This application claims priority from Japanese Patent Application No. 2007-251305 filed Sep. 27, 2007. The entire content of the priority application is incorporated herein by reference.
The invention relates to a droplet ejecting device that ejects liquid droplets.
An inkjet recording device serving as a droplet ejecting device that ejects droplets is conventionally known. The inkjet recording device records texts and images on a recording medium such as recording paper or the like, by ejecting ink droplets through nozzles. An inkjet recording device generally includes an inkjet head (droplet ejecting head) having a plurality of nozzles and an ink cartridge storing ink and connected to the inkjet head. When ink droplets are ejected from the plurality of nozzles of the inkjet head and ink is consumed, additional ink is supplied from the ink cartridge to the inkjet head.
In such an inkjet recording device, air sometimes enters a channel that connects the inkjet head with the ink cartridge, from the outside, during an exchange operation of the ink cartridge and the like. If such air (air bubble) flows together with ink to reach the inkjet head, poor ink ejection at the nozzles may be caused. Accordingly, an inkjet recording device has been proposed in which ink is sucked through nozzles of an inkjet head with a suction pump or the like, thereby discharging an air bubble existing within an ink supply channel at the upstream side of the inkjet head through the nozzles together with ink.
For example, Japanese Patent Application Publication No. 2005-199600 discloses an inkjet recording device which has a damper chamber (liquid storing chamber) between an inkjet head and an ink cartridge for absorbing pressure fluctuations of ink. When a certain amount of an air bubble is stored in the damper chamber, a suction pump sucks ink through nozzles to discharge, together with ink, the air bubble in the damper chamber located at the upstream side of the inkjet head through the nozzles.
However, in the above-described inkjet recording device disclosed in Japanese Patent Application Publication No. 2005-199600, a strong suction force is required in order to discharge the air bubble in the damper chamber located at the upstream side of the inkjet head through the nozzles of the inkjet head, which considerably increases the amount of ink discharged through the nozzles together with the air bubble. In order to prevent such a problem, it is conceivable to adopt a channel structure where an air bubble in the damper chamber can easily move to the inkjet head. With this channel structure, however, an air bubble in the damper chamber moves to the inkjet head with a flow of ink flowing from the damper chamber to the inkjet head when ink is ejected through the nozzles for recording on a recording medium. Then, this air bubble stays within the inkjet head, which may cause poor ink ejection (ejection malfunction).
In view of the foregoing, it is an object of the invention to provide a droplet ejecting device having a liquid supplying channel for supplying a droplet ejecting head having nozzles with liquid, the droplet ejecting device being capable of easily discharging an air bubble in the liquid supplying channel at the upstream side of the droplet ejecting head through the nozzles.
In order to attain the above and other objects, the invention provides a droplet ejecting device. The droplet ejecting device includes a droplet ejecting head, a channel member, a cap member, and a cap drive section. The droplet ejecting head has a droplet ejecting surface formed with droplet ejecting openings that eject liquid droplets. The channel member is configured to be tilted together with the droplet ejecting head. The channel member is formed with a liquid supplying channel including a liquid storing chamber and a communication channel in communication with each other via a connection section. The liquid storing chamber is in communication with the droplet ejecting head via the communication channel. The cap member is configured to be movable between: a standby position spaced away from the droplet ejecting surface; and a capping position at which the cap member is in close contact with the droplet ejecting surface and covers the droplet ejecting openings. The cap drive section drives the cap member to move between the standby position and the capping position. When the cap drive section drives the cap member to move to the capping position, the cap member presses the droplet ejecting head, and the channel member is tilted together with the droplet ejecting head in such a manner that the connection section is located at a position higher than the liquid storing chamber when the droplet ejecting device is placed in an orientation in which the droplet ejecting device is intended to be used.
Embodiments in accordance with the invention will be described in detail with reference to the following figures wherein:
A droplet ejecting device according to an embodiment of the invention will be described while referring to
The printer 1 includes two guide frames 17a and 17b (first and second guide members) that extend in a horizontal direction (the left-right direction in
The inkjet head 3 and the four subsidiary tanks 4 (4a-4d) are mounted on the carriage 2. Nozzles 40 (see
The four subsidiary tanks 4a-4d are juxtaposed in the scanning direction. A tube joint 21 is connected to the four subsidiary tanks 4a-4d. Flexible tubes 11a-11d are connected to the tube joint 21. The four subsidiary tanks 4a-4d are connected to the respective ones of the four ink cartridges 6a-6d via the respective ones of the flexible tubes 11a-11d.
