1. Field of the Invention
The present invention relates to a target for improving training techniques. More particularly, the present invention relates to a target which provides improved visual response to a person hitting a “kill zone” of the target.
2. State of the Art
It is crucial during the training of police officers and the like that they be trained in real life situations. Law enforcement target training originally involved shooting at a still target from a pre-determined distance and then checking how many of the shots hit a kill zone on a particular target. Over time, however, such firearm training has been deemed to be inadequate to prepare police officers and other law enforcement officials to respond to real life situations. For example, an individual may be wearing a bullet-proof vest. In such a situation five shots directly to the heart may have little effect on the perpetrator other than to cause bruising in the chest. At the same time the police officer and innocent civilians are exposed to fire from the perpetrator.
In a situation where a law enforcement official is shooting at a suspect, the police officer or other law enforcement officer has determined that the individual poses a serious risk of loss of life to either the officer or to others. Thus, once an officer makes the decision to discharge his/her weapon, he/she is often required to shoot to kill.
Because a perpetrator may be wearing a bullet-proof vest, a helmet, or other protective clothing, police officers are trained to fire in a sequence which is most likely to kill or seriously wound the perpetrator. Thus, for example, the police officer may be taught to fire three shots to the chest and then two shots to the head in quick succession. If the perpetrator is using a bullet-proof vest the shots to the chest will likely not immobilize the perpetrator. However, the shots to the head will.
While shooting in the desired scenario is important, it is also important for the police officer to stop shooting as soon as possible. Contrary to the belief of many, handguns are not highly accurate weapons. Every shot that the officer makes raises the possibility of a stray bullet ricocheting and hurting innocent civilians. Additionally, once the perpetrator drops to the ground, continued firing may hit people or items behind the perpetrator or result in ricochets that can harm innocent civilians.
In training with still targets, it is difficult to teach an officer to follow the sequence but to stop at the appropriate time. For example, the officer may shoot three shots to the chest which would have killed the perpetrator. However, because the target is non-reactive, the officer continues to fire two shots to the head. If the perpetrator has already fallen, the two shots to the head would significantly increase the risk of harming innocent third parties.
It is very important to train police officers so that they are comfortable with their reactions to given scenarios. A police officer who is confident in his/her shooting abilities is less likely to accidentally discharge their weapon and hurt someone. Additionally, they are also less likely to hesitate inappropriately when they are required to use deadly force.
Thus there is a need for an improved method for training police officers, other law enforcement officials and the military.
It is an object of the invention to provide an improved training target.
It is an object of the invention to provide a target which is easy to use.
The above and other objects of the invention are achieved in a drop target having a base for supporting a target, a first, penetrable target and a second reactive target. The reactive target is disposed so as to provide a visual change in the penetrable target and thereby identify to an officer that he/she has struck the “kill zone” and should cease shooting. In accordance with one aspect of the invention, the first, penetrable target is generally opaque and positioned in front of the second, reactive target so the shooter cannot see the second reactive target while shooting at the first penetrable target.
In accordance with another aspect of the invention, the second reactive target is connected to a catch or other similar mechanism which holds the first, penetrable target in place. When the second, reactive target is properly stuck by a bullet, the catch, etc, is released so as to enable the first, penetrable target to move and provide a visual indication that the kill zone was hit.
In accordance with the another aspect of the current invention, the second, reactive target is adjustable so as to selectively change the position of the second reactive behind the first penetrable target so as to more fully train law enforcement officials and the like.
It will be appreciated that the drawings are illustrative of the principles of the invention and are not intended to limit the appended claims. Furthermore, it will be appreciated that the various aspects of the embodiments discussed therein can be used interchangeably between embodiments and representatives of the embodiments are provided with the different features mainly for the sake of clarity. The various configurations shown in the drawings can be used interchangeably and are provided separately merely to show varying options provided by the present invention.
The present invention will now be discussed with respect to the drawings so as to enable one of ordinary skill in the art to make and use the invention. It would be appreciated that the description is illustrative only and is not meant to limit the scope of the appended claims.
Turning now to
Attached to an upper portion of the support member 22 is a pivot plate 30. The attachment between the pivot plate 30 and the support member 22 can be performed by a variety of means, including attachment by rivets, by bolts, by welding, by adhesive attachment, or by clamps or other removable attachments, etc.
The pivot plate 30 includes a plurality of arms including a first arm 34 which engages a first target pivot 38. A second arm 42 engages a second target pivot 46 which will be explained in detail below.
The pivot plate 30 also includes a first stop 50 which is disposed to engage a first stop mechanism discussed below. The pivot plate 30 also includes a second stop 54 which is configured to stop movement of a second target as described below.
