This application claims priority from Japanese Patent Application No. 2007-306705 filed Nov. 28, 2007. The entire content of the priority application is incorporated herein by reference.
The invention relates to a droplet ejecting device that ejects droplets from nozzles.
Conventionally, an inkjet printer serving as a droplet ejecting device is provided with an inkjet head having nozzles that eject ink droplets onto printing paper for printing an image and the like onto the printing paper. In such an inkjet printer, there arises a problem that ink cannot be ejected from nozzles due to the causes of an increase in viscosity of ink within an ink channel of the inkjet head (hereinafter also referred to as “increased viscosity”), entering of an air bubble into the ink channel, and the like. Hence, a common inkjet printer is configured to perform various maintenance processes, such as a suction purge operation of sucking ink through nozzles and a flushing operation of ejecting ink droplets continuously a plurality of times from the nozzles toward a waste ink receiver prior to or during printing, thereby discharging ink with increased viscosity and an air bubble, together with ink, for recovering the droplet ejection performance of the nozzles.
During the above-described maintenance processes, ink is discharged through the nozzles together with viscosity-increased ink and an air bubble. Thus, if the maintenance processes are performed frequently, the amount of ink discharged vainly increases. Hence, in order to suppress the ink consumption amount during maintenance, a proposed inkjet printer is configured to detect whether nozzles are in a non-ejection state (ejection malfunction) and then to perform a maintenance process only when the non-ejection state is detected in the nozzles.
An inkjet printer disclosed in Japanese Patent Application Publication No. 2006-76311 includes: a serial-type inkjet head (print head) that ejects droplets onto printing paper while moving in a predetermined scanning direction in a reciprocating manner; and a missing-dot detecting section provided at a location outside of a printing region with respect to the scanning direction, the printing region being in confrontation with the printing paper. The missing-dot detecting section includes a light emitting section that emits laser light and a light receiving section that receives the laser light emitted from the light emitting section.
When detecting whether one or more nozzles are in a non-ejection state, a control section of the inkjet printer first controls the inkjet head to move to a region where the light emitting section and the light receiving section of the missing-dot detecting section are arranged, the region being outside of the printing region. Then, the control section controls the nozzles to eject ink droplets in a state where the light emitting section emits laser light toward the light receiving section. At this time, when a droplet is ejected from a nozzle, the ejected droplet blocks part of the laser light. In contrast, when no droplet is ejected from the nozzle, the laser light is not blocked. Accordingly, it is possible to detect whether a droplet is ejected from the nozzle based on a drop amount of light intensity of the laser light received by the light receiving section.
In the inkjet printer disclosed in Japanese Patent Application Publication No. 2006-76311, the missing-dot detecting section that detects whether one or more nozzles of the inkjet head are in a non-ejection state is disposed in a region outside of the printing region with respect to the scanning direction, the missing-dot detecting section being separate from the inkjet head. Hence, an additional space for disposing the missing-dot detecting section needs to be secured within the main body of the printer, which causes a problem that the size of the printer increases.
Additionally, unless the inkjet head is moved to the location of the missing-dot detecting section disposed outside of the printing region, a non-ejection state of the nozzles cannot be detected. Thus, the missing-dot detecting section cannot detect a non-ejection state of the nozzles concurrently with a normal printing operation that is performed while the inkjet head moves within the printing region in a reciprocating manner, or a flushing operation that is performed toward the waste ink receiver disposed at a location separate from the missing-dot detecting section. Hence, there is possibility that detection of a non-ejection state of the nozzles is delayed, and that printing operations continue to be performed for a while in a state where a non-ejection state exists.
In view of the foregoing, it is an object of the invention to provide a droplet ejecting device that is capable of detecting whether an ejection state of droplets is normal, without increasing the size of the device. Another object of the invention to provide a droplet ejecting device that is capable of detecting abnormal ejection at an early time.
In order to attain the above and other objects, the invention provides a droplet ejecting device. The droplet ejecting device includes a channel unit and an energy applying section. The channel unit is formed with at least one nozzle that ejects a liquid droplet and with at least one liquid channel in communication with the at least one nozzle. The at least one liquid channel has a channel area larger than a channel area of the at least one nozzle. The channel unit includes a nozzle plate, a channel structure member, a first electrode, and a second electrode. The nozzle plate is formed with the at least one nozzle and includes a piezoelectric section. The nozzle plate has a first surface and a second surface opposite the first surface. The channel structure member is fixed to the nozzle plate and is formed with the at least one liquid channel. The first electrode is provided on the first surface. At least part of the first electrode is arranged in a nozzle peripheral region of the at least one nozzle. The second electrode is provided on the second surface. At least part of the second electrode is arranged in the nozzle peripheral region of the at least one nozzle. The energy applying section applies ejection energy to liquid in the at least one liquid channel.
