The present disclosure claims the benefit of priority of co-pending European Patent Application No. 19181442.5, filed on Jun. 20, 2019, and entitled “DROP STITCH TETHERS ALIGNMENT,” the contents of which are incorporated in full by reference herein.
The present disclosure relates to aligning tethers of a drop stitch fabric prior to feeding the drop stitch fabric to a drop stitch fabric processing machine.
Products based on inflatable drop stitch technology are becoming increasingly popular, not the least since such products—e.g. kayaks, floats, gym mats etc.—when deflated, may be less bulky and hence more easily stored and/or transported, and further, be less heavy and/or less costly, than corresponding products of traditional material. Commonly, an inflatable drop stitch may be e.g. a PVC-coated, TPU-coated and/or laminated nylon and/or polyester fabric with layers joined by a dense array of e.g. vertical linear and/or zigzag fibers and/or polyester strands that are uniform in size. When the inflatable drop stitch then is adapted—e.g. glued and/or welded—into desired shape, and subsequently pressurized with air and/or gas, it may be transformed into a strong, firm structure. The vertical fibers and/or strands—which may be referred to as the drop stitches and/or drop stitch tethers which is a term used herein—hold the air chamber firmly in shape, thus allowing the inflated structure to maintain its shape and stability under heavy outside pressure and impact.
When manufacturing an inflatable drop stitch product, a drop stitch fabric may—among other things—be coated and/or impregnated, a contour of the drop stitch product be cut out from said fabric, edges around the perimeter of the inflatable drop stitch product potentially be sewed together, and/or said edges be welded and/or sealed—e.g. by means of patches—to enable said product to be airtight and/or gas proof. Handling of drop stitch fabric may, however, be troublesome, in that the layers of the drop stitch fabric—which are separated by tethers joining them—may become offset relative one another to an extent maximally being essentially the length of the tethers. During a manufacturing process, accordingly, the layers of the drop stitch fabric may unintentionally be, or become, offset in relation to one another and subsequently the tethers be, or become, misaligned, thus implicating that wrinkles and/or distortions may arise and/or that an intended shape of a potential inflatable product derived from the drop stitch fabric involuntarily may be altered.
It is therefore an object of embodiments herein to provide an approach that overcomes or ameliorates at least one of the disadvantages of the prior art, or to provide a useful alternative.
The object above may be achieved by the subject matter disclosed herein. Embodiments are set forth in the appended claims, in the following description and in the drawings.
The disclosed subject matter relates to a method performed by an alignment system for aligning tethers of a drop stitch fabric prior to feeding the drop stitch fabric to a drop stitch fabric processing machine. The alignment system feeds a drop stitch fabric having a first layer and a second layer tethered by drop stitch tethers, wherein the first layer is moving with a first velocity and the second layer is moving with a second velocity.
The disclosed subject matter further relates to an alignment system for—and/or adapted for—aligning tethers of a drop stitch fabric prior to feeding the drop stitch fabric to a drop stitch fabric processing machine. The alignment system comprises a velocity controlling unit for controlling feeding a drop stitch fabric having a first layer and a second layer tethered by drop stitch tethers, wherein the first layer is moving with a first velocity and the second layer is moving with a second velocity.
Moreover, the disclosed subject matter relates to a computer program product comprising a computer program containing computer program code means arranged to cause a computer or a processor to execute the steps performed by the alignment system discussed above, stored on a computer-readable medium or a carrier wave.
