This invention relates generally to the field of digitally controlled printing devices, such as continuous ink jet printers, having perturbations that break a liquid ink stream into large-volume droplets (print droplets) and small-volume droplets (deflected droplets) and having perturbations during the time period for creating the small-volume droplet that do are not sufficient to cause liquid breakage but are used selectively to calibrate the print droplets to corresponding pixels on the media.
Traditionally, digitally controlled color printing capability is accomplished by one of two technologies. Both require independent ink supplies for each of the colors of ink provided. Ink is fed through channels formed in the printhead. Each channel includes a nozzle from which droplets of ink are selectively extruded and deposited upon a medium. Typically, each technology requires separate ink delivery systems for each ink color used in printing. Ordinarily, the three primary subtractive colors, i.e. cyan, yellow and magenta, are used because these colors can produce, in general, up to several million shades or color combinations.
The first technology, commonly referred to as “droplet on demand” ink jet printing, selectively provides ink droplets for impact upon a recording surface using a pressurization actuator (thermal, piezoelectric, etc.). Selective activation of the actuator causes the formation and ejection of a flying ink droplet that crosses the space between the printhead and the print media and strikes the print media. The formation of printed images is achieved by controlling the individual formation of ink droplets, as is required to create the desired image. Typically, a slight negative pressure within each channel keeps the ink from inadvertently escaping through the nozzle, and also forms a slightly concave meniscus at the nozzle helping to keep the nozzle clean.
Conventional droplet on demand ink jet printers utilize a heat actuator or a piezoelectric actuator to produce the ink jet droplet at orifices of a printhead. With heat actuators, a heater, placed at a convenient location, heats the ink to cause a localized quantity of ink to phase change into a gaseous steam bubble that raises the internal ink pressure sufficiently for an ink droplet to be expelled. With piezoelectric actuators, a mechanical force causes an ink droplet to be expelled.
The second technology, commonly referred to as “continuous stream” or simply “continuous” ink jet printing, uses a pressurized ink source that produces a continuous stream of ink droplets. Traditionally, the ink droplets are selectively electrically charged. Deflection electrodes direct those droplets that have been charged along a flight path different from the flight path of the droplets that have not been charged. Either the deflected or the non-deflected droplets can be used to print on receiver media while the other droplets go to an ink capturing mechanism (catcher, interceptor, gutter, etc.) to be recycled or disposed. U.S. Pat. No. 1,941,001, issued to Hansell, on Dec. 26, 1933, and U.S. Pat. No. 3,373,437 issued to Sweet et al., on Mar. 12, 1968, each disclose an array of continuous ink jet nozzles wherein ink droplets to be printed are selectively charged and deflected towards the recording medium.
In another form of continuous ink jet printing, such as is described in U.S. Pat. No. 6,491,362 B1, issued to Jeanmaire, on Dec. 10, 2002, commonly assigned, included herein by reference, stimulation devices are associated with various nozzles of the printhead. These stimulation devices perturb the liquid streams emanating from the associated nozzle or nozzles in response to drop formation waveforms supplied to the stimulation devices by control means. The perturbations initiate the separation of a drop from the liquid stream. Different waveforms can be employed to create drops of a plurality of drop volumes. A controlled sequence of waveforms supplied to the stimulation device yields a sequence of drops, whose drop volumes are controlled by the waveforms used. A drop deflection means applies a force to the drops to cause the drop trajectories to separate based on the size of the drops. Some of the drop trajectories are allowed to strike the print media while others are intercepted by a catcher or gutter.
Having understood some basics of a continuous inkjet printer, a brief description of synchronizing ejected print droplets to the print media is useful. In this regard, one or more printheads are positioned adjacent to a print media such that the printhead is able to deposit ink or other printing fluid on the print media as the print media is moved relative to the printhead. In many such printing systems, the relative velocity of the print media past the printhead (print speed) can vary widely, for example from 50 ft/min. to 1000 ft/min. The velocities are given by way of example and are not limiting to the claimed invention. While the print speed can vary widely, continuous inkjet printers typically have a base drop creation rate or frequency that is fixed, or at least can not be varied widely. In some cases the base drop creation frequency is defined by a printing system clock or by a natural characteristic of the drop generator such as its resonant frequency. As drops can be printed only when drops are created, the time between successive drops that are printed is limited to values that are an integer number of the base drop creation periods. When the print speed is low, the time between successive printed drops corresponds to the base drop creation period times a large integer, while for high print speeds the time between successive print drops corresponds to the base drop creation period times a small integer.