The first arm 34 of the pivot plate 30 is attached to a latch 60. The latch 60 includes a stop 62 which engages the stop 50 of the pivot plate 30 so as to limit downward movement of the latch 60 as it pivots about the first target pivot 38. The latch 60 also includes a catch 64 which, as it will be explained below, engages a catch arm of a second target so as to selectively hold the latch 60 into position shown in
The latch 60 is connected to a first target mechanism 70. The first target mechanism 70 is preferably provided with a penetrable target 72 at which a law enforcement offer, etc, shoots such that bullets and other projectiles pass through the target. The target mechanism 70 includes the target 72 which is secured at the bottom by a mount 74. The mount shown in
Also attached to the pivot plate 30 is a second target mechanism, generally indicated as 80. The second target mechanism includes a reactive target 84. While target 84 may be penetrable by bullets, it is presently preferred that the target not be penetrable so that it can withstand a significant number of hits by a bullet. The target 84 may have an attachment 88 for connecting a target to a neck or arm 92. As shown in
A deflector plate 96 is preferably placed in front of the neck 92 so as to protect the neck from being hit by bullets. Additionally, the deflector plate 96 is preferably angled such that a bullet impacting the deflector plate will tend to ricochet off and will not transmit substantial force against the arm 92. A lower end 92A of the arm 92 includes a stop 100 which engages the stop 54 of the pivot plate 50 so as to limit downward movement of the arm 92 as it rotates about pivot 46. It will be appreciated that pivot 38 and 46 can be formed from bolts, rivets, or any other mechanism which allows latch 60 and arm 92 to pivot thereabout.
The lower end 92A of the neck 92 also includes a catch arm 104. As shown in
Turning now to
Turning now to
Thus, the target provides a more realistic response to the officer shooting. The officer may fire three shots into the chest but not produce a kill because a perpetrator is wearing a bullet proof vest. However, the first shot to the head passes through the target 72 and hits the reactive target 84. This in turn causes the arm 92 to pivot backwardly and allows the target 72 to pivot forwardly visually representing the suspect has been killed or incapacitated to the point that he or she no longer poses a threat. This provides a more realistic visual indication to the officer that he or she should cease shooting. If the officer continues to shoot, then the officer would need to undergo additional training to improve decision making in such scenarios. In order to repeat the exercise, the first target mechanism 70 need merely be rotated back so that the target 72 is substantially vertical. The arm 92 is then lifted back into a generally vertical position so that the catch arm 104 again engages the catch 64 and holds the target 72 in place. One significant advantage of this configuration is that it does not require any electronic mechanisms. Thus, the target 72 can be set up in a variety of environments without concern for protecting electronic components and the like. It would be appreciated, however, that the remote access could be provided. For example, cable 106 could be provided. The cable 106 could allow manual remote setting by simply pulling the cable 106 to cause the first target mechanism 70 and the second target mechanism 80 to come back into the vertical positions. In the alternative, the device could be connected to a motor, such as 107 and then be powered from the remote location to automatically reset the target.
Turning now to
An advantage of the arm 92′ shown in
Turning now to
Turning now to
Disposed above the deflector plate 126 is a pivot plate 130. The pivot plate 130 rotates about a pivot 132. The pivot plated 130 is also attached to a mount 134 which receives the support 140 of a target 72.
Also shown in
Turning now to
When a shooter fires through the target 72 of the first target mechanism 70, as represented by arrow C, the bullet impacts the reactive target 84. The force of the bullet pushes the reactive target 84 rearwardly. As the reactive target 84 moves, the attachment 88 and arm 154 which connects the reactive target to the pivot plate 160 also move. This causes the arm 154 to rotate about pivot 146. The rearward movement of the arm 154 raises the catch arm 158 which is attached to a lower portion 154a of the target arm 154. The catch arm 158 extends to a position where it prevents rotation of a target pivot plate 130. Once the catch 158 is raised, the weight of the target mechanism 72 (or a force applicator, such as a spring) causes the pivot plate 130 to rotate as represented by arrow d in
Thus, there is disclosed a drop target which provides improved visual indication of when the shooter has hit the proper “kill zone” of a target. Those skilled in the art will appreciate the numerous modifications can be made without departing from scope of the spirit of the invention. For example, while described herein as utilizing gravity to pull the first target mechanism into a second position wherein it is no longer presented to the shooter, springs or other biasing elements can be used to more quickly move the target from presentation upon release of the catch mechanism The appended claims are intended to cover such modifications.
The present application claims the benefit of U.S. Provisional Patent Application No. 60/788,086, filed Mar. 31, 2006, which is incorporated herein in its entirety.
Number | Date | Country | |
---|---|---|---|
60788086 | Mar 2006 | US |