The four ink cartridges 6a-6d store ink in four colors of black, yellow, cyan, and magenta, respectively. Each of the ink cartridges 6a-6d is detachably mounted on a holder 10. Ink in four colors stored in the four ink cartridges 6a-6d is temporarily stored in the subsidiary tanks 4a-4d, respectively, and is subsequently supplied to the inkjet head 3.
Although not shown in
The maintenance mechanism 7 is located at a position within a reciprocating range of the carriage 2 in the scanning direction, the position being outside (the right side in
The cap member 13 confronts the lower surface of the inkjet head 3 (the droplet ejecting surface 3a) when the carriage 2 is moved to the maintenance position for recovering the droplet ejection performance of the inkjet head 3. Further, the cap member 13 is driven to move upward (the near side of the drawing in
The cap member 13 is connected to the suction pump 14 via a switching unit 15. When the suction pump 14 is operated in a state where the cap member 13 covers the nozzles 40 arranged on the lower surface of the inkjet head 3, ink is sucked through the nozzles 40 and discharged. With this operation, it is possible to discharge ink in the nozzles 40 with increased viscosity due to drying, and to discharge an air bubble that has entered the inkjet head 3 through the nozzles 40. In addition, the inkjet head 3 is configured to move, together with the carriage 2, in the scanning direction relative to the wiper 16, in a state where the cap member 13 is spaced away from the droplet ejecting surface 3a of the inkjet head 3 after ink is discharged by suction through the nozzles 40. With this operation, ink adhering to the droplet ejecting surface 3a of the inkjet head 3 is wiped off by the wiper 16.
In the present embodiment, as shown in
Next, the inkjet head 3 will be described.
The channel unit 22 includes a cavity plate 30, a base plate 31, a manifold plate 32, and a nozzle plate 33. The cavity plate 30, the base plate 31, and the manifold plate 32 are made of metal material such as stainless steel. The nozzle plate 33 is made of insulating material (for example, polymer synthetic resin material such as polyimide) These four plates 30 through 33 are bonded with each other in a layered state.
The cavity plate 30 is formed with the pressure chamber 34. Note that a plurality of pressure chambers 34 is arranged in the direction perpendicular to the surface of the drawing of
With this configuration, as shown in
The piezoelectric actuator 23 includes a metal-made vibration plate 50, a piezoelectric layer 51, and a plurality of individual electrodes 52. The vibration plate 50 is bonded with the upper surface of the channel unit 22 such that the vibration plate 50 covers the plurality of pressure chambers 34. The piezoelectric layer 51 is disposed on the upper surface of the vibration plate 50. The plurality of individual electrodes 52 is formed on the upper surface of the piezoelectric layer 51.
The metal-made vibration plate 50 is connected to a ground line of a head driver 53 and is always kept to a ground potential. The piezoelectric layer 51 is made of piezoelectric material including lead zirconate titanate (PZT) as the chief component, where the lead zirconate titanate is a solid solution of lead titanate and lead zirconate and is a ferroelectric substance. The piezoelectric layer 51 is arranged on the upper surface of the vibration plate 50, such that the piezoelectric layer 51 covers the plurality of pressure chambers 34. The plurality of individual electrodes 52 is arranged on the upper surface of the piezoelectric layer 51 in respective regions corresponding to the center portions of the plurality of pressure chambers 34. The head driver 53 supplies the plurality of individual electrodes 52 with either one of a ground potential and a predetermined driving potential different from the ground potential.
