The present disclosure relates to biological testing, and more specifically, electrical sensing of biological material.
Rapid analysis of viability of a few bacterial cells in food, water, and/or clinical samples is critically important in a variety of fields, such as bioscience research, medical diagnosis, and hazard analysis in food industry. Under a microscope, bacteria cells are amazingly alive and perform a whole host of physiological functions, namely, multiplication through cell division, searching for resources by chemotaxis, controlling their water pressure by exchange of ions (through osmoregulatory system), etc. And yet, since the introduction of the plate counting method almost 130 years ago, the viability assays (e.g. impedance microbiology and fluorescence staining) continue to rely only on cell multiplication as the exclusive physiological process to differentiate between dead and live cells. Unfortunately, cell-division time can vary from hours to weeks depending on the bacteria type (10-20 min for Escherichia coli vs. 15-16 hours for Mycobacterium Tuberculosis). Such type-dependence prevents the possibility of real-time detection of cell concentration by means of growth-based techniques, especially at low concentration. Therefore, improvements are needed in the field.
The present disclosure provides a method and apparatus for electrically monitoring a time-varying liquid droplet whose conductivity is continuously modulated by osmoregulation response of cells. According to the method, the droplet impedance or conductance is monitored over time as the droplet shrinks due to evaporation. The monitoring data is then compared to calibration data which is obtained by monitoring a reference droplet. The result of the comparison is then used to determine the concentration of viable (live) biological material contained in the droplet.
According to one aspect, a method of determining a concentration and viability of a biological material in a liquid sample is disclosed. The method involves electrical monitoring of a liquid droplet whose conductivity is modulated over time by osmoregulation response of cells contained within the droplet. Concentration and viability of the cells are then determined by monitoring the time-dependent data, and comparing the monitored data to calibration data in order to determine the concentration of the cells.
According to another aspect, a device for determining a concentration of a biological material in a liquid sample is disclosed, comprising a first electrode and a second electrode. The first and second electrode are configured to pin a liquid droplet in a first contact area such that as the droplet evaporates, the contact area remains substantially constant. A monitoring unit is operatively connected to the first and second electrodes. The monitoring unit is configured to electrically monitor the droplet to determine monitoring data as conductivity of the droplet is modulated over time by osmoregulation response of cells contained within the droplet.
The above and other objects, features, and advantages of the present invention will become more apparent when taken in conjunction with the following description and drawings wherein identical reference numerals have been used, where possible, to designate identical features that are common to the figures, and wherein:
When exposed to osmotic shocks, bacteria survive by regulating the osmotic pressure difference across their cell envelope. The pressure difference (also known as turgor pressure) is defined by
where πcyt and πout are the cytoplasm and external osmotic pressures, respectively. The turgor pressure is regulated through activation of specific ‘emergency valves’, which rapidly modulate the concentration of the solutes (including ionic species) in both the external and cytoplasmic solutions.
When the turgor pressure Δπ increases above the natural turgor pressure (under osmotic downshift), mechanosensitive (MS) channels in the bacteria open to release intracellular osmolytes to the surrounding medium within fractions of a second. These proteins, which in the case of Escherichia coli are majorly MscL and MscS channels, pump out different osmolytes (including ions, ATP, lactose, etc.) into the surrounding medium, without any damage to the cell envelope and/or lysis. In contrast, upon osmotic upshift, another group of osmoregulatory transporters are activated by the bacteria to restore the natural turgor pressure (e.g. by uptaking solutes from the surrounding medium).