Thereby, there is introduced an approach which enables a potential displacement between drop stitch layers—and subsequently an inadequate alignment of tethers there between—to be compensated, by feeding—e.g. from a drop stitch fabric supply comprising a drop stitch fabric—the first and second layers with different velocities. That is, when e.g. coming off the drop stitch fabric supply, the first and the second drop stitch layers may—for instance due to the drop stitch fabric having been rolled, wrapped and/or folded—be displaced in relation to one another in a running direction of the drop stitch fabric, and subsequently may the drop stitch tethers be correspondingly inadequately aligned, such as no longer being perpendicular to the layers. This may lead to that issues related to wrinkles and/or distortions as well as an involuntarily altered shape of a potential subsequent inflatable structure derivable from the drop stitch fabric, subsequently may arise. With the introduced concept, however, by feeding—e.g. from the drop stitch fabric supply comprising the drop stitch fabric—the first layer with a first velocity and the second layer with a potentially differing second velocity, a potential displacement between the layers—and subsequently an inadequate alignment of the tethers—may be compensated prior to the drop stitch fabric being fed to the drop stitch fabric processing machine, whereby said issues consequently may be avoided.
The technical features and corresponding advantages will be discussed in further detail in the following.
The various aspects of the non-limiting embodiments, including particular features and advantages, will be readily understood from the following detailed description and the accompanying drawings, in which:
Non-limiting embodiments of the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings, in which currently preferred embodiments of the disclosure are shown. This disclosure may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Like reference characters refer to like elements throughout. Dashed lines of some boxes in the figures indicate that these units or actions are optional and not mandatory.
In the following, according to embodiments herein which relate to aligning tethers of a drop stitch fabric prior to feeding the drop stitch fabric to a drop stitch fabric processing machine, there will be disclosed an approach which enables a potential displacement between drop stitch layers—and subsequently an inadequate alignment of drop stitch tethers—to be compensated.
Referring now to the figures and
The drop stitch fabric 1 may potentially be utilized for manufacturing of an inflatable structure (not shown). Such an inflatable structure derivable from the drop stitch fabric 1 may be represented by any inflatable product and/or article deemed feasible and/or applicable, for instance an inflatable kayak, float, gym mat, and/or trampoline etc., and further for instance an inflatable seat, child seat and/or pet cage or the like which e.g. may be carried on-board a vehicle and/or be detachably attached to an interior thereof. Said potential inflatable structure may for instance in a commonly known manner be transformable at least between a deflated state and an inflated. The deflated state may refer to a condition of the inflatable structure in which the inflatable structure is not pressurized, and may for instance be desirable for storage and/or transportation of the inflatable structure. Correspondingly, the inflated state may refer to a condition of the inflatable structure in which the inflatable structure is pressurized—e.g. at least up to a predetermined value, pressure and/or percentage of e.g. a maximum potential pressure to which the inflatable structure may be inflated—and which state further may be referred to as a state for intended use of the inflatable structure. The potential inflatable structure may accordingly have the ability to in an inflated state thereof be transformed into a strong, firm structure. That is, the drop stitch tethers 2 may in said inflated state hold the potential inflatable structure firmly in shape, thus allowing said inflatable structure to maintain its shape and stability under heavy outside pressure and impact. The expression “inflatable structure transformable” between a deflated and an inflated state, may refer to “inflatable structure adapted to transition and/or change” between a deflated and an inflated state. “Deflated” state, on the other hand, may refer to “unpressurized” state and/or “storage and/or transportation” state, whereas “inflated” state may refer to “pressurized” state and/or “usage and/or intended use” state. The expression “state” may refer to “condition” and/or “mode”. The expression “inflatable” may refer to “pressurizable”, whereas “structure” may refer to “arrangement”, “article”, “product” and/or “body”.