The operation of the piezoelectric actuator 23 during ink ejection will be described. In order to eject an ink droplet from one of the nozzles 40, the head driver 53 applies a driving potential to the individual electrode 52 corresponding to the pressure chamber 34 in communication with the nozzle 40. Then, a potential difference is generated between the individual electrode 52 to which the driving potential is applied and the vibration plate 50 kept to the ground potential, which generates an electric field through the piezoelectric layer 51 sandwiched between the individual electrode 52 and the vibration plate 50 in a direction parallel to the thickness direction. Here, if the polarization direction of the piezoelectric layer 51 is the same as the direction of the electric field, the piezoelectric layer 51 expands in the thickness direction and contracts in the surface direction. With this contraction deformation of the piezoelectric layer 51, a portion of the vibration plate 50 facing the pressure chamber 34 deforms such that the portion becomes convex toward the pressure chamber 34 side (unimorph deformation).
At this time, the volume of the pressure chamber 34 decreases. Thus, the pressure of ink in the pressure chamber 34 increases, and ink is ejected through the nozzle 40 in communication with the pressure chamber 34.
Next, supplemental descriptions will be given for the carriage 2 supporting the subsidiary tanks 4 and the inkjet head 3, prior to descriptions of the subsidiary tanks 4.
The specific configuration for implementing the tilting operation of the carriage 2 will be described. As shown in
Because the two abutting sections 56a and 56b of the carriage 2 merely abut on the two guide frames 17a and 17b, the carriage 2 is movable upward relative to the two guide frames 17a and 17b. However, engaging sections 57a and 57b are provided at the lower end sections of the two leg sections 55a and 55b, respectively. The engaging sections 57a and 57b engage the guide frames 17a and 17b when the carriage 2 moves upward and the abutting sections 56a and 56b are spaced away from the guide frames 17a and 17b, thereby restricting further upward movement of the carriage 2. That is, the carriage 2 is allowed to move upward by the lengths of the leg sections 55a and 55b.
In addition, the length of the leg section 55a located at the upstream side in the paper conveying direction (the left side in
Next, the structure of the subsidiary tank 4 (channel member) will be described. Because the structures of the four subsidiary tanks 4a-4d storing ink in the respective four colors are basically identical, one of the subsidiary tanks will be described below.
The subsidiary tank 4 is made of synthetic resin material or the like. As shown in
The ink storing chamber 60 extends horizontally in the paper conveying direction. The ink storing chamber 60 is in communication with the ink cartridge 6 (see
The communication channel 61 is formed in a part of the subsidiary tank 4 at the upstream side of the ink storing chamber 60 in the paper conveying direction (the left side in
Ink supplied from the ink cartridge 6 to the subsidiary tank 4 via the tube 11 is temporarily stored in the ink storing chamber 60, and then horizontally flows out of the outlet of the ink storing chamber 60 toward the upstream side in the paper conveying direction (toward the upper end section of the communication channel 61). Then, ink flows downward within the communication channel 61 to pass through the filter 63, and is supplied to the inkjet head 3.
As shown in
In the present embodiment, a plurality of plate-shaped flow adjusting members 64 is provided within the communication channel 61 of the subsidiary tank 4. The plurality of flow adjusting members 64 is for allowing an air bubble in the subsidiary tank 4 to easily move to the inkjet head 3 when ink is sucked through the nozzles 40 by the suction pump 14 to discharge the air bubble in the subsidiary tank 4. In addition, the plurality of flow adjusting members 64 is for adjusting a flow of ink and an air bubble so that an air bubble does not move to the inkjet head 3 when ink is ejected through the nozzles 40 for recording images and the like on the recording paper P, by narrowing part of the communication channel 61.
As shown in
In the present embodiment, among the plurality of flow adjusting members 64 juxtaposed in the up-down direction (vertical direction), the flow adjusting member 64 located at the lowest position is disposed in contact with the bottom surface of the communication channel 61. Because the surface tension acts between the flow adjusting member 64 located at the lowest position and the bottom surface of the communication channel 61, the plurality of flow adjusting members 64 does not move within the communication channel 61 due to ink flow that flows downward in the communication channel 61.