Embodiments in accordance with the invention will be described in detail with reference to the following figures wherein:
A droplet ejecting device according to an embodiment of the invention will be described while referring to
In the following description, the expressions “upper” and “lower” are used to define the various parts when the droplet ejecting device is disposed in an orientation in which it is intended to be used.
The printer 1 includes two guide frames 17a and 17b that extend in a horizontal direction (the left-right direction in
The inkjet head 3 and the four subsidiary tanks 4 (4a-4d) are mounted on the carriage 2. Nozzles 40 (see
The four subsidiary tanks 4a-4d are juxtaposed in the scanning direction. The four subsidiary tanks 4a-4d are connected to respective ones of four ink supply ports 38 (see
The four ink cartridges 6a-6d store ink in four colors of black, yellow, cyan, and magenta, respectively. Each of the ink cartridges 6a-6d is detachably mounted on a holder 10. Ink in four colors stored in the four ink cartridges 6a-6d is temporarily stored in the subsidiary tanks 4a-4d, respectively, and is subsequently supplied to the inkjet head 3.
The maintenance unit 7 is located at a position within a reciprocating range of the carriage 2 in the scanning direction, the position being outside (the right side in
As shown in
During the suction purge operation, the cap member 13, the suction pump 14, the wiper 16, and the like are used. In order to perform the suction purge operation, first the carriage drive motor 19 drives the carriage 2 to move to a position at which the nozzles 40 of the inkjet head 3 are in confrontation with the cap member 13. In that state, the cap member 13 is driven upward (the near side of the drawing sheet of
The cap member 13 is connected to the suction pump 14 via a switching unit 15. When the suction pump 14 is operated in a state where the cap member 13 covers the nozzles 40 arranged on the lower surface of the inkjet head 3, ink is sucked through the nozzles 40 and discharged. In addition, the inkjet head 3 is configured to move, together with the carriage 2, in the scanning direction relative to the wiper 16, in a state where the cap member 13 is spaced away from the lower surface of the inkjet head 3 after ink is discharged by suction through the nozzles 40. With this operation, ink adhering to the lower surface of the inkjet head 3 is wiped off by the wiper 16.
In the present embodiment, as shown in
On the other hand, in order to perform the flushing operation, the carriage drive motor 19 drives the carriage 2 to move to a position at which the plurality of nozzles 40 of the inkjet head 3 is in confrontation with the waste ink receiver 12. The waste ink receiver 12 is provided with an absorbing member such as a sponge. The waste ink receiver 12 is configured to receive ink droplets that are ejected through the nozzles 40 during the flushing operation and to hold the ink by the absorbing member.
Next, the inkjet head 3 will be described in greater detail.
As shown in
The channel unit 22 includes a cavity plate 30, a base plate 31, a manifold plate 32, and a nozzle plate 33. The cavity plate 30, the base plate 31, and the manifold plate 32 are made of metal material such as stainless steel. The nozzle plate 33 is made of piezoelectric material in the present embodiment. These four plates 30 through 33 are bonded with each other in a layered state.
The nozzle plate 33 is formed with a plurality of nozzles 40 which penetrates the nozzle plate 33. The plurality of nozzles 40 is arranged in the paper conveying direction (the up-down direction in
As shown in
The manifold plate 32 is formed with four manifold channels 37 in one-to-one correspondence with the four nozzle arrays 41. As shown in
As shown in
In the present embodiment, the ink channel including the ink supply port 38 (see
The piezoelectric actuator 23 includes a vibration plate 50, a piezoelectric layer 51, and a plurality of individual electrodes 52. The piezoelectric layer 51 is made of electrically-conductive material such as metal material. The piezoelectric layer 51 is bonded with the upper surface of the cavity plate 30 so as to cover the plurality of pressure chambers 34. The vibration plate 50 having electrical conductivity also functions as a common electrode for generating electric field in a part of the piezoelectric layer 51 sandwiched between the vibration plate 50 and the plurality of individual electrodes 52, as will be described later. The vibration plate 50 is connected to a ground line of a head driver 54 (see
The piezoelectric layer 51 is made of piezoelectric material including lead zirconate titanate as the chief component, where the lead zirconate titanate is a mixed crystal of lead titanate and lead zirconate and is a ferroelectric substance. The piezoelectric layer 51 is arranged continually on the upper surface of the vibration plate 50, such that the piezoelectric layer 51 covers the plurality of pressure chambers 34. The piezoelectric layer 51 is polarized in its thickness direction in advance.
