Claims
- 1. A drop dispenser for use on a container for liquid products having a threaded open end neck portion, a nipple having a discharge opening mounted on the open end of the neck and a circumferentially extending radially outwardly projecting collar spaced downwardly from the threaded portion of the neck, said drop dispenser comprising an elongated sleeve member having internal threads for cooperating with the threaded portion of the container and a dosing valve overlying and conforming generally in shape to the nipple portion of the container and a dispensing tip having a discharge opening mounted over the dosing valve and spaced therefrom to define a reservoir chamber, said dosing valve having a protruberance engageable with the discharge port in the nipple in a closed position and having seal means engaging the nipple in the closed position and means at the lower end of the sleeve cooperatively engaging the collar to limit axial displacement of the sleeve member relative to the container, whereby the reservoir chamber is filled with fluid from the container by turning the sleeve in a direction to move the closure away from a closed position of the nipple to an open position relative thereto, to thereby establish fluid communication between the container and the reservoir chamber, the fluid being dispensed through the fitting outlet from the reservoir chamber by squeezing the resilient fitting after the sleeve has been turned in a direction to move the closure to the closed position on the nipple thereby preventing the fluid from flowing from the resilient fitting back into the container and vent means in the closure to permit venting the reservoir chamber during the filling process when the closure is in the open position.
- 2. A drop dispenser in accordance with claim 1, wherein the container is a squeezable bottle.
- 3. A drop dispenser in accordance with claim 1, wherein the fluid is a medicament.
- 4. A drop dispenser in accordance with claim 1, wherein the closure has a configuration corresponding to the configuration of said nipple.
- 5. A drop dispenser in accordance with claim 4, wherein the closure has a tubular portion having an arcuate end wall.
- 6. A drop dispenser in accordance with claim 5, wherein a depending spike is integral with the arcuate end wall of said closure and insertable into the nipple outlet when the closure is moved to the closed position.
- 7. A drop dispenser in accordance with claim 6, wherein at least one aperture is provided in the closure arcuate end wall offset from said spike.
- 8. A drop dispenser in accordance with claim 5, wherein an annular bead is formed on an inner surface of said closure tubular portion engaging an outer surface on the tubular portion of said nipple to thereby provide a seal between the closure and nipple.
- 9. A drop dispenser in accordance with claim 1, wherein cooperating stop members are provided on the sleeve and container neck to limit the turning of the sleeve on the container neck.
- 10. A drop dispenser in accordance with claim 9, wherein the stop member on the sleeve comprises a shoulder provided on the sleeve and a plurality of radially inwardly extending hooks integral with the sleeve and spaced axially from the shoulder, the cooperating stop member on the container neck comprising a collar integral with the container neck.
- 11. A drop dispenser in accordance with claim 9, wherein the stop member on the sleeve comprises a pair of diametrically opposed radially inwardly extending fingers integral with an inner surface of said sleeve, the stop member on the container neck having a pair of diametrically opposed radially outwardly extending tabs integral with the container neck.
- 12. In combination, a drop dispenser for use on a container for liquid products having a threaded open end neck portion, a nipple having a discharge opening mounted on the open end of the neck and a circumferentially extending radially outwardly projecting collar spaced downwardly from the threaded portion of the neck, said drop dispenser comprising an elongated sleeve member having internal threads for cooperating with the threaded portion of the container and a dosing valve overlying and conforming generally in shape to the nipple portion of the container and a dispensing tip having a discharge opening mounted over the dosing valve and spaced therefrom to define a reservoir chamber, said dosing valve having a protruberance engageable with the discharge port in the nipple in a closed position and having seal means engaging the nipple in the closed position and means at the lower end of the sleeve cooperatively engaging the collar to limit axial displacement of the sleeve member relative to the container, whereby the reservoir chamber is filled with fluid from the container by turning the sleeve in a direction to move the closure away from a closed position of the nipple to an open position relative thereto, to thereby establish fluid communication between the container and the reservoir chamber, the fluid being dispensed through the fitting outlet from the reservoir chamber by squeezing the resilient fitting after the sleeve has been turned in a direction to move the closure to the closed position on the nipple thereby preventing the fluid from flowing from the resilient fitting back into the container.
- 13. A drop dispenser for use on a container for a fluid having a threaded open end neck portion, and a nipple having an outlet mounted on the open end of the neck; said drop dispenser comprising a sleeve threadably mounted on the neck portion and of said container, a closure secured to said sleeve for closing the outlet of the nipple, and a resilient dosage-receiving fitting mounted on said sleeve downstream from said closure overlying said closure and spaced therefrom to define a reservoir chamber and having an outlet, whereby the reservoir chamber is filled with fluid from the container by turning the sleeve in a direction to move the closure away from a closed position on the nipple to an open position relative thereto, to thereby establish fluid communication between the container and the reservoir chamber, the fluid being dispensed through the fitting outlet from the reservoir chamber by squeezing the resilient fitting after the sleeve has been turned in a direction to move the closure to the closed position on the nipple thereby preventing the fluid from flowing from the resilient fitting back into the container and vent means in the closure to permit venting the reservoir chamber during the filling process when the closure is in the open position.
- 14. A drop dispenser for use on a container for liquid products having a threaded open end neck portion, a nipple having a discharge opening mounted on the open end of the neck and a circumferentially extending radially outwardly projecting collar spaced downwardly from the threaded portion of the neck, said drop dispenser comprising an elongated sleeve member having internal threads for cooperating with the threaded portion of the container and a dosing valve overlying and conforming generally in shape to the nipple portion of the container and a dispensing tip having a discharge opening mounted over the dosing valve and spaced therefrom to define a reservoir chamber, said dosing valve having a protruberance engageable with the discharge port in the nipple in a closed position and having seal means engaging the nipple in the closed position and means at the lower end of the sleeve cooperatively engaging the collar to limit axial displacement of the sleeve member relative to the container, whereby the reservoir chamber is filled with fluid from the container by turning the sleeve in a direction to move the closure away from a closed position of the nipple to an open position relative thereto, to thereby establish fluid communication between the container and the reservoir chamber, the fluid being dispensed through the fitting outlet from the reservoir chamber by squeezing the resilient fitting after the sleeve has been turned in a direction to move the closure to the closed position on the nipple thereby preventing the fluid from flowing from the resilient fitting back into the container.
Parent Case Info
This application claims the benefit of and is a continuation-in-part of U.S. patent application Ser. No. 09/246,936 filed Feb. 9, 1999 now U.S. Pat. No. 6,168,581.
US Referenced Citations (6)
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
09/246936 |
Feb 1999 |
US |
Child |
09/671642 |
|
US |