The present disclosure utilizes osmoregulation, which is equally universal as cell multiplication but much faster, as an effective, real-time monitor of bacteria cells. In one embodiment, bacteria cells are confined in a liquid droplet placed on an impedance sensing unit. The droplet forms a tunable, precisely controlled microenvironment for bacteria cells. As the droplet evaporates, the analytes are forced toward the sensor surface, instead of freely diffusing. Evaporation-induced beating of the diffusion limit, results in much higher sensitivity and shorter response time of the presently disclosed droplet-based sensor compared to the classical impedance sensors. Upon evaporation, concentration of the droplet's solutes increases, and correspondingly, so does its osmotic pressure. This dynamic environment stimulates the osmoregulatory system of live cells, resulting in uptake (‘stealing’) of osmolytes from the external environment and ‘hiding’ them inside the cells. Therefore, while the droplet conductance increases with evaporation (due to the increased ion concentration), the presence of bacteria suppresses the net increase by shielding a fraction of ions away from the electric field. An elementary theoretical model, to be discussed below, explains the results consistently. In addition, as a reference, another group of cells that lost their osmoregulation ability due to heat-treatment, and therefore are ‘osmoregulatory-dead’ (or simply defined as ‘dead’) were analyzed. Use of osmoregulation in conjunction with the droplet-based impedance sensor, provides selective differentiation of live and dead cells down to ˜104 cells/ml and is achievable within 20 minutes. Further, the osmoregulatory response of most bacteria types has similar time-scale, therefore, the detection time of the present assay is anticipated to be less dependent on the bacteria type. In contrast, as mentioned above, growth-based techniques require hours to weeks to numerate cells (depending on the bacteria type). The presently disclosed method can be used in tandem with existing growth-based protocols to further improve the sensitivity and selectivity, with the corresponding trade-off in detection time. Moreover, the presently disclosed method may also be used as a non-destructive (as opposed to patch-clamp methods), indirect characterization tool to fingerprint cells' osmoregulatory response to their environment.
In one embodiment, droplets 116 (which in one example have a 3 μl volume, although smaller or larger volumes may be used, for example in the range of 1 μl-10 μl) are deposited on the sensor surface 115 as shown in
As schematically illustrated in
It is known that conductance generally increases with cell concentration. With respect to live samples, ion- (more precisely osmolyte-) release from bacterial cells in a hypotonic solution (when Δπ>Δπ0) is the main reason for change of the solution impedance with cell concentration. For example, suspensions of Salmonella in DI water with different concentrations result in different impedance responses. Impedance of the cell suspensions decreases with increase of cell concentration (consistent with
With respect to dead or heat-treated samples, cell envelope becomes permeable, and there will be no barrier for the solutes to diffuse across. Therefore, the intracellular content of cells, including ions (K+, Na+, Mg2+), DNA, RNA, amino acids, and enzymes, leak to the surrounding environment. As a result, the solution conductance increases significantly, more so than the live samples. This increase is proportional to the number of cells in a given volume. By assuming that nearly all the cytoplasmic content is released to the surrounding solution upon heat treatment, a sample with ˜3×108 cells/ml results in a conductance increase of around Gdcalc˜6.6-9 μS, which is consistent with the measured value Gdexp=6.34 μS.
In reality, the samples under study may contain a mixture of live and dead cells. Therefore, the ability to distinguish between them is of critical importance for practical applications. Below, a simple, yet comprehensive, conductance model of a droplet containing a mixture of cells is provided. Then, the model is validated by the experimental data and it is demonstrated that the approach can determine, with a high precision, fraction of live cells in a mixture of dead and live ones.
Droplet modeling reveals that cells ‘steal’ ions over time. In a given sample, the number of live and dead cells are n1 (ρl≡nl/V0) and nd (ρd≡nd/V0), respectively, with V0 being the initial droplet volume. The ratio of live cells to the total number of cells is hence
where ρtot≡ntot/V0. Then, Eq. 1 is derived by using the conductance formulation for an evaporating droplet (Eq. S3 in SI) and defining the per-cell conductivities as σ*l/d(t*)<μ>Rl/d(t*). <μ> and Rl/d(t*)are the effective mobility and the number of released ions from individual live/dead cells, respectively.
Here, Hz represents the time-invariant length of the deposited droplet.