The plurality of individual electrodes 52 is provided on the upper surface of the piezoelectric layer 51 in one-to-one correspondence with the plurality of pressure chambers 34. In a plan view (see
The operation of the piezoelectric actuator 23 having the above-described configuration will be described. When pressure is not applied to ink (i.e., when ink droplets are not ejected through the nozzles 40), the plurality of individual electrodes 52 is kept to a ground potential by the head driver 54. In that state, when the head driver 54 applies the predetermined driving potential to one of the plurality of individual electrodes 52, a potential difference is generated between the individual electrode 52 applied with the driving potential and the vibration plate 50 (the common electrode) kept to the ground potential, which generates electric field in the thickness direction in a part of the piezoelectric layer 51 sandwiched between the individual electrode 52 and the vibration plate 50. Here, if the polarization direction of the piezoelectric layer 51 is the same as the direction of the electric field, the piezoelectric layer 51 expands in the thickness direction and contracts in the surface direction. With this contraction deformation of the piezoelectric layer 51, a portion of the vibration plate 50 facing the pressure chamber 34 deforms such that the portion becomes convex toward the pressure chamber 34 side (unimorph deformation). At this time, the volume of the pressure chamber 34 decreases. Thus, the pressure of ink in the pressure chamber 34 increases, and an ink droplet is ejected through the nozzle 40 in communication with the pressure chamber 34.
As described above, as shown in
If an increase in viscosity of ink due to drying, entering of an air bubble or dusts, or the like is generated within the nozzles 40 or the upstream ink channel of the channel unit 22, a droplet cannot be ejected through the nozzle 40, or the ejection direction becomes slanted from the normal direction (downward in the vertical direction in the present embodiment).
Thus, the inkjet head 3 of the present embodiment includes the piezoelectric section 60 that is operated during droplet ejection, in order to detect whether an ejection state of droplets through the nozzle 40 is normal and to adjust the ejection direction of droplets. Hereinafter, the specific configuration of the piezoelectric section 60 will be described in detail with reference to
First, the nozzle plate 33 formed with the nozzles 40 is made of a piezoelectric polymer film including a ferroelectric polymer, such as a polyvinylidene fluoride (PVDF) film. As described above, the nozzle plate 33 is bonded with the lower surface of the manifold plate 32 formed with the through hole 39 constituting the ink channel upstream of the nozzle 40, allowing the nozzle 40 to be in communication with the lower end of the through hole 39. Here, as shown in
In addition, as shown in
In addition, as shown in
On the other hand, a ring-shaped (or disk shape with a center hole) second electrode 62 is provided on the upper surface of the nozzle plate 33 in the peripheral part of the nozzle 40. The second electrode 62 is in confrontation with all of the three first electrodes 61. In the present embodiment, as shown in
Coating layers 63 and 64 made of insulating material are formed on the both surfaces of the nozzle plate 33, so as to completely cover the first electrodes 61 and the second electrode 62 arranged at the periphery of each nozzle 40. Because part of droplets ejected through the nozzle 40 tends to adhere to the coating layer 63 covering the lower surface of the nozzle plate 33, the coating layer 63 is preferably formed of liquid repellent material such as fluorine resin in order to prevent adhering droplets from staying around the nozzle 40.
As shown in the block diagram of
When the piezoelectric actuator 23 applies pressure (ejection energy) to ink within the pressure chamber 34 in order to eject a droplet through the nozzle 40, the pressure of ink causes the nozzle peripheral region PR of the nozzle plate 33 to be deformed, the nozzle peripheral region PR being not bonded with the manifold plate 32. The degree of this deformation differs depending on whether a droplet is actually ejected through the nozzle 40. In addition, in a case where a droplet is actually ejected, the degree of the deformation differs depending on the ejection direction. Accordingly, the electromotive-force detecting circuit 65 can detect the potential differences (electromotive force) between each of the three first electrodes 61 and the second electrode 62 in response to deformation modes of the nozzle plate 33, and determination can be made whether the ejection state of the nozzle 40 is normal based on the detected potential differences. The determination of the ejection state based on output signals from the piezoelectric section 60 will be described later in greater detail.
In contrast to the above-described detection of the ejection state, the driving circuit 66 (electric-potential applying section) can apply electric potentials individually to the three first electrodes 61, so that potential differences are generated between each of the three first electrodes 61 and the second electrode 62, thereby enabling the nozzle plate 33 to deform individually in the three regions in which the respective ones of the three first electrodes 61 are arranged. Accordingly, when the ejection direction of a nozzle 40 is slanted relative to the vertical direction which is the normal ejection direction, the ejection direction of the nozzle 40 can be adjusted by locally deforming a part of the nozzle plate 33. The adjustment of the ejection direction utilizing the piezoelectric section 60 will also be described later in greater detail.
