This invention relates generally to the fields of laboratory automation, microfabrication and manipulation of small volumes of fluids (microfludics), in such a manner so as to enable rapid dispensing and manipulation of small isolated volumes of fluids under direct electronic control. More specifically, the invention relates to a method of forming and moving individual droplets of electrically conductive liquid, and devices for carrying out this method.
Miniaturization of assays in analytical biochemistry is a direct result of the need to collect maximum data from a sample of a limited volume. This miniaturization, in turn, requires methods of rapid and automatic dispensing and manipulation of small volumes of liquids (solvents, reagents, samples etc.) The two methods currently employed for such manipulation are, 1) ink jetting and 2) electromigration methods in capillary channels: electroosmosis, elecrophoresis and/or combination thereof. Both methods suffer poor reproducibility.
Ink jetting is based on dispensing droplets of liquid through a nozzle. Droplet expulsion from the nozzle is effected by a pressure pulse in the reservoir connected to the nozzle. The pressure pulse itself is effected by an electric signal. The droplets are subsequently deposited on a solid surface opposing the nozzle. The relative position of the nozzle and the surface is controlled by a mechanical device, resulting in deposition of droplets in a desired pattern. Removal of the droplets is typically effected by either washing or spinning (centrifugal forces).
While ink jetting is a dispensing method generally applicable to a wide variety of liquids, the volume of the deposited droplets is not very stable. It depends on both the nature of the liquid being deposited (viscosity, density, vapor pressure, surface tension) and the environment in the gap between the surface and the nozzle (temperature, humidity). Ink jetting technology does not provide means to manipulate droplets after they have been deposited on the surface, except for removing them.
Electromigration methods are based on mobility of ions in liquids when electric current is passed through the liquids. Because different ions have different mobilities in the electric field, the composition of liquid being manipulated generally changes as it is being transported. While this feature of electromigration methods is useful for analytical purposes, because it allows physical separation of components of mixtures, it is undesirable in general micromanipulation techniques.
Additionally, the need to pass electrical current through the liquid results in heating of the liquid, which may cause undesirable chemical reactions or even boiling. To avoid this, the electrical conductivities of all liquids in the system are kept low, limiting the applicability of electromigration methods.
The need to pass electrical current through the liquid also requires that the control electrodes be electrically connected through an uninterrupted body of conductive liquid. This requirement additionally complicates precision dispensing and results in ineffective use of reagents, because the metered doses of a liquid are isolated from a continuous flow of that liquid from one electrode to another.
Additionally, ions present in the liquid alter the electric field in that liquid. Therefore, changes in ionic composition in the liquid being manipulated result in variations in resultant distribution of flow and material for the same sequence of control electrical signals.
Finally, the devices for carrying out the electromigration methods have connected channels (capillaries), which are used to define liquid flow paths in the device. Because the sizes of these capillaries and connections among them are optimized for certain types of manipulations, and also for certain types of liquids, these devices are very specialized.
The present invention provides microchip laboratory systems and methods of using these systems so that complex chemical and biochemical procedures can be conducted on a microchip under electronic control.
The microchip laboratory system comprises a material handling device that transports liquid in the form of individual droplets positioned between two substantially parallel, Hat surfaces. Optional devices for forming the droplets are also provided.
The formation and movement of droplets are precisely controlled by plurality of electric fields across the gap between the two surfaces. These fields are controlled by applying voltages to plurality of electrodes positioned on the opposite sides of the gap. The electrodes are substantially planar and positioned on the surfaces facing the gap. At least some of the electrodes are electrically insulated from the liquid in the gap.
The gap is filled with a filler fluid substantially immiscible with the liquids which are to be manipulated. The filler fluid is substantially non-conductive. The wetting properties of the surfaces facing inside the gap are controlled, by the choice of materials contacting the liquids or chemical modification of these materials, so that at least one of these surfaces is preferentially wettable by the filler fluid rather than any of the liquids which are to be manipulated.
The operating principle of the devices is known as electrowetting. If a droplet of polar conductive liquid is placed on a hydrophobic surface, application of electric potential across the liquid-solid interface reduces the contact angle, effectively converting the surface into more hydrophilic. According to the present invention, the electric fields effecting the hydrophobic-hydrophilic conversion are controlled by applying an electrical potential to electrodes arranged as an array on at least one side of the gap. The electrodes on the other side mayor may not be arranged in a similar array; in the preferred embodiment, there is array of electrodes only on one side of the gap, white the other has only one large electrode covering substantially the entire area of the device.
