The present invention relates generally to drop tube segments, and more particularly to drop tube segments including a fastening section for use with a liquid reservoir.
Our increasingly mobile and mechanized society uses a variety of different fuels (e.g., gasoline, diesel fuel, ethanol, etc.) as energy. Liquid fuels are generally stored in liquid reservoirs such as underground storage tanks, above ground tanks, or any of a variety of different containers. Typically, liquid fuel reservoirs have inlets and outlets through which fuel can be added to and/or removed from the reservoir. These inlets and outlets may typically consist of a riser pipe extending from the reservoir. Internal to the riser pipe is a drop tube that typically includes an overfill valve adapted to respond once a predetermined level is reached in the liquid reservoir. To simplify manufacture and assembly, it is also known to provided the drop tube in a plurality of segments that are fastened together in series to form an overall drop tube assembly. As shown in U.S. Pat. No. 4,986,320, for example, the drop tube assembly includes an intermediate drop tube segment having opposed ends that are each correspondingly fastened to an upper and lower drop tube segment with fasteners extending through the respective walls of the segments.
Such configurations have proven to be very effective. To further enhance the beneficial nature of previous drop tube assemblies, there is a desire to provide a substantially fluid tight seal at the fastening location between the drop tube segments. A fluid tight seal may reduce or prevent fluid, such as vapor, from being released from the ullage area of the reservoir to the interior of the drop tube that might act as a chimney to vent the fluid to the surrounding atmosphere and potentially create an environmental concern.
To address potential concerns of vapor leakage, it is known to provide fastening sections with an epoxy layer to provide a fluid-tight seal at potential leak points. For example, it is known to provide a drop tube assembly, as shown in U.S. Pat. No. 4,986,320, with a fastening arrangement as shown in
Application of an epoxy layer to provide fluid-tight sealing has proven very beneficial to reduce fluid vapor leakage. However, the addition of an epoxy layer typically greatly lengthens the installation process and the epoxy layer must cure for an extended period of time before the drop tube assembly may be installed with respect to the liquid reservoir. Currently, there is a need for drop tube assemblies that comprise a plurality of sections that may be connected together for immediate installation with respect to the liquid reservoir while providing a fluid seal at the fastening location between the drop tube segments.
Accordingly, it is an aspect of the present invention to obviate problems and shortcomings of conventional drop tube assemblies. More particularly, it is an aspect of the present invention to provide a drop tube segment with a fastening section that provides a fluid tight seal to inhibit, such as prevent, fluid leakage to the surrounding atmosphere that might otherwise create an environmental concern. It is a further aspect of the present invention to provide a drop tube segment with a fastening section that provides a fluid tight seal without necessarily requiring the use of an epoxy sealant that involves extensive curing time.
To achieve the foregoing and other aspects and in accordance with the present invention, a drop tube segment is provided and adapted for use with a liquid reservoir. The drop tube segment includes a conduit with a first end portion and a second end portion. The drop tube segment further comprises a valve assembly with a valve member associated with the first end portion, a float, and a linkage device pivotally connected with respect to the valve member. The linkage device is adapted for communication with the float such that the float may facilitate in adjusting the position of the valve member with respect to the first end portion of the conduit in response to a liquid level in a liquid reservoir. The drop tube segment further includes a fastening section located at the second end portion of the conduit for fluid tight fastening with an end portion of another drop tube segment. The fastening section comprises a sealing surface and a threaded portion adapted for threaded engagement with a threaded portion of another drop tube segment. The drop tube segment still further includes a resilient sealing member that engages the sealing surface of the fastening section and is adapted to engage a sealing surface of another drop tube segment.
To achieve further aspects and in accordance with the present invention, a drop tube segment is provided that includes a conduit with a first end portion and a second end portion. The drop tube segment further includes a valve assembly with a valve member associated with the first end portion, a float, and a linkage device pivotally connected with respect to the valve member. The linkage device is adapted for communication with the float such that the float may facilitate in adjusting the position of the valve member with respect to the first end portion of the conduit in response to a liquid level in a liquid reservoir. The drop tube segment further includes a fastening section located at the second end portion of the conduit for fluid tight fastening of the second end portion of the conduit to an end portion of another drop tube segment. The fastening section comprises a first outer cylindrical surface including a first outer diameter, a second outer cylindrical surface including a second outer diameter that is less than the first outer diameter, and an annular shoulder adapted to act as a registration stop for another drop tube segment. The annular shoulder is defined by a transition between the first outer cylindrical surface and the second outer cylindrical surface. The fastening section also includes an annular groove, defined by the second outer cylindrical surface, that includes a sealing surface and is offset from an outer end of the drop tube segment. The fastening section still further includes an outer threaded portion adapted for threaded engagement with an inner threaded portion of another drop tube segment. The drop tube segment further comprises an annular sealing member engaging the sealing surface and at least partially disposed in the annular groove.