In many types of continuous inkjet, a print drop can not be created at the base drop creation rate. For example in some printing systems that electro-statically deflect the non-print drops so that they strike the catcher, successive print drops must be separated by two or more catch drops. Similarly, by way of example, some print systems that separate print and catch drops by a means of a flow of gas across the drop trajectory, the print drops are formed from the ink that passes through the nozzle during not just one base drop creation period but rather in a plurality, typically three, of the base drop creation periods.
As a result, there are certain print speeds at which the pixel locations on the print media move past the printhead at a rate, called the pixel rate, which exactly matches a frequency at which printable drops can be created. At such speeds the print drop creation rate becomes synchronized with the pixel rate. At these speeds, the time between successive pixel locations on the pint media passing the printhead is equal to an integer N times the base drop creation period; where N must be 2 or 3 or more, depending on the drop deflection mechanism. For example, if the base-drop creation frequency is 360 kHz, N=3, and the print resolution is 600 drops per inch, this occurs at 200 in/sec print speed.
In addition to the 200 in/sec speed at which the pixel rate equaled the base drop creation frequency divided by N=3, other print speeds at which the pixel rate equals the base drop creation rate divided by other larger integer values allow the pixel rate to be synchronized with the print drop creation rate. For the same base drop frequency and print resolution as in the example above and using N=4, a print speed of 150 in/sec is required to match the pixel rate exactly with the print drop creation rate.
The printing system, however, needs to be able to print not just at those print speeds at which the pixel rate equals the print drop creation rate, but also at all intermediate speeds. For example, it must be able to print not just at 150 in/sec (where N=4) and 200 in/sec (where N=3), but also at print speeds between these two values. At such intermediate print speeds, the time between successive print drops is not fixed. The time between successive print drops is three times the base drop creation period for some of the drops, while other print drop pairs are separated by four times the base drop creation rate.
As the print drops are not created at consistent time intervals, their spacing as they drop through the air is also not consistent. As a result the print drops do not encounter the same amount of air drag as they drop from the drop generator to the print media. The print drops 105 preceded by a synch incident 108 encounter more air drag than the other drops. The impact of these drops gets shifted as a result of the increased air drag, to produce a larger apparent synch band as seen in
A method for providing drop placement adjustment of drops deposited on a print media by a printhead in a continuous inkjet printer, the method includes the steps of providing the printhead with a drop generator having at least one nozzle; moving the printhead relative to the print media; causing the printhead to form drops from the at least one nozzle with a drop formation period being the time between consecutive drop formations; wherein a portion of the formed drops are allowed to strike pixel locations on the print media for forming print drops, while other drops are directed toward a catcher and do not strike the print media for forming catch drops; creating a series of the print drops to print on a series of consecutive pixel locations; and adjusting a velocity of a portion of the formed print drops relative to a velocity of other print drops to adjust the placement of the print drop within the pixel locations.
a and b show prior art waveforms for the odd and even numbered jets, respectively, used for printing the single pixel wide line of
c-h show waveforms for the odd and even numbered jets for printing a single pixel line according various embodiments of the invention.
The present description will be directed in particular to elements forming part of, or cooperating more directly with, apparatus in accordance with the present invention. It is to be understood that elements not specifically shown or described may take various forms well known to those skilled in the art. In the following description and drawings, identical reference numerals have been used, where possible, to designate identical elements.
The example embodiments of the present invention are illustrated schematically and not to scale for the sake of clarity. One of the ordinary skills in the art will be able to readily determine the specific size and interconnections of the elements of the example embodiments of the present invention.
As described herein, the example embodiments of the present invention provide a printhead or printhead components typically used in inkjet printing systems. However, many other applications are emerging which use inkjet printheads to emit liquids (other than inks) that need to be finely metered and deposited with high spatial precision. As such, as described herein, the terms “liquid” and “ink” refer to any material that can be ejected by the printhead or printhead components described below.
Referring to
Recording medium 32 is moved relative to printhead 30 by a recording medium transport system 34, which is electronically controlled by a recording medium transport control system 36, and which in turn is controlled by a micro-controller 38. The recording medium transport system shown in
Ink is contained in an ink reservoir 40 under pressure. In the non-printing state, continuous ink jet drop streams are unable to reach recording medium 32 due to an ink catcher 42 that blocks the stream and which may allow a portion of the ink to be recycled by an ink recycling unit 44. The ink recycling unit reconditions the ink and feeds it back to reservoir 40. Such ink recycling units are well known in the art. The ink pressure suitable for optimal operation will depend on a number of factors, including geometry and thermal properties of the nozzles and thermal properties of the ink. A constant ink pressure can be achieved by applying pressure to ink reservoir 40 under the control of ink pressure regulator 46.
