Inkjet printing propels droplets of printing fluid onto media to create an image on a substrate in a 2D printing device, or a layer of an object in a build material in a 3D printing device. For example, an inkjet printer may comprise a printhead comprising an ink drop generator, or plural ink drop generators, that propel the printing fluid through an aperture, or nozzle, to eject a droplet of printing fluid onto the media.
Reliable printing operation in part requires reliable operation of the nozzles. If a nozzle were to malfunction, printing fluid may not be properly ejected, which can have a negative impact on the quality of the printed image or object. Failure mechanisms of the nozzles may include a malfunction of the resistive element, a blockage of an ink supply line, a blockage in the firing chamber, and/or a blockage in the aperture.
Various features of the present disclosure will be apparent from the detailed description which follows, taken in conjunction with the accompanying drawings, which together illustrate, by way of example, features of the present disclosure, and wherein:
In the following description, for purposes of explanation, numerous specific details of certain examples are set forth. Reference in the specification to “an example” or similar language means that a particular feature, structure, or characteristic described in connection with the example is included in at least that one example, but not necessarily in other examples.
Each of the nozzles 102 may eject ink onto a media layer to create an image on a substrate in a 2D printing device, or a layer of an object in a build material in a 3D printing device (both referred to herein as the image). The media layer is referred to herein as a substrate.
The image is communicated to the printer in digital form. The image may include any combination of text, graphics and images. In certain implementations, each printhead or each ink drop generator 100 may have a controller that receives data from an image processing unit (not shown). The data received by the controller is used to control how ink is ejected from the nozzles 102 to print the image.
Any suitable form of substrate may be used, including, amongst others, single media sheets and/or continuous rolls. The substrate 104 may be formed of any suitable material such as, amongst others, plain paper, glossy paper, coated paper, transparencies, polymers, metal foils etc. In 3D printing the substrate may be a build material, such as a layer of powdered material.
As shown in
As shown in
Once the droplet 116 is ejected, and current flowing through the resistive element 112 is reduced, the bubble 114 collapses. Collapse of the bubble 114 enables the meniscus 110 to return to the same state as shown in
Reliable operation of the printer in part requires reliable operation of the ink drop generators 100. If an ink drop generator 100 were to malfunction, then ink that should be ejected from the nozzle 102 onto the substrate is not ejected, which can have a negative impact on the quality of the printed image. Failure mechanisms of an ink drop generator 100 may comprise a malfunction of the resistive element 112, a blockage ink an ink supply line from the reservoir, a blockage in the firing chamber 108, and/or a blockage in the nozzle 102.
To determine whether an ink drop generator 100 is operating correctly, it is desirable to determine whether a droplet is ejected from the nozzle 102 when the resistive element 112 is electrified. Described herein are examples of droplet detection apparatuses for a printing device.
In an example, a droplet detection apparatus comprises: a light emitter to emit light along an optical axis, the light having a spatial intensity distribution profile with a peak that is non-coincident with the optical axis; and a light detector located relative to the light emitter such that, in use, the peak of the spatial intensity distribution profile is incident on the light detector.
In another example, a droplet detection apparatus comprises: a light detector comprising a detection aperture having a central axis; and a light emitter to emit a light beam along a propagation axis such that, in use, at least a portion of the light beam is incident on the detection aperture, wherein the propagation axis of the light beam is non-coincident with the central axis of the detection aperture.
In many examples of printing device, the printing device comprises a relatively large number of nozzles 102 spanning a relatively long distance. For example, in a page wide array printer, the printer may comprise tens of thousands of nozzles 102 in a printbar. The printbar may span many tens of centimetres or in some examples more than a metre. In such printing devices, determining whether the nozzles 102 are properly ejecting ink over the whole extent of the printbar may utilize duplication of the droplet detection apparatus. This may present challenges in terms of scaling the light emitters and light detectors and may also present optical challenges. For example, providing relatively large numbers of light emitter-light detector pairs in a relatively small space, may result in interference or so-called “cross-talk” between the light emitter-light detector pairs. Examples described herein help to mitigate such challenges.
Light emitting diodes (LEDs) emitting relatively narrowly divergent beams enable closer placement of one light emitter-light detector pair to an adjacent light emitter-light detector pair. However, when the divergence of a light beam emitted by such an LED is narrowed, the far-field properties of the beam may be different from the properties of relatively wider diverging beams.
The example shown in
As can be seen from
The light emitter 402 may have an intensity profile similar to that shown in
The light detector 404 may be, for example, a photodiode. In other examples, the light detector 404 may be any suitable device for detecting light. For example, the light detector 404 may be an active pixel sensor, a charge-coupled device or a direct-conversion radiation detector. The light detector 404 may detect light incident from a range of angles incident within an aperture of the light detector 404. The aperture may be a physical window to occlude light outside of an area of detection or may be an optical numerical aperture defined by the surface of the detector 404. The aperture has a central axis 408 about which the detector 404 can detect light within a range of angles.
The light emitter 402 may emit a continuous (i.e. not pulsed) beam 406 of light that is detectable by the light detector 404.
In some examples the light emitter 402 may emit a pulsed beam 406 of light having a pulse frequency that is sufficiently high to reliably detect droplets. For example, the pulse frequency may be greater than 20 kHz.