However, the configuration for restricting displacement (movement) of the flow adjusting members 64 in the up-down direction is not limited to the above-described configuration. For example, the displacement of the flow adjusting members 64 in the up-down direction may be restricted by putting the flow adjusting members 64 into the communication channel 61 by press fit in a slightly compressed state, where the flow adjusting members 64 are made of relatively soft material such as synthetic resin material. Alternatively, each of the flow adjusting members 64 may be provided with an engaging section that engages the inner surface of the communication channel 61, and the displacement of the flow adjusting members 64 in the up-down direction may be restricted by this engagement. Note that if the displacement of the flow adjusting members 64 in the up-down direction is restricted with the above-described modified examples, it is not necessary that the flow adjusting members 64 be in contact with the bottom surface of the communication channel 61, and the plurality of flow adjusting members 64 may be arranged at a position partway in the communication channel 61.
As shown in
In addition, as shown in
Next, the cap member 13 and the cap drive mechanism 20 will be described. The cap member 13 is attached to the droplet ejecting surface 3a of the inkjet head 3 when ink is discharged by suction through the nozzles 40. The cap drive mechanism 20 drives the cap member 13 to move up and down.
The cap drive mechanism 20 drives the cap member 13 to move between the standby position and the capping position. The cap drive mechanism 20 includes a cap holder 72, a lift holder 73, a spring 74, a cap drive motor 75, and the like. The cap holder 72 holds the cap member 13. The lift holder 73 is provided at the lower side of the cap holder 72 to be movable in the up-down direction. The spring 74 is disposed within the lift holder 73 for urging the cap holder 72 upward. The cap drive motor 75 drives the lift holder 73 to move upward.
The cap holder 72 has two leg sections 72a that protrude downward. Further, engaging sections 72b capable of engaging the lift holder 73 are provided at the lower end sections of the respective ones of the two leg sections 72a. Thus, as shown in
As shown in
Here, as shown in
As described above with reference to
At this time, in the ink supplying channel 62 in the subsidiary tank 4, the connection section 61b between the ink storing chamber 60 and the communication channel 61 (the upper end section of the communication channel 61) is located at a position higher than the ink storing chamber 60 at the upstream side in the ink flowing direction (see
In the present embodiment, as shown in
Next, a control unit 8 performing the overall controls of the printer 1 will be described.
The control unit 8 includes a recording control section 81 and a suction control section 82. The recording control section 81 controls the carriage drive motor 19 that drives the carriage 2 to move reciprocatingly, the head driver 53 of the inkjet head 3, a conveying motor 83 of the paper conveying mechanism (not shown) that conveys the recording paper P, and the like based on data inputted via an input device 80 such as a personal computer, thereby performing recording of images and the like on the recording paper P. The suction control section 82 controls various sections of the maintenance mechanism 7 including the cap drive motor 75 that drives the cap member 13 to move up and down, the suction pump 14, and the like to perform an ink suction operation for sucking ink through the plurality of nozzles 40 of the inkjet head 3.
Next, the behavior of an air bubble in the subsidiary tank 4 during the ink suction operation will be described while referring to
1) Droplet Ejection for Printing Images
As shown in
As shown in
Further, the plurality of flow adjusting members 64 is arranged within the communication channel 61. Hence, even if the air bubble 86 has moved to the communication channel 61 from the ink storing chamber 60 regardless of the sloped surface 61a, the plurality of flow adjusting members 64 restricts the movement of the air bubble 86 to the inkjet head 3. That is, the air bubble 86 gets on the flow of the ink I in the communication channel 61 and enters slightly in the low-resistance channel 70 formed in the flow adjusting members 64 having a low flow resistance. However, because the amount of the ink I discharged through the nozzles 40 is small, the flow velocity of ink within the communication channel 61 is relatively slow. Further, because the plurality of flow adjusting members 64 is juxtaposed in the direction in which ink flows (the channel extending direction of the communication channel 61), the air bubble 86 is caught by the flow adjusting members 64 and does not reach the inkjet head 3. Additionally, the flow adjusting members 64 are formed with the high-resistance channel 71 in communication with the low-resistance channel 70, as well as the low-resistance channel 70. Hence, even if the low-resistance channel 70 is almost blocked by the air bubble 86, the ink I in the ink storing chamber 60 flows to the inkjet head 3 via the high-resistance channel 71 of the flow adjusting members 64. Thus, ink supply to the inkjet head 3 is not blocked by the air bubble 86.