Further shown in
“Alignment” system may refer to “directing” system and/or “offset-rectifying” system, whereas alignment system “for aligning tethers” may refer to alignment system “adapted for” aligning tethers. “Aligning” tethers, on the other hand, may refer to “directing” tethers and/or “rectifying” tethers, whereas the expression for aligning “tethers” of a drop stitch fabric may refer to for aligning “layers” of a drop stitch fabric. According to an example, the expression “for aligning tethers of a drop stitch fabric” may refer to “for aligning tethers of a drop stitch fabric to be perpendicular or essentially perpendicular to layers of the drop stitch fabric joined by the tethers”. According to another example, the expression “for aligning tethers of a drop stitch fabric” may refer to “for compensating for an offset or a potential offset between layers of a drop stitch fabric”. The expression “prior to” feeding the drop stitch fabric may refer to “before” feeding the drop stitch fabric, whereas “prior to feeding the drop stitch fabric” may refer to “prior to enabling the drop stitch fabric to be fed”. “Drop stitch fabric” processing machine, on the other hand, may refer to “inflatable structure” processing machine, whereas drop stitch fabric “processing” machine may refer to drop stitch fabric “handling” machine. Drop stitch processing “machine” may refer to drop stitch processing “machine and/or system, whereas “a drop stitch fabric processing machine” may refer to “one or more drop stitch fabric processing machines”. Furthermore, the expression drop stitch fabric “supply” may refer to drop stitch fabric “roll”, “feeding roll”, “carrier”, and/or “magazine”, and further to “feeding supply”. Additionally or alternatively, drop stitch fabric “supply” may refer to drop stitch fabric “stock”, “gathering” and/or” “store”.
As further shown in
The extent of such a displacement between the layers 11, 12 and/or inadequate alignment of the tethers 2 may vary, e.g. with the extent to which the drop stitch fabric 1 e.g. may have been rolled, wrapped and/or folded prior to e.g. being fed from the drop stitch fabric supply 4. A maximum displacement is, however, essentially limited by the length 21 of the drop stitch tethers 2. The first velocity 110 may refer to any velocity deemed suitable, and may further be variable. The second velocity 120 may in a similar manner refer to any velocity deemed suitable, and may further similarly be variable. Feeding of the drop stitch fabric, e.g. physically feeding the first and the second layers 11, 12 from the drop stitch fabric supply 4, may be accomplished in any manner—e.g. known—deemed suitable, e.g. with support from one or more electrical motors (not shown). The expression “feeding” may refer to “unwinding”, “supplying”, “providing”, “pulling”, “enabling to come off”, “unleashing”, “unrolling” and/or “dragging”, and further to “feeding in a running direction”, whereas “second” velocity may refer to “differing second” velocity. “Is moving with” a first/second velocity, on the other hand, may in this context refer to “moves with” a first/second velocity, “is fed with” a first/second velocity, “has” a first/second velocity “and/or “is having” a first/second velocity.
According to an example, the phrase “feeding a drop stitch fabric having a first layer and a second layer tethered by drop stitch tethers, wherein the first layer is moving with a first velocity and the second layer is moving with a second velocity” may refer to “feeding from a drop stitch fabric supply comprising a drop stitch fabric having a first layer and a second layer tethered by drop stitch tethers, the first layer with a first velocity and the second layer with a second velocity”.
Optionally, and as shown in
Optionally, the first velocity 110 and/or the second velocity 120 may be determined based on the offset 5. Thereby, the first and/or second velocity 110, 120 may be adapted in view of the determined offset 5, whereby said determined offset 5 may be compensated. Accordingly, since a determined offset 5 at least to some extent may be compensated prior to the drop stitch fabric 1 being fed to the drop stitch fabric processing machine 3, wrinkles and/or distortions as well as an involuntarily altered shape of a potential subsequent inflatable structure derived from the drop stitch fabric 1, may to even greater extent be avoided. According to an example, the expression “wherein the first and/or the second velocity is determined based on the offset” may refer to “wherein the first and/or the second velocity is determined based on the offset such that the offset is compensated and/or at least to some extent rectified”.
Further optionally, a relation between the first velocity 110 and the second velocity may be adapted to rectify the offset 5. Thereby, a relation between the first and second velocities 110, 120 may be adapted in view of the determined offset 5, whereby said determined offset 5 may be rectified. Accordingly, since a determined offset 5 may be rectified prior to the drop stitch fabric 1 being fed to the drop stitch fabric processing machine 3, wrinkles and/or distortions as well as an involuntarily altered shape of a potential subsequent inflatable structure derived from the drop stitch fabric 1, may to even greater extent be avoided. The expression “relation between the first velocity and the second velocity” may refer to “the first velocity relative the second velocity”, whereas “rectify the offset” may refer to “solve the offset”. According to an example, the phrase “adapted to rectify the offset” may refer to “rectifies the offset” and/or “corresponds to rectifying the offset”.