To achieve still further aspects and in accordance with the present invention, a drop tube assembly is provided and adapted for use with a liquid reservoir. The drop tube assembly comprises a first drop tube segment including a first conduit with a first end portion and a second end portion. The first drop tube segment further comprises a valve assembly with a valve member associated with the first end portion, a float, and a linkage device pivotally connected with respect to the valve member. The linkage device is adapted for communication with the float such that the float may facilitate in adjusting the position of the valve member with respect to the first end portion in response to a liquid level in a liquid reservoir. The first drop tube segment further includes a first fastening section located at the second end portion of the first conduit. The first fastening section comprises a first sealing surface and a first threaded portion. The drop tube assembly further includes a second drop tube segment comprising a second conduit including a first end portion and a second end portion. The second drop tube segment further includes a second fastening section located at the first end portion of the second conduit. The second fastening section comprises a second sealing surface and a second threaded portion. At least part of the first threaded portion is threadedly engaged with at least part of the second threaded portion. The drop tube assembly further includes a resilient sealing member engaging the first and second sealing surfaces.
To achieve yet further aspects and in accordance with the present invention, a drop tube assembly is provided with a first drop tube segment. The first drop tube segment includes a first conduit with a first end portion and a second end portion. The first drop tube segment further includes a valve assembly with a valve member associated with the first end portion, a float, and a linkage device pivotally connected with respect to the valve member. The linkage device is adapted for communication with the float such that the float may facilitate in adjusting the position of the valve member with respect to the first end portion of the first conduit in response to a liquid level in a liquid reservoir. The first drop tube segment further includes a first fastening section located at the second end portion of the first conduit. The first fastening section includes a first interface surface with at least a portion of the first interface surface including a first threaded portion. The drop tube assembly further includes a second drop tube segment. The second drop tube segment comprises a second conduit including a first end portion and a second end portion. The second drop tube segment further comprises a second fastening section located at the first end portion of the second conduit. The second fastening section includes a second interface surface with at least a portion of the second interface surface including a second threaded portion. At least part of the first threaded portion is threadedly engaged with at least part of the second threaded portion. The first and second fastening sections and the first and second conduits cooperate to form a fluid conduit with an internal fluid pathway. The first and second interface surfaces also extend between the internal fluid pathway and an external location of the drop tube assembly. The drop tube assembly further comprises a sealing member interposed between the first and second interface surfaces. The sealing member is located external to at least a portion of the threadedly engaged parts of the first and second threaded portions.
Advantages and novel features of the present invention will become apparent to those skilled in the art from the following detailed description, which simply illustrates various modes and examples contemplated for carrying out the invention. As will be realized, the invention is capable of other different aspects, all without departing from the invention. Accordingly, the drawings and descriptions are illustrative in nature and not restrictive.
While the specification concludes with claims particularly pointing out and distinctly claiming the present invention, it is believed that the same will be better understood from the following description, taken in conjunction with the accompanying drawings, in which:
The various exemplary embodiments of the invention may be used to provide a valve system for a wide variety of applications. For example, the various exemplary embodiments of the invention may be used to provide overfill valve systems for use in a liquid reservoir, such as a liquid storage tank. In one particular example, features of the exemplary embodiments herein may be used in addition, or in place of, features disclosed in U.S. Pat. No. 4,986,320, which is herein incorporated entirely by reference. U.S. Pat. No. 4,986,320 is referred to throughout this application as “the referenced patent”.
Attention will now be directed to various exemplary embodiments of the invention. Concepts of exemplary embodiments are illustrated in the accompanying drawings, wherein like numerals indicate the same elements throughout the views. With reference to
The drop tube segment 100 further includes a valve assembly, such as the exemplary valve assembly 110 illustrated and described herein. The concepts of the present invention can alternatively be used with various conventional valve assemblies. For example, general features and concepts of the conventional valve assembly described in the referenced patent may be incorporated in the drop tube segment 100 for use with the inventive concepts of the present invention.