The ink is distributed to printhead 30 through an ink channel 47. The ink preferably flows through slots or holes etched through a silicon substrate of printhead 30 to its front surface, where a plurality of nozzles and drop forming mechanisms, for example, heaters, are situated. When printhead 30 is fabricated from silicon, drop forming mechanism control circuits 26 can be integrated with the printhead. Printhead 30 also includes a deflection mechanism (not shown in
Referring to
Liquid, for example, ink, is emitted under pressure through each nozzle 50 of the array to form filaments of liquid 52. In
Jetting module 48 is operable to form liquid drops having a first size and liquid drops having a second size through each nozzle. To accomplish this, jetting module 48 includes a drop stimulation or drop forming device or transducer 28, for example, a heater, piezoelectric transducer, EHD transducer, or a MEMS actuator, that, when selectively activated, perturbs each filament of liquid 52, for example, ink, to induce portions of each filament to break off from the filament and coalesce to form drops 54, 56.
In
Typically, one drop forming device 28 is associated with each nozzle 50 of the nozzle array. However, a drop forming device 28 can be associated with groups of nozzles 50 or all of nozzles 50 of the nozzle array.
When printhead 30 is in operation, drops 54, 56 are typically created in a plurality of sizes, for example, in the form of large drops 56, a first size, and small drops 54, a second size. The ratio of the mass of the large drops 56 to the mass of the small drops 54 is typically approximately an integer between 2 and 10. A drop stream 58 including drops 54, 56 follows a drop path or trajectory 57.
Printhead 30 also includes a gas flow deflection mechanism 60 that directs a flow of gas 62, for example, air, past a portion of the drop trajectory 57. This portion of the drop trajectory is called the deflection zone 64. As the flow of gas 62 interacts with drops 54, 56 in deflection zone 64 it alters the drop trajectories. As the drop trajectories pass out of the deflection zone 64 they are traveling at an angle, called a deflection angle, relative to the un-deflected drop trajectory 57.
Small drops 54 are more affected by the flow of gas than are large drops 56 so that the small drop trajectory 66 diverges from the large drop trajectory 68. That is, the deflection angle for small drops 54 is larger than for large drops 56. The flow of gas 62 provides sufficient drop deflection and therefore sufficient divergence of the small and large drop trajectories so that catcher 42 (shown in
When catcher 42 is positioned to intercept small drop trajectory 66, large drops 56 are deflected sufficiently to avoid contact with catcher 42 and strike the print media. When catcher 42 is positioned to intercept small drop trajectory 66, large drops 56 are the drops that print, and this is referred to as large drop print mode.
Jetting module 48 includes an array or a plurality of nozzles 50. Liquid, for example, ink, supplied through channel 47, is emitted under pressure through each nozzle 50 of the array to form filaments of liquid 52. In
Drop stimulation or drop forming device 28 (shown in
Referring to
Upper wall 76 of gas flow duct 72 does not need to extend to drop deflection zone 64 (as shown in
Negative pressure gas flow structure 63 of gas flow deflection mechanism 60 is located on a second side of drop trajectory 57. Negative pressure gas flow structure includes a second gas flow duct 78 located between catcher 42 and an upper wall 82 that exhausts gas flow from deflection zone 64. Second duct 78 is connected to a negative pressure source 94 that is used to help remove gas flowing through second duct 78. An optional seal(s) 80 provides an air seal between jetting module 48 and upper wall 82.
As shown in
Gas supplied by first gas flow duct 72 is directed into the drop deflection zone 64, where it causes large drops 56 to follow large drop trajectory 68 and small drops 54 to follow small drop trajectory 66. As shown in
Referring to
As shown in
Referring to
As explained in the background, printing at speeds at which the drop formation rate is not synchronized with the pixel rate requires periodic synch bands, a non-uniform spacing of print drops to keep the print drops aligned to with the appropriate pixel locations. These synch bands or synch incidents are most noticeable when printing at speeds close the maximum speed of the printer. For the example described in the background, synch bands would be most noticeable at speeds approaching 200 in/sec; 200 in/sec being the print speed at which three fundamental drops are created for each pixel interval. At speeds approaching the 200 in/sec speed, three fundamental drops were created in some of the pixels intervals while four fundamental drops were created for other pixel intervals as illustrated in
The visibility of the synch bands can be reduced significantly, according the present invention, by altering the velocity of the print drops on one or both sides of the catch drop at the synch incident. By slowing down the print drop 106c that precedes the catch drop 100 that forms the synch band gap 110, the impact point of the print drop 106c can be shifted slightly into the gap 110a to reduce the visibility of the gap. In the same way, speeding up the print drop 106d, the drop that follows catch drop 100, the impact point of print drop 106d can be shifted slightly into the gap 110, reducing the visibility of the synch band.