At least on one side of the gap, the electrodes are coated with an insulator. The insulator material is chosen so that it is chemically resistant to the liquids to be manipulated in the device, as well as the filler fluid. By applying an electrical potential to an electrode or a group of electrodes adjacent to an area contacted by polar liquid, the hydrophobic surface on top of these electrodes is converted to hydrophilic and the polar liquid is pulled by the surface tension gradient (Marangoni effect) so as to maximize the area overlap with the charged group of electrodes.
By removing an electric potential from an electrode positioned between the extremities of an elongated body of polar liquid, the portion of formerly hydrophilic surface corresponding to that electrode is made hydrophobic. The gradient of surface tension in this case acts to separate the elongated body of liquid into two separate bodies, each surrounded by a phase boundary. Thus, individual droplets of polar liquid can be formed by alternatively applying and removing an electric potential to electrodes. The droplets can be subsequently repositioned within the device as discussed above.
Examples of appropriate coating materials include SiN and BN, deposited by any of the conventional thin-film deposition methods (sputtering, evaporation, or preferably chemical vapor deposition) and parylene™, deposited by pyrolytic process, spin-on glasses (SOGs) and polymer coatings (polyimide s, polymethylmetacrylates and their copolymers, etc.), dipand spray-deposited polymer coatings, as well as polymer films (Teflon™, polyimides etc.) applied by lamination.
22—top wafer
24—bottom wafer
26—liquid droplet
28
a—bottom hydrophobic insulating coating
28
b—top hydrophobic insulating coating
30—filler fluid
32
a—bottom control electrodes
32
b—top control electrodes
34—contact pad
36—cutoff electrode
38—hydrophobic rim
40—reservoir electrodes
42
a—transport lines
42
b—test areas
44—sectorial electrode
62—gate electrode
64
a—first supply line
64
b—second supply line
64
e—common line
46—diluent line
48—reagent supply line
50—vortexer
52—undiluted reagent outlet
54—first stage outlet
56—second stage outlet
58—third stage outlet
60—fourth stage outlet
According to the invention, there is provided a chamber filled with a fluid, with flat electrodes 32a,b on opposite surfaces (
The linear arrangement of electrodes shown in
As a convenient interface between a microfluidics device operating in subnanoliter to microliter range of volumes with the outside world, a drop meter is provided. The drop meter comprises an arrangement control pads on one side of the chamber (
To operate the drop meter, a wetting potential is first applied to the cutoff electrode 36 and the control electrode 32. As a result of this, the liquid which has covered the surface of the contact pad 34 spreads over the other two pads, 32 and 36 (
A reagent solution may be stored in an active reservoir in a sealed device and delivered under electronic control to a reaction site. An example of such reservoir is shown in
Droplets can be moved by of ectrowetting microactuators in more than one direction. The array shown in
Such an array has utility as a system for parallel synthesis of many different reagents. Both solid-phase synthesis of immobilized compounds and liquid-phase synthesis using immobilized reagents, resins and catalysts are possible. Another use of such an array is a fraction collector for capillary electrophoresis or similar separation methods, whereby each fraction is isolated by a drop meter (similar to that shown in
Important features of the electrodes in an array are the width of the gap between the electrodes and the shape of the electrode outline. To avoid accidental mixing of droplets on the test pads, the gaps separating those are straight and relatively wide. On the other hand, the electrodes in the transport lines preferably have interdigitated sawtooth or meander outlines. The gaps between the test pad electrodes and transport line electrodes are also preferably of the meander or sawtooth types.
For controlled mixing of solutions, an integral mixer/vortexer is provided (
Alternative configurations of electrodes are possible for achieving the same goat of assisting in mixing solutions. For example, some of the sectors in an arrangement similar to that shown in
To rapidly exchange solutions contacting a particular pad in an array, a zero-dead-volume valve is provided. An example of electrode configuration for this application is shown in
A group of mixer/vortexers such as that shown in
Such dilutors have utility, for example, as elements of a system for determination of binding constants of labeled reagents in solution to those immobilized on test pads of an array (similar to that shown in
This application is a divisional of U.S. patent application Ser. No. 10/430,816, filed May 6, 2003 (now U.S. Pat. No. 7,255,780), which is a continuation of U.S. patent application Ser. No. 09/490,769, filed Jan. 14, 2000 (now U.S. Pat. No. 6,565,727), which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/117,002, filed Jan. 25, 1999.
Number | Date | Country | |
---|---|---|---|
60117002 | Jan 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10430816 | May 2003 | US |
Child | 11833576 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13101787 | May 2011 | US |
Child | 14281084 | US | |
Parent | 11833576 | Aug 2007 | US |
Child | 13101787 | US | |
Parent | 09490769 | Jan 2000 | US |
Child | 10430816 | US |