As shown in
The valve member 112 can also be provided with a poppet valve 114 similar to the valve member and poppet valve disclosed in the reference patent. The poppet valve 114 includes a pivot link 116 and is provided with a torsion spring 120 to bias the poppet valve 114 to a closed position as shown in
As illustrated in
The linkage device 170 is further provided with a torsion spring 180 for biasing the valve member 112 to the open position illustrated in
The valve assembly 110 further includes the previously-mentioned float 130 that facilitates adjustment of the position of the valve member 112 with respect to the first end portion 104 of the conduit 102 in response to a liquid level in the liquid reservoir 360. As shown in
The float 130 may comprise an elongated body molded from any suitable material and may further include the previously-mentioned float link 132 designed to act as a safety link to provide a failure point to prevent otherwise expensive damage that might occur if the float 130 is forced to an over-pivoted position. As shown in
As shown in
An exemplary cam member 160 is shown in
As further illustrated in
The first end portion 104 may further include a fastening section 109 with a fastener receiving structure 107 adapted to facilitate attachment between the drop tube segment 100 and another drop tube segment 252 that may be arranged as an upper drop tube segment as illustrated in
The second end portion 106 may further include another fastening section 200 adapted to facilitate attachment between the first drop tube segment 100 and a second drop tube segment 215 that may be arranged as a lower drop tube segment as illustrated in
The second drop tube segment 215 includes a second conduit 220 with a first end portion 221a and a second end portion 221b (see
The adapter 224, if provided, may include an insert collar 226 adapted to facilitate attachment of the adapter 224 with the tubular member 222. As shown, the insert collar 226 is adapted to be inserted into an end portion of the tubular member 222. A weld seam 223 may then be provided to attach the adapter 224 to the tubular member 222. To prevent leakage, the weld seam 223 may comprise a continuous weld seam about the periphery of the interface between the tubular member 222 and the adapter 224.
The second fastening section includes a second interface surface with a second sealing surface 232, wherein the sealing member 206 is adapted to simultaneously engage the first and second sealing surfaces. The second sealing surface 232 might comprise a flat and/or cylindrical surface and can include any surface adapted to engage the sealing member 206. For example, as shown in
In order to assist in fastening the first drop tube segment 100 to the second drop tube segment 215, the first interface surface is further provided with a first threaded portion 208 and the second interface surface is further provided with a second threaded portion 228. As shown, at least part of the first threaded portion 208 is adapted to be threadedly engaged with at least part of the second threaded portion 228. As shown in
As illustrated in the exemplary embodiments, the threaded portions can comprise straight threads wherein the first drop tube segment 100 and the second drop tube segment 215 may be threaded together until a limit is reached. In the particular embodiment shown in
Although not shown, in additional exemplary embodiments, a surface of the optional shoulder of any of the embodiments herein might include the sealing surface for engaging the sealing member. For example, the first sealing surface of the first fastening section can comprise at least a portion of a shoulder and the second sealing surface of the second fastening section can comprise an end portion, such as an outer end, of the second drop tube segment. Therefore, in accordance with the concepts of the present invention, the sealing member can be at least partially disposed between a portion of the shoulder of one drop tube segment and an end portion of another drop tube segment such that the sealing member engages a sealing surface of the shoulder of one drop tube segment and a sealing surface of another drop tube segment.
As further shown in
As shown in
Similarly, as shown in
Alternatively, as shown in the embodiment of
Similarly, as shown in the embodiment of
The optional grooves depicted in the various illustrated exemplary embodiments herein (i.e., groove 204) include a base and two opposed sides. Further exemplary grooves of embodiments of the present invention, if provided, might alternatively comprise a variety of shapes designed to facilitate placement of a sealing member with respect to a fastening section. For example, although not shown, exemplary grooves might comprise a V-shaped groove, a rounded groove with an arcuate configuration, or other shapes.
In addition,
Sealing members (e.g., sealing member 206) described throughout this application can comprise a resilient annular O-ring that can be formed a wide variety of materials such as an elastomer. Certain sealing members might comprise a PolyPak® seal available from Parker-Hannifin, Corp. It is understood that additional exemplary sealing members might comprise a nonannular shape, for example, to match the shape of the sealing surface. In additional embodiments, a nonresilient sealing member might be used wherein the seal is obtained by compressing, such as crushing the sealing member. However, a resilient sealing member might be desirable to allow repeated breakdown and refastening of the drop tube segments without replacing the sealing member. Still further, sealing members other than O-rings may be used.
