector that includes a printed circuit board (PCB) including a number of optical channels each formed by a light emitter and a light detector and a number of holes defined in the PCB over which the optical channels pass over and through which a number of ejected drops from a number of printheads pass through wherein each of the number of holes defined in the PCB are sized to contour the shape of the number of the printheads.
The specification further describes a printing device including a controller and a drop detector which includes a printed circuit board (PCB) having a number of holes through which a number of droplets of printing fluid may pass and a plurality of light emitting devices and corresponding light detectors to create optical channels across the number of holes. The drop detector detects the number of droplets of printing fluid as they pass through the optical channel.
The specification also describes a method for detecting defective nozzles in a number of printheads including positioning a drop detector including a printed circuit board (PCB) under a print bar of a printing device, the print bar comprising a number of printheads, firing a number of nozzles from a first printhead among the number of printheads through a hole defined in the PCB, and detecting a number of droplets ejected from the number of nozzles as the droplets pass through a number of optical channels each formed by a light emitter and a light detector.
As used in the present specification and in the appended claims, the term “printing fluid” is meant to be any fluid capable of being ejected from a nozzle of a printhead. In an example, the printing fluid is an ink. In another example, the printing fluid is an agent used to help sinter a sinterable material in association with a 3-dimensional printer.
As used in the present specification and in the appended claims, the term “printing device” is meant to be understood as any device that applies a printing fluid onto print media or onto a print target.
Additionally, as used in the present specification and in the appended claims, the term “a number of” or similar language is meant to be understood broadly as any positive number comprising 1 to infinity.
In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present systems and methods. It will be apparent, however, to one skilled in the art that the present apparatus, systems and methods may be practiced without these specific details. Reference in the specification to “an example” or similar language means that a particular feature, structure, or characteristic described in connection with that example is included as described, but may not be included in other examples.
As described above, the holes (125) in the PCB (105) provide an orifice through which any ejected printing fluid may pass. In an example, the holes (125) are sized to contour the shape of any number of the printheads on the print bar. In an example, a single hole (125) may be formed in the PCB (105) to contour a single printhead. In this example, the hole may outline the outer dimensions of the printhead such that the size of the hole (125) is minimized. Minimization of the hole (125) allows for the light emitters (115) and light detectors (120) to be closer together. This allows for the components to make up the light emitters (115) and light detectors (120) to have relatively less stringent performance requirements. As the distance between the light emitters (115) and light detectors (120) grows, relatively more expensive devices are used to detect the droplets of printing fluid as they pass through the optical channels (110) formed by the light emitters (115) and light detectors (120). With the distance between the light emitters (115) and light detectors (120) reduced to the width of the printhead, less expensive devices can be used. Additionally, as the distance between the light emitters (115) and light detectors (120) is reduced, less mechanical parts may be required. One type of part that can be eliminated from the PCB (105) and optical channel (110) is a lens. Because the distances between the light emitters (115) and light detectors (120) is reduced, the light emitted from the light emitters (115) may be applied without the need for additional optical conditioning. Accordingly, the costs of physical parts and the size of the PCB (105) are reduced.
In an example, a single hole (125) may be formed in the PCB (105) for each printhead to be monitored by the drop detector (100). In this example, the number of printheads monitored may be 1, 2, 3, 4, 5, 6, 7, 8, etc. In another example, a single hole (125) may be formed in the PCB (105) for monitoring a plurality of printheads. In this example, the single hole may be formed in the PCB (105) to monitor 1, 2, 3, 4, 5, 6, 7, 8, etc. printheads. Although the present specification describes a single hole (125) defined in the PCB (105) for detecting droplets ejected from a plurality of printheads, the present specification contemplates the use of any number of holes (125) for any number of printheads. Thus the description herein is not meant to be limiting but is instead meant to be an illustration of merely an example among a number of examples.
As described above, the light emitters (115) may be made of relatively lower cost devices that are capable of emitting light towards a light detector (120). In an example, the light emitters (115) may be a number of light emitting diodes (LEDs). The LEDs may be selected to emit a predetermined wavelength of light such that when a droplet of printing fluid passes in the optical channel (110) formed by the light emitter (115) and the light detector (120), a shadow of the droplet may be detected by the light detector (120). The amount of light that reaches the detector may be measured and it may be determined if a droplet has passed through the optical channel and, if so, how much fluid was in the droplet. Although the present specification describes the light emitters (115) as being an LED, this is meant to be understood as merely an example, and the present specification contemplates the use of any number of different types of light emitting devices.