Optionally, and as shown in
The at least first and/or at least second roll 8, 9 may be represented by any rotatable rolls—e.g. known—adapted to assist in feeding respective first and/or second layers 11, 12, e.g. from the drop stitch fabric supply 4, directly or indirectly to the drop stitch fabric processing machine 3. Characteristics of respective at least first and/or second roll 8, 9, such as e.g. axial length, diameter, structure, friction coefficient(s), envelope surface 811, 911 and/or characteristics of said envelope surface etc., may accordingly vary with the implementation at hand. The positioning of the at least first and/or second roll 8, 9 in the running direction 6 and/or in said perpendicular direction, may further be adjustable. The expression “with support from” may in this context refer to “with assistance from”, “by means of” and/or “by utilizing a feeding force and/or friction from”, whereas “roll” in this context may refer to “counter roll”, “rotatable roll”, “feeding roll”, “motor-driven roll” and/or cylinder. “Axial” direction, on the other hand, may in this context refer to “longitudinal and/or lengthwise” direction, whereas “perpendicular to” a running direction may refer to “essentially perpendicular to” a running direction. According to an example, the phrase “an axial direction of the at least first and/or second roll being perpendicular to a running direction of the drop stitch fabric” may refer to “an axial direction of the at least first and/or second roll being perpendicular to a running direction of the drop stitch fabric, the feeding comprising feeding the drop stitch fabric between the at least first roll and the at least second roll”. According to another example, the phrase “an axial direction of the at least first and/or second roll being perpendicular to a running direction of the drop stitch fabric” may additionally or alternatively refer to “an axial direction of the at least first and/or second roll being perpendicular to a running direction of the drop stitch fabric, an envelope surface of the at least first roll connecting with an outer surface of the first layer and/or an envelope surface of the at least second roll connecting with an outer surface of the second layer”. According to yet another example, the phrase “with support from at least a first roll” may refer to “with support from at least a first roll comprised in the alignment system”, and correspondingly, the phrase “with support from at least a second roll” may refer to “with support from at least a second roll comprised in the alignment system”.
Optionally, and as shown in
Optionally, and as shown in
As further shown in
Further shown in
Action 1001: In optional Action 1001, the alignment system 10 may determine an offset 5 between the first layer 11 and the second layer 12 in a running direction 6 of the drop stitch fabric 1. Correspondingly, the optional offset determining unit 101 may be adapted for determining an offset 5 between the first layer 11 and the second layer 12 in a running direction 6 of the drop stitch fabric 1.
Action 1002: In Action 1002, the alignment system 10 feeds a drop stitch fabric 1, wherein a first layer 11 is moving with a first velocity 110 and the second layer 121 is moving with a second velocity 120. Correspondingly, the velocity controlling unit 101 is adapted for controlling feeding a drop stitch fabric 1, wherein a first layer 11 is moving with a first velocity 110 and the second layer 121 is moving with a second velocity 120.
According to an example, Action 1002 may comprise the alignment system 10 feeding from a drop stitch fabric supply 4 comprising a drop stitch fabric 1 having a first layer 11 and a second layer 12 tethered by drop stitch tethers 2, the first layer 11 with a first velocity 110 and the second layer 12 with a second velocity 120. Correspondingly, according to an example, the velocity controlling unit 101 may be adapted for controlling feeding from a drop stitch fabric supply 4 comprising a drop stitch fabric 1 having a first layer 11 and a second layer 12 tethered by drop stitch tethers 2, the first layer 11 with a first velocity 110 and the second layer 12 with a second velocity 120. Thus, the phrase “a velocity controlling unit for controlling feeding a drop stitch fabric having a first layer and a second layer tethered by drop stitch tethers, wherein the first layer is moving with a first velocity and the second layer is moving with a second velocity” may according to an example refer to “a velocity controlling unit for controlling feeding from a drop stitch fabric supply comprising a drop stitch fabric having a first layer and a second layer tethered by drop stitch tethers, the first layer with a first velocity and the second layer with a second velocity”.