Based on Eq. 1, the initial conductance (Gi,αat t*i) and final conductance (Gf,α at t*f) would be
Time-dependent conductance values for samples with all-alive (α=1) and all-dead (α=0) cells are plotted in
The extracted values of σ* are used in estimation of ρtot and α in seven different samples. For a given sample with measured initial and final conductance of G (α, ρtot, t*i) and G (α, ρtot, t*f), the numerical solution of Eq. 2 and Eq. 3 results in ρestim. and αestim. (plotted in
Further, it should be noted that the plots in
To validate that activation of K+ osmoregulatory transporters is the main reason for uptake of ions as droplets evaporate, in one example, four different strains of S. typhimurium, WT, TrkA−, Kdp−, and the double mutant, TrkA−/Kdp− were studied. Cells with ρtot˜107 cells per milliliter were resuspended in 1 μM KCl. The time-varying conductance results of cells are plotted in
There are several techniques for detection of bacterial viability, such as, colony counting, fluorescent staining, molecular-based methods (involving antibodies, DNA, or RNA), impedance microbiology, DEP-based differentiation (3, 18, 33), and light-addressable potentiometric sensors (LAPS). A comparison between the detection time versus cell concentration of the existing viability assays and the present work is illustrated in
Although conventional microbiological methods, such as colony counting, are extremely sensitive, efficient, and inexpensive, their detection time not only increases exponentially as the cell concentration decreases, but also depends on bacteria type and how fast they multiply. Such methods, therefore, are not suitable for fast diagnosis in emergency cases. Among various automated, label-free viability platforms, impedance microbiology (IM) is promising because of simple device assembly/instrumentation and their integrability with the microelectronics technology. The IM technique involves monitoring the impedance changes of a pair of electrodes immersed in the growth medium. These changes are produced by release of ionic metabolites from live cells as they multiply. Similar to the colony counting method, the detection time of IM methods is quite long due to the lengthy cell incubation required for reaching a certain threshold signal. Therefore, as long as the sensing platform relies on cell growth, rapid viability detection is challenging, especially at low cell concentration. In this context, advantages of the presently disclosed incubation-free, osmoregulation-based approach can be substantial.
It shall be understood that while the above examples are related to viability of bacteria, differentiation of various bacteria types may also be evaluated using the disclosed process and apparatus. For example, a pre-growth step on a selective medium or an antibody-based filtering as a part of the detection protocol may be performed.
Various aspects described herein may be embodied as systems or methods. Accordingly, various aspects herein may take the form of an entirely hardware aspect, an entirely software aspect (including firmware, resident software, micro-code, etc.), or an aspect combining software and hardware aspects These aspects can all generally be referred to herein as a “service,” “circuit,” “circuitry,” “module,” or “system.”
Furthermore, various aspects herein may be embodied as computer program products including computer readable program code stored on a tangible non-transitory computer readable medium. Such a medium can be manufactured as is conventional for such articles, e.g., by pressing a CD-ROM. The program code includes computer program instructions that can be loaded into the processor (and possibly also other processors), to cause functions, acts, or operational steps of various aspects herein to be performed by the processor. Computer program code for carrying out operations for various aspects described herein may be written in any combination of one or more programming language(s).
The invention is inclusive of combinations of the aspects described herein. References to “a particular aspect” or “embodiment” and the like refer to features that are present in at least one aspect of the invention. Separate references to “an aspect” (or “embodiment”) or “particular aspects” or the like do not necessarily refer to the same aspect or aspects; however, such aspects are not mutually exclusive, unless so indicated or as are readily apparent to one of skill in the art. The use of singular or plural in referring to “method” or “methods” and the like is not limiting. The word “or” is used in this disclosure in a non-exclusive sense, unless otherwise explicitly noted.
The invention has been described in detail with particular reference to certain preferred aspects thereof, but it will be understood that variations, combinations, and modifications can be effected by a person of ordinary skill in the art within the spirit and scope of the invention.
The present patent application is related to and claims the priority benefit of U.S. Provisional Patent Application Ser. No. 62/220656, filed Sep. 18, 2015, the contents of which is hereby incorporated by reference in its entirety into the present disclosure.
Number | Date | Country | |
---|---|---|---|
62220656 | Sep 2015 | US |