2) Ink Suction by Suction Pump 14
The droplet ejection performance of the inkjet head 3 decreases when ink with high viscosity (ink with increased viscosity) exists in the nozzles 40 due to drying or when the air bubble 86 in the subsidiary tank 4 has entered the inkjet head 3. In these cases, the suction control section 82 controls the cap drive motor 75 to put the cap member 13 on the droplet ejecting surface 3a of the inkjet head 3, and subsequently controls the suction pump 14 to suck ink through the nozzles 40, thereby discharging ink with increased viscosity in the nozzles 40 and the air bubble 86 in the subsidiary tank 4 to inside the cap member 13.
More specifically, first, the carriage drive motor 19 drives the carriage 2 to move to the maintenance position, such that the inkjet head 3 is in confrontation with the cap member 13. In this state, the suction control section 82 controls the cap drive motor 75 to drive the cap member 13 to move upward from the standby position. Then, as shown in
At this time, as shown in
In this state, the suction control section 82 controls the suction pump 14 to suck air through a hermetically-closed space formed by the droplet ejecting surface 3a and the cap member 13, thereby forcibly discharging ink through the nozzles 40. Here, the air bubble 86 is already moved to the upper end section of the communication channel 61 from the ink storing chamber 60. Thus, as shown in
Additionally, the plurality of flow adjusting members 64 arranged within the communication channel 61 facilitates the movement of the air bubble 86 to the inkjet head 3. That is, during the ink suction by the suction pump 14, because a larger amount of ink I than in the droplet ejecting operation of
At this time, because the ink flow velocity increases in the communication channel 61 as compared with the droplet ejection shown in
As described above with reference to
In the above description, the ink suction operation by the suction pump 14 has been described with a focus on discharging the air bubble 86 in the subsidiary tank 4 located at the upstream side of the inkjet head 3 in the ink flowing direction. As mentioned above, however, the ink suction operation by the suction pump 14 could be performed with the main purpose of discharging ink with increased viscosity in the inkjet head 3 (especially, within the nozzles 40). In this case, it is not preferable that the air bubble 86 in the subsidiary tank 4 move to the inkjet head 3 due to a large amount of ink discharged through the nozzles 40 by suction. This is because the air bubble 86 enters the ink channel of the inkjet head 3, which decreases the droplet ejection performance.
Hence, in the present embodiment, by changing the ink suction amount of the suction pump 14, the suction control section 82 controls the suction pump 14 to selectively executes either one of: a first suction mode for discharging ink with increased viscosity and for sucking a small amount of ink; and a second suction mode for discharging the air bubble 86 in the subsidiary tank 4 and for sucking a large amount of ink.
If droplets are not ejected through the nozzles 40 for a predetermined time period, the suction control section 82 selects the first suction mode in which the suction amount is small, and controls the suction pump 14 to perform suction for a relatively small amount (short period). At this time, the air bubble 86 in the subsidiary tank 4 moves downward within the communication channel 61 to some extent. However, because the ink suction amount through the nozzles 40 is small, the air bubble 86 does not reach the inkjet head 3 and returns upward when the suction by the suction pump 14 ends. In other words, the air bubble 86 is not sent to the inkjet head 3 when the first suction mode is selected. To put it another way, the ink suction amount in the first suction mode can be set to the ink suction amount with which the air bubble 86 does not reach the inkjet head 3, taking the volume of the communication channel 61 and the like into consideration.
On the other hand, if the suction control section 82 determines that the air bubble 86 stays within the ink supplying channel 62 of the subsidiary tank 4, the suction control section 82 selects the second suction mode in which the ink suction amount is large, and controls the suction pump 14 to perform suction for a larger amount (longer suction period) than the above-described first suction mode. The suction control section 82 determines that the air bubble 86 stays within the ink supplying channel 62 if an exchange of the ink cartridge 6 is detected by the cartridge detecting sensor 95 (see
In this way, if the ink suction amount by the suction pump 14 is small, the air bubble 86 existing in the ink supplying channel 62 at the upstream side of the inkjet head 3 does not reach the inkjet head 3. Using this, two suction modes with different purposes can be switched easily by changing the suction amount of the suction pump 14, the two suction modes being for discharging ink with increased viscosity within the nozzles 40 and for discharging the air bubble 86 in the subsidiary tank 4.