Optionally, should Action 1002 of feeding be preceded by optional Action 1001 of determining an offset 5, then the first velocity 110 and/or the second velocity 120 may be determined based on the offset 5. Correspondingly, the velocity controlling unit 102 may optionally be adapted for determining the first velocity 110 and/or the second velocity 120 based on the offset 5. Further optionally, a relation between the first velocity 110 and the second velocity 120 may be adapted to rectify the offset 5.
Optionally, Action 1002 of feeding may comprise the alignment system 10 feeding the first layer 11 with support from at least a first roll 8 and/or feeding the second layer 12 with support from at least a second roll 9, an axial direction of the at least first and/or second roll 8, 9 being perpendicular to a running direction 6 of the drop stitch fabric 1. Correspondingly, the velocity controlling unit 102 may optionally be adapted for controlling feeding the first layer 11 with support from at least a first roll 8 and/or feeding the second layer 12 with support from at least a second roll 9, an axial direction of the at least first and/or second roll 8, 9 being perpendicular to a running direction 6 of the drop stitch fabric 1.
Further optionally, the at least first roll 8 may comprise a vacuum roll 81 and the at least second roll 9 may comprise a vacuum roll 91 positioned in parallel with the at least first vacuum roll 81 forming a gap 89 there between. Action 1002 of feeding may then comprise the alignment system 10 feeding the drop stitch fabric 1 through the gap 89. Correspondingly, the velocity controlling unit 102 may then be adapted for controlling feeding the drop stitch fabric 1 through the gap 89.
Further optionally, Action 1001 of determining an offset 5 may then comprise the alignment system 10 determining the offset 5 based on a misalignment 50 of drop stitch tethers 2 at the gap 89. Correspondingly, the optional offset determining unit 101 may be adapted for determining the offset 5 based on a misalignment 50 of drop stitch tethers 2 at the gap 89.
Action 1003: In optional Action 1003, the alignment system 10 may subsequently feed the drop stitch fabric 1 to a drop stitch fabric processing machine 3, e.g. a drop stitch fabric processing machine 3 adapted for cutting, sewing, patching and/or welding of the drop stitch fabric 1. Correspondingly, the optional feeding controlling unit 103 may be adapted for controlling subsequently feeding the drop stitch fabric 1 to a drop stitch fabric processing machine 3, e.g. a drop stitch fabric processing machine 3 adapted for cutting, sewing, patching and/or welding of the drop stitch fabric 1.
The person skilled in the art realizes that the present disclosure by no means is limited to the preferred embodiments described above. On the contrary, many modifications and variations are possible within the scope of the appended claims. It should furthermore be noted that the drawings not necessarily are to scale and the dimensions of certain features may have been exaggerated for the sake of clarity. Emphasis is instead placed upon illustrating the principle of the embodiments herein. Additionally, in the claims, the word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality.
Various examples have been described. These and other examples are within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
19181442 | Jun 2019 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
20090078186 | Rista | Mar 2009 | A1 |
20100307629 | Citterio | Dec 2010 | A1 |
20120005836 | Cik | Jan 2012 | A1 |
Number | Date | Country |
---|---|---|
103132233 | Jun 2013 | CN |
107548285 | Jan 2018 | CN |
107700133 | Feb 2018 | CN |
2265610 | Oct 1993 | GB |
2409190 | Jun 2005 | GB |
20100106792 | Oct 2010 | KR |
2018170337 | Sep 2018 | WO |
Entry |
---|
Dec. 16, 2019 European Search Report issued on International Application No. 19181442. |
Office Action issued in the corresponding Chinese patent application 2020105689177. |
Number | Date | Country | |
---|---|---|---|
20200399091 A1 | Dec 2020 | US |