The foregoing description of the various examples and embodiments of the invention has been presented for the purposes of illustration and description. It is noted that a wide variety of additional embodiments may incorporate the concepts of the present invention. For example, additional embodiments of the invention may include inventive concepts presented herein in combination with features and concepts disclosed in U.S. Pat. No. 4,986,320. The description of the various examples and embodiments of the invention is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, this invention is intended to embrace all alternatives, modifications and variations that have been discussed herein, and others that fall within the spirit and broad scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
979819 | Anderson | Dec 1910 | A |
1219222 | Baxter et al. | Mar 1917 | A |
1246033 | Adams | Nov 1917 | A |
1268947 | Fell | Jun 1918 | A |
1289490 | Lundstrom | Dec 1918 | A |
1313386 | Jones | Aug 1919 | A |
1689066 | Baxter | Oct 1928 | A |
2340936 | Cook | Feb 1944 | A |
2499409 | Norway | Mar 1950 | A |
2507545 | Samiran | May 1950 | A |
2685891 | Segelhorst et al. | Aug 1954 | A |
2811179 | Greenwood | Oct 1957 | A |
2839082 | Moore et al. | Jun 1958 | A |
2918931 | Siri | Dec 1959 | A |
2918932 | Few | Dec 1959 | A |
3078867 | McGillis et al. | Feb 1963 | A |
3610273 | Russell | Oct 1971 | A |
3661175 | Tillman | May 1972 | A |
3791407 | Nicholls | Feb 1974 | A |
3794077 | Fanshier | Feb 1974 | A |
3963041 | McGillis | Jun 1976 | A |
4308894 | Carpentier | Jan 1982 | A |
4479669 | Hynes | Oct 1984 | A |
4667711 | Draft | May 1987 | A |
4793387 | LeBlanc et al. | Dec 1988 | A |
4986320 | Kesterman et al. | Jan 1991 | A |
4998571 | Blue et al. | Mar 1991 | A |
5086843 | Mims et al. | Feb 1992 | A |
5117877 | Sharp | Jun 1992 | A |
5152315 | Lagache | Oct 1992 | A |
5163470 | Maeshiba | Nov 1992 | A |
5174345 | Kesterman et al. | Dec 1992 | A |
5207241 | Babb | May 1993 | A |
5241983 | Lagache | Sep 1993 | A |
5398735 | Lagache | Mar 1995 | A |
5522415 | Hopenfeld | Jun 1996 | A |
5564464 | Pendleton et al. | Oct 1996 | A |
5564465 | Pettesch | Oct 1996 | A |
5655565 | Phillips et al. | Aug 1997 | A |
5839465 | Phillips et al. | Nov 1998 | A |
5887614 | Weeks et al. | Mar 1999 | A |
6138707 | Stuart | Oct 2000 | A |
6206056 | Lagache | Mar 2001 | B1 |
6267156 | Argandona | Jul 2001 | B1 |
6318421 | Lagache | Nov 2001 | B1 |
6523564 | Phillips | Feb 2003 | B1 |
6523581 | Pendleton et al. | Feb 2003 | B1 |
6536465 | David et al. | Mar 2003 | B1 |
6655418 | McGill et al. | Dec 2003 | B1 |
6669413 | Neeld et al. | Dec 2003 | B1 |
6874528 | Kozik et al. | Apr 2005 | B1 |
6913047 | Kane et al. | Jul 2005 | B1 |
20020179178 | Pendleton et al. | Dec 2002 | A1 |
20040017081 | Simpson et al. | Jan 2004 | A1 |
20050241695 | Pendleton et al. | Nov 2005 | A1 |
20050241696 | Kane et al. | Nov 2005 | A1 |
20050241723 | Pendleton et al. | Nov 2005 | A1 |
20050254910 | Kane et al. | Nov 2005 | A1 |
Number | Date | Country |
---|---|---|
1750504 | Aug 1974 | DE |
8805087 | Jun 1988 | DE |
19941820 | Feb 2001 | DE |
1360869 | Apr 1964 | FR |
1377087 | Oct 1964 | FR |
1526790 | May 1968 | FR |
2194908 | Mar 1974 | FR |
2197161 | Mar 1974 | FR |
2205166 | May 1974 | FR |
2270198 | Dec 1975 | FR |
2331732 | Jun 1977 | FR |
2355736 | Jan 1978 | FR |
0966842 | Aug 1964 | GB |
1444260 | Jul 1976 | GB |
1531083 | Jan 1978 | GB |
2064041 | Jun 1981 | GB |
2309767 | Aug 1997 | GB |
Number | Date | Country | |
---|---|---|---|
20050241722 A1 | Nov 2005 | US |