The light detector (120) may be any device that can detect the presence or absence of light at an end of the optical channel (110). In an example, the light detector (120) is an active-pixel sensor (APS). In another example, the light detector (120) is a complementary metal-oxide-semiconductor (CMOS) sensor. In another example, the light detector (120) is a silicon photodiode. However, other examples of light detectors (120) are contemplated by the present specification and any type of light detector (120) may be used to accomplish the functionality of the drop detector (100) as described herein.
During operation, the drop detector (100) may be positioned to detect any number of droplets of printing fluid ejected from any number of printheads on the print bar. In an example, the PCB (105) has a single hole (125) defined therein contouring the outer dimensions of two printhead such that the drop detector (100) can detect a number of droplets of printing fluid ejected from two individual printheads simultaneously. In order to allow the printing fluid to pass through the hole (125), the drop detector (100) may be positioned under these printheads through the use of a carriage coupled to a rail. Certain gear systems such as a worm gear along with belts and a linear analog encoder may be used to precisely position the holes (125) defined in the PCB (105) under the printheads from which the droplets of printing fluid may be detected. Other types of encoders may be used such as a digital linear encoder and a rotational encoder (digital and analog) and the present specification contemplates the use of these other types of encoders. Additionally, different types of gear or movement systems may be used such as a belt and pulley, a lead screw, and rack and pinion and the present specification contemplates the use of these other types of gear or movement systems.
In an example, printing fluid may be ejected from a single nozzle in each of the printheads. In this example, two optical channels (110) may be formed: one spanning a first portion of the hole (125) directly under a first printhead and the other spanning a second portion of the hole (125) defined directly under a second printhead in the PCB (105). In the example where the print bar is a page-wide array of printheads, the printheads may be situated in an “even” and “odd” printhead configuration. This “even” and “odd” configuration of the printheads is shown in
During operation, in an example, the drop detector (
In an example, two optical channels (
In an example, the first nozzle may be the first nozzle in a row (210-1 through 210-4) of nozzles on the printhead while the second nozzle is halfway between the first nozzle in the row (210-1 through 210-4) of nozzles and a last nozzle in that row (210-1 through 210-4) of nozzles. The nozzles may be assigned an individual number by, for example, a controller of a printing system associated with the print bar (200) and drop detector (
During operation of the drop detector (
Each of the printheads (205-1 through 205-10) may include a number of rows (210-1 through 210-4) of nozzles with each row (210-1 through 210-4) of nozzles ejecting a different kind or color of printing fluid therefrom. In the example shown in
In an example, in order for the drop detector (
In an example, the firing of each of the nozzles among the different rows (210-1 through 210-4) of nozzles may be done by implementing an interleaved sequence. In this example, nozzles 1 and 528 of the first row (210-1) of any monitored printhead (e.g., 250-1 and 205-2) may be fired simultaneously with the first optical channel (
In the example show in
Each of the four light emitters (320) and four corresponding light detectors (325) may be electrically connected to, for example, a controller in a printing device housing the print bar. As will be described in more detail below, a ribbon electrical connector may be provided to connect the PCB (300) to the controller via the carriage. This controller may direct both the firing of the individual nozzles in the individual printheads as well as the movement of a carriage on which the drop detector (
The PCB cover (305) shown in
The PCB cover (305) may also include a number of apertures (335) that are situated in front of the light emitters (
In an example, a number of lenses may also be coupled to the PCB (300) or PCB cover (305) such that they are in dose proximity to the light emitters (
The controller (430) may be communicatively coupled to the drop detector (405). As described above, the controller (430) may receive droplet detection information from the drop detector (405) during operation. In an example, the controller (430) may further cause current (I) applied to the light emitting devices (420) to be adjusted based on, for example, the amount of aerosol printing fluid build-up on the light emitting devices (420) or light detecting devices (425).
The controller (430) may also receive amplified output signals from the individual light detectors (425). These amplified signals may be received by the controller (430) and processed in order to determine which, if any, of the nozzles in the rows of nozzles on the printheads is firing incorrectly. The processing of the signals by the controller (430), rather than with dedicated logic on the PCB (410), allows the physical space occupied by the PCB (410) to be reduced. Additionally, low-profile light emitting devices (420) and light detectors (425) may be used. This, in turn, allows for the light emitting devices (420) and light detectors (425) to be placed much closer to the print bar during operation. Placing the light emitting devices (420) and light detectors (425) closer to the print bar allows for better printing fluid droplet detection because the center of the optical path is placed closer to the ejection site of the individual droplets.