According to the printer 1 of the present embodiment, the following effects can be obtained. When the cap member 13 is moved from the standby position to the capping position, the cap member 13 presses the droplet ejecting surface 3a of the inkjet head 3 upward, thereby tilting the inkjet head 3 and the subsidiary tanks 4 integrally. At this time, the subsidiary tank 4 is tilted in such a manner that the connection section 61b between the ink storing chamber 60 and the communication channel 61 is located at a position higher than the ink storing chamber 60 located at the upstream side of the connection section 61b in the ink flowing direction. Hence, the air bubble 86 staying at the upper section of the ink storing chamber 60 moves to the connection section 61b between the ink storing chamber 60 and the communication channel 61, the connection section 61b being located at the downstream side of the ink storing chamber 60 in the ink flowing direction. Thus, the air bubble 86 easily moves to the inkjet head 3 when ink is sucked through the nozzles 40 of the inkjet head 3 which are in communication with the communication channel 61. That is, the air bubble 86 can be easily discharged through the nozzles 40, and the amount of ink discharged at that time can be reduced.
Further, the air bubble 86 can be moved to the downstream side in the ink flowing direction by tilting the subsidiary tank 4 in conjunction with the capping operation of the cap member 13, which is executed immediately before ink is sucked through the nozzles 40 by the suction pump 14. Hence, no special configuration for tilting the subsidiary tank 4 is necessary.
The ceiling surface 61a of the connection section 61b between the ink storing chamber 60 and the communication channel 61 is sloped upward toward the ink storing chamber 60 side, in a state where the cap member 13 is at the standby position and where the inkjet head 3 and the subsidiary tank 4 are not tilted by the cap member 13 (a state where the carriage 2 is in the horizontal orientation) Hence, in this state, the air bubble 86 in the ink storing chamber 60 does not move easily to the communication channel 61 side. Accordingly, when droplets are ejected through the nozzles 40 for printing images and the like, the air bubble 86 in the ink storing chamber 60 is prevented from moving toward the downstream side in the ink flowing direction with the flow of ink I that flows from the ink storing chamber 60 to the inkjet head 3 via the communication channel 61.
While the invention has been described in detail with reference to the above aspects thereof, it would be apparent to those skilled in the art that various changes and modifications may be made therein without departing from the scope of the claims. Here, like parts and components are designated by the same reference numerals to avoid duplicating description.
[1] The configuration for tilting the carriage 2 supporting the inkjet head 3 and the subsidiary tanks 4 is not limited to the configuration in the above-described embodiment. For example, instead of the two guide frames 17a and 17b in the above-described embodiment, a shaft extending in the horizontal direction may be provided. A carriage is supported on the shaft slidably movably in the scanning direction. The carriage is also rotatable about the shaft. The carriage is configured to be tilted from the horizontal orientation by rotating about the shaft, when the droplet ejecting surface 3a of the inkjet head 3 is pressed upward by the cap member 13 that is moving upward.
[2] The shape of a flow adjusting member (the shape, the location, and the like of a through-hole forming a low-resistance channel and a high-resistance channel) provided in the communication channel 61 is not limited to the shape in the above-described embodiment (see
For example, in a region within the communication channel 61 that is away from the connection section 61b between the communication channel 61 and the ink storing chamber 60, the ink flow velocity becomes the largest at the center section (in the upper-lower direction in
Although the triangular hole 65 serving as the low-resistance channel 70 has a triangular shape in the above-described embodiment, the through-hole 65A serving as the low-resistance channel 70A has a circular shape as shown in
Further, in the above-described embodiment, a single number of the high-resistance channel 71 is formed in each of the flow adjusting members 64. In the present modification, however, two high-resistance channels 71A are formed in each of the flow adjusting members 64A as shown in
In the above-described embodiment and modifications, the invention is applied to an inkjet-type printer which records images and the like by ejecting ink droplets on recording paper. However, the application of the invention is not limited to such a printer. That is, the invention can be applied to various droplet ejecting devices that eject various kinds of liquid on an object, depending on the usage.
Number | Date | Country | Kind |
---|---|---|---|
2007251305 | Sep 2007 | JP | national |