One method for altering the velocity of a drop is to alter the energy of the activation pulse that created the drop. For example, increasing the duty cycle of the pulse can increase the velocity of the drop, and decreasing the duty cycle of the pulse can decrease the velocity of the drop. While altering the duty cycle is effective at altering the drop velocity, it has been seen to also affect the drop velocity of the both the drop that proceeds and the drop that follows the target drop for the velocity adjustment. Under some conditions, it also can alter the drop formation characteristics, leading to increased satellite drop formation or altering the drop breakoff distance or the time to properly coalesce into a well formed drop.
An alternate means for altering the velocity of a drop is by inserting a narrow activation pulse either before or after the pulses employed to create the drop.
Insertion of the velocity modifying pulse does not produce any shift of the waveforms that follow it. The inserted pulse is not an inserted waveform that delays all the following waveforms, but rather a pulse that is inserted into the time interval between the last pulse of the one waveform and the first pulse of the next waveform. In
The velocity modifying pulses have been described relative to their use for reducing the visibility of synch incidents. They may also be employed for other applications in which it is advantageous to modify the drop's velocity relative to the velocity of other drops. For example, when printing the stroke of a character with several consecutive print drops, the first print drop typically encounters more air drag than the following print drops. This can cause the first print drop to impact the print media closer to the second print drop than intended. By inserting a velocity modifying pulse in the time interval just prior to the first pulse of the waveform that creates the first print drop, its velocity can be increased to compensate at least partially for the increased air drag that it encounters. This is illustrated in
In US Published Application 20080231669, which is herein incorporated by reference, and in application Ser. No. 12/613,683 filed Nov. 6, 2009, which is herein incorporated by reference, it disclosed that print quality can be improved y intentionally phase shifting the creation of print drops from the odd number jets relative to the creation of print drops from the even number jets. While the phase shift is effective in improving the overall print quality, it can introduce a small stagger in the impact positions of the drops from the odd and even numbered jets. This stagger has been found to depend on the spacing between the printhead and the print media and on the drop to drop spacing. Under certain conditions, the stagger of the dots on the print media can be opposite of what one would expect based on which jets have the drop creation phase delayed behind the other.
a and b show the waveforms and the drops created by the waveforms for creating a single pixel line for the odd numbered jets and the even numbered jets respectively.
c shows a sequence of waveforms according to the invention where a velocity modifying pulse 258 is included to increase the velocity of the print drop 252 from the lagging jets as indicated by arrow 256, but no velocity modifying pulses are employed to modify the velocity of the print drop 250 for the leading jets in
The embodiments of
When printing sloping lines or strokes of characters, it is necessary to stair step the edges of the lines or strokes as shown in
The amount by which the impact location of a print drop is shifted by a velocity modifying pulse is proportional to velocity shift of the print drop produced by the pulse. The velocity shift produced the velocity modifying pulses is related to the energy of the pulse. Increasing the pulse energy, by either increasing the pulse amplitude or pulse width, increases the amount of velocity shift produced. Adjustment of the pulse energy therefore serves as a means to adjust the impact position shift produced by velocity modifying pulses. The impact point shift produced by the velocity modifying pulses also depends on the spacing between the nozzle plate and the print media. As a result the preferred pulse energy for optimizing some aspect of the print can depend of the spacing between the nozzle plate and the print media. In some embodiments, the printing system can include a test pattern or other test to determine the optimum pulse energies for the velocity modifying pulses.
In yet another embodiment the width of character stroke can be modulated by means of velocity modifying pulses to pull forward or push back the drops at make the edges or the trailing edges of the strokes. Then can be used to enhance the readability of bar codes for example by refining the width ratios of wide and narrow strokes.
For some of these embodiments the velocity modifying pulses would be applied based on characteristics of the print data including, but not limited to, speeding up the first print drop in a series of print drops, smoothing out a step and refining the width of character strokes. In other embodiments, the need for a velocity modifying pulse is based on characteristics present at the printing, such as the odd-even or the synch band correction. Still further, in some embodiments, determining the need for a velocity modifying pulse includes determining the need based on at least the sequence of the following drops. For example, the following drop may include that the following drop is a catch drop. Alternatively, determining the need for a velocity modifying pulse includes determining the need based on the sequence of drops from an adjacent jet.
The present description will be directed in particular to elements forming part of, or cooperating more directly with, apparatus in accordance with the present invention. It is to be understood that elements not specifically shown or described may take various forms well known to those skilled in the art.
Reference is made to commonly assigned U.S. patent application Ser. No. ______ (Docket #95843) filed concurrently herewith by Robert Link et. al., entitled “Continuous Printer With Actuator Activation Waveform”, and commonly assigned U.S. patent application Ser. No. ______ (Docket #96204) filed concurrently herewith by Robert Link et al., entitled “Method For Operating Continuous Printers”, the disclosures of which are herein incorporated by reference.