An example circuit used on the PCB (410) is shown in
As described above, because the PCB (
The shoulder portion (615) may be coupled to a rail of the printing device (
In an example, the distance between the PCB (410)/PCB cover (
The method (700) may continue by firing (710) a number of nozzles from a first printhead among the number of printheads through a hole defined in the PCB (
The method (700) may continue by detecting (715) a number of droplets ejected from the number of nozzles as the droplets pass through a number of optical channels each formed by a light emitter and a light detector. As described above, the number of optical channels formed by a light emitter and detector may be any number. In an example, each of the holes formed in the PCB may address a single printhead on the print bar and a single optical channel is formed across each hole. In an example, each of the holes formed in the PCB may address a single printhead on the print bar and two optical channels are formed across the hole. Other examples exist where any number of optical channels are formed across any number of holes defined in the PCB and the present specification contemplates these other examples.
In an example, the firing sequence of all of the nozzles associated with all of the printheads in the print bar may be an interleaved sequence as described above. In an example, the firing sequence of all of the nozzles associated with all of the printheads in the print bar may include firing all rows of nozzles in each of the printheads that eject a first type or color of printing fluid. The sequence may then continue with firing all rows of nozzles in each of the printheads that eject a second type or color of printing fluid, then all rows of nozzles in each of the printheads that eject a third type or color of printing fluid, all rows of nozzles in each of the printheads that eject a fourth type or color of printing fluid, and so on until all rows of nozzles have been fired. In this example, the carriage described above may travel the entire length of the print bar for each type or color of printing fluid ejectable from the printheads. Other firing sequences exist and the present specification contemplates the use of these different types of firing sequences. Because the print bar and printing device cannot be used during the droplet detection process, the firing sequence that lasts the shortest length of time may be used.
Aspects of the present system and method are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to examples of the principles described herein. Each block of the flowchart illustrations and block diagrams, and combinations of blocks in the flowchart illustrations and block diagrams, may be implemented by computer usable program code. The computer usable program code may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the computer usable program code, when executed via, for example, the controller (
The specification and figures describe a drop detector, a printing device comprising a drop detector, and a method for detecting defective nozzles in a number of printheads. The droplet detector is relatively small and low cost due, at least partially, to the closeness of the light emitters and light detectors. Because the light emitter and light detectors are close to one another, cheaper and smaller parts may be used. This also allows for the optical channels formed by the light emitter and light detectors to be relatively closer to the print bar allowing for more accurate detection of the droplets of printing fluid as the printing fluid is ejected from the nozzles.
Certain optical channels may be devoted to specific printhead positions. This may provide relatively higher signal-to-noise ratio as well as increased tolerance to component alignment of the holes with the printheads. Additionally, the number of optical channels formed across the holes may be scalable such that any number of optical channels may detect the ejection of printing fluid from any number of nozzles in a single printhead. Because of the low cost of the parts used in the optical channels, the costs for additional optical channels to be formed may not increase significantly while the droplet detection time is reduced significantly.
The preceding description has been presented to illustrate and describe examples of the principles described. This description is not intended to be exhaustive or to limit these principles to any precise form disclosed. Many modifications and variations are possible in light of the above teaching.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/030249 | 4/29/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/189007 | 11/2/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4540990 | Crean | Sep 1985 | A |
5627571 | Anderson et al. | May 1997 | A |
7673976 | Piatt et al. | Mar 2010 | B2 |
8096633 | Takahashi | Jan 2012 | B2 |
8827414 | Abe | Sep 2014 | B2 |
8857947 | Belbeck | Oct 2014 | B2 |
20060139392 | Fernandez et al. | Jun 2006 | A1 |
20070024658 | Diol et al. | Feb 2007 | A1 |
20130182031 | Govyadinov et al. | Jul 2013 | A1 |
20140078213 | Govyadinov et al. | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
2007076265 | Mar 2007 | JP |
1020140041836 | Apr 2014 | KR |
Entry |
---|
Impulse Jet. IJ3000 Impulse Jet Ink Jet System Operations Manual. 5760-111 Revision P ˜ Illinois Tool Works Inc ˜ 2012 ˜ 82 pages. |
Number | Date | Country | |
---|---|---|---|
20190009570 A1 | Jan 2019 | US |