In some examples, the light emitter 402 may emit a pulsed beam 406 of light extending over a period in which a droplet is ejected. For example, the duration of the pulse may be greater than 25 μs.
The beam 406 may, for example, have a substantially annular cross-sectional profile as described above with reference to
The light detector 404 may generate a signal representative of an intensity of light incident on an aperture of the light detector 404. For example, the light detector 404 may generate a voltage signal, a current signal, or a combination of voltage and current signals representative of the intensity of incident light.
As shown in
In the example shown in
In the example shown in
However, in the example shown in
In the examples described above with reference to
When the beam of light emitted by the light emitter 404 is interrupted, the signal generated by the light detector 404 may vary. In turn, the detection circuitry may detect a variation in the signal generated by the light detector 404. For example, the detection circuitry may detect a reduction in a value of the signal generated by the light detector 404 when the beam of light is interrupted. Thus, when the beam 406 of light emitted by the light emitter 402 is interrupted by a droplet of fluid, this may be detected by detecting a variation in the signal generated by the light detector 404.
The position of the light emitter 402 and the light detector 404 may be known to the droplet detection apparatus 400, 410. Similarly, the position of a printhead, ink drop generator 100, or nozzle 102 in relation to the light emitter 402 and/or the light detector 404 may be known to the droplet detection apparatus 400, 410. By knowing the position of a printhead, ink drop generator 100, or nozzle 102 in relation to the light emitter 402 and/or the light detector 404, the droplet detection apparatus 400, 410 can determine whether a droplet is dispensed from a given printhead, ink drop generator 100, or nozzle 102. In this way, the droplet detection apparatus 400, 410 can determine whether a given printhead, ink drop generator 100, or nozzle 102 is functioning correctly.
For example, the droplet detection apparatus 400, 410 may perform a test operation in which a known inkjet droplet generator 100 may be operated to dispense a printing fluid along a droplet trajectory 412 (indicated by a dashed arrow in
At block 502, the light emitter 402 may emit light along an optical axis corresponding to the propagation axis 304. The light may intersect the droplet trajectory 412. The light may have a spatial intensity distribution profile with a peak intensity that is non-coincident with the optical axis.
At block 504, the light detector 404 may generate a signal indicative of light received at the light detector 404. The light detector 404 may be located relative to the light emitter 402 such that, in use, the peak of the spatial intensity distribution profile is incident on the light detector 404.
At block 506, the droplet detection apparatus 400, 410 may determine whether a droplet is present along the droplet trajectory 412 on the basis of the signal generated by the light detector 404. For example, the droplet detection apparatus 400, 410 may monitor the signal generated by the light detector 404 for a variation indicative of the presence of a droplet, which in turn is indicates that a droplet has been ejected from the nozzle 102 of an operated ink drop generator 100.
The droplet detection apparatus 400, 410 may operate different ink drop generators 100 in a sequence, noting whether the presence of a droplet is detected as each ink drop generator 100 is operated. The ink drop generators 100 may be operated sequentially, for example. In some examples, the ink drop generators 100 may be operated in a pseudo-random order in order to minimize fluidic interference between droplets.
Locating the light detector 404 with respect to the light emitter 402 such that, in use, light emitted by the light emitter 402 has a spatial intensity distribution profile with a peak that is non-coincident with the propagation axis 304, and such that the peak of the spatial intensity distribution profile of light emitted by the light emitter 402 is incident on the light detector 404, enables plural droplet detection apparatuses 400, 410, as described with reference to
As shown in
In this way a droplet on a first droplet trajectory 412a interrupts a first beam 406a emitted by the first light emitter 402a, such that it detected on the basis of a signal generated by the first light detector 404a, and a droplet on a second droplet trajectory 412b interrupts a second beam 406b emitted by the second light emitter 402b, such that it detected on the basis of a signal generated by the second light detector 404b.
Although the detection apparatus 600 shown in
It will be understood that although the central axes 408a, 408b of the light apertures of the light detectors 404a, 404b are shown in
The detection apparatuses disclosed herein may be used in a printing device such as a thermal inkjet printer, a piezo inkjet printer, or any other suitable printing device. The printing device may be a 2D printer for printing an image or a 3D printer for printing an object.
In use with a printing device, the light detectors may be located such that the plane defined by the light detectors is perpendicular with a plane defined by the ink drop generators of the printhead. Correspondingly, the light emitters may be located such that they are non-perpendicular with respect to the plane defined by the ink drop generators of the printhead.
In some examples, the light emitters may be angled away from the printhead to minimize reflection of light emitted by the light emitters by the printhead. However, it will be understood that in other examples, the light emitters may be angled away from the printhead, or may be angled in a direction perpendicular to a normal of the plane defined by the ink drop generators of the printhead.
In some examples, angling of the light emitters such that they are non-perpendicular with respect to the plane defined by the ink drop generators of the printhead may be achieved by mounting the light emitters in an angled mount or locator.
Although, as shown in
Any feature described in relation to any one example may be used alone, or in combination with other features described, and may also be used in combination with a feature or features of any other of the examples, or any combination of any other of the examples. Furthermore, equivalents and modifications not described above may also be employed.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/080364 | 12/17/2015 | WO | 00 |