The subject disclosure is generally directed to drop emitting apparatus including, for example, drop jetting devices.
Drop on demand ink jet technology for producing printed media has been employed in commercial products such as printers, plotters, and facsimile machines. Generally, an ink jet image is formed by selective placement on a receiver surface of ink drops emitted by a plurality of drop generators implemented in a printhead or a printhead assembly. For example, the printhead assembly and the receiver surface are caused to move relative to each other, and drop generators are controlled to emit drops at appropriate times, for example by an appropriate controller. The receiver surface can be a transfer surface or a print medium such as paper. In the case of a transfer surface, the image printed thereon is subsequently transferred to an output print medium such as paper.
The drop generator further includes an ink feed inlet 31 that is connected to the pressure chamber 35 and can be formed in a fluid channel substructure 131 (
It should be appreciated that for an ink chamber 35 there can be a plurality of ink feed apertures 339 in the transducer substructure 139, and that there can be a plurality of ink feed apertures in the diaphragm layer 137, wherein the number of ink feed apertures 239 in the transducer substructure 139 can be different from the number of ink feed apertures 237 in the diaphragm layer 137. For example, two ink feed apertures 339 in the transducer substructure 139 can feed one ink feed aperture 337 in the diaphragm layer 137.
Ink 33 can be provided to the ink feed apertures by a suitable manifold structure.
By way of illustrative example, the ink feed aperture(s) 339 in the transducer substructure 139 can be made by laser machining, such as laser drilling, and can have a diameter in the range of about 50 microns to about 500 microns. The ink feed apertures 337 in the diaphragm layer 137 can also be made by laser machining such as laser drilling.
Actuation of the electromechanical transducer 39 causes ink to flow from the pressure chamber 35 through an outlet channel 45 to a drop forming nozzle or orifice 47, from which an ink drop 49 is emitted toward a receiver medium 48 that can be a transfer surface, for example.
The ink 33 can be melted or phase changed solid ink, and the electromechanical transducer 39 can be a piezoelectric transducer that is operated in a mode of deformation, for example. The ink 33 can also be ambient temperature ink.
By way of illustrative example, the diaphragm layer 137 comprises a metal plate or sheet, such as stainless steel, that is attached or bonded to the fluid channel layer 131. As further examples, the diaphragm layer 137 can comprise back etched silicon or an electroformed structure. Also by way of illustrative example, the fluid channel substructure 131 can comprise a laminar stack of plates or sheets, such as stainless steel.
The claims, as originally presented and as they may be amended, encompass variations, alternatives, modifications, improvements, equivalents, and substantial equivalents of the embodiments and teachings disclosed herein, including those that are presently unforeseen or unappreciated, and that, for example, may arise from applicants/patentees and others. Unless specifically recited in a claim, steps or components of claims should not be implied or imported from the specification or any other claims as to any particular order, number, position, size, shape, angle, color, or material.
Number | Name | Date | Kind |
---|---|---|---|
5406318 | Moore et al. | Apr 1995 | A |
20020089574 | Yamauchi et al. | Jul 2002 | A1 |
Number | Date | Country |
---|---|---|
WO 2004110768 | Dec 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20080074478 A1 | Mar 2008 | US |