Next, the electrical configuration of the printer 1 will be described with reference to the block diagram in
The control unit 8 shown in
As shown in
The print control section 70 controls each of the carriage drive motor 19 that drives the carriage 2 in a reciprocating motion, the head driver 54 of the inkjet head 3, a conveying motor 25 included in a paper conveying mechanism (not shown) that conveys printing paper P, and the like, based on data inputted from an input device 80 such as a personal computer, thereby printing an image and the like on the printing paper P.
The maintenance control section 71 (recovery control section) includes a flushing control section 74 and a purge control section 75. The flushing control section 74 controls the head driver 54 of the inkjet head 3 to drive the piezoelectric actuator 23 to apply pressure to ink within the pressure chamber 34, thereby performing a flushing operation during which the inkjet head 3 ejects ink droplets continuously a plurality of times from the nozzles 40. The purge control section 75 controls each section of the maintenance unit 7, such as the suction pump 14, to perform a suction purge operation during which ink is sucked and discharged through the plurality of nozzles 40 of the inkjet head 3 via the cap member 13. In the present embodiment, the maintenance unit 7 including the suction pump 14 and the like, the piezoelectric actuator 23 that applies pressure to ink when flushing is performed, and the head driver 54 that drives the piezoelectric actuator 23 serve as the recovering section that discharges ink through the nozzles 40 to recover the ejection performance.
<Determination of Ejection State>
Next, the ejection-state determining section 72 will be described in detail. At timing when a nozzle 40 ejects a droplet, the ejection-state determining section 72 determines whether the ejection state of a droplet of the nozzle 40 is normal, based on the potential differences between each of the three first electrodes 61 and the second electrode 62 of the piezoelectric section 60, the potential differences being detected by the electromotive-force detecting circuit 65.
Accordingly, the ejection-state determining section 72 determines whether the ejection state of the nozzle 40 is normal, based on the potential differences between each of the three first electrodes 61 and the second electrode 62 as described below, the potential differences being detected by the electromotive-force detecting circuit 65.
The process for determining the ejection state shown in
First, in S10 the ejection-state determining section 72 determines whether the print control section 70 of the control unit 8 has outputted a command to the piezoelectric actuator 23, the command being for ejecting a droplet from the nozzle 40 that is the subject of the ejection state determination. If the command has been outputted, the ejection-state determining section 72 determines that piezoelectric actuator 23 has applied pressure to ink within the pressure chamber 34 in communication with this nozzle 40 (that is, the pressure chamber 34 has been driven) (S10: Yes).
In S11 the ejection-state determining section 72 determines whether, for all of the three first electrodes 61, the potential difference V1 between the first electrode 61 and the second electrode 62 is greater than or equal to a predetermined value V0, the potential difference V1 being detected by the electromotive-force detecting circuit 65. If the potential differences V1 for all of the three first electrodes 61 are greater than or equal to the predetermined value V0 (S11: Yes), the ejection-state determining section 72 proceeds to S12 by determining that the nozzle plate 33 deforms greatly and thus a droplet has been ejected (the state shown in
In S12 the ejection-state determining section 72 determines whether the difference among the potential differences V1 between the three first electrodes 61 and the second electrode 62 is less than a predetermined value ΔV (S12). In other words, the ejection-state determining section 72 determines whether the difference between the largest potential difference V1 and the smallest potential difference V1 is less than the predetermined value ΔV. If the difference among the potential differences V1 is less than the predetermined value ΔV (S12: Yes), the ejection-state determining section 72 determines that the deformation amount of the nozzle plate 33 is substantially uniform in the circumferential direction of the nozzle 40 and thus the ejection direction of a droplet is the normal direction (the state shown in
As described above, in the present embodiment, the three slits 33a are formed in the nozzle plate 33 in the regions between any two of the three first electrodes 61, the three slits 33a extending radially from the nozzle 40 (see
When the ejection state of one or more nozzles 40 has been determined to be abnormal at the completion of ejection state determination for all the nozzles 40, the maintenance control section 71 first controls the inkjet head 3 to perform a flushing operation in order to recover the ejection performance of the nozzles 40. More specifically, the flushing control section 74 controls the head driver 54 to drive the piezoelectric actuator 23 to eject ink droplets continuously a plurality of times through all the nozzles 40.
During this flushing operation, the ejection-state determining section 72 again determines whether the ejection state of a droplet is normal for all the nozzles 40, based on the potential differences between each of the three first electrodes 61 and the second electrode 62, the potential differences being detected by the electromotive-force detecting circuit 65 (see
If the ejection-state determining section 72 determines that the ejection state of at least one of the nozzles 40 is abnormal at least at the final ejection of a plurality of times of droplet ejection in the flushing operation, the maintenance control section 71 controls the maintenance unit 7 to perform a suction purge operation by determining that the abnormal ejection of the nozzles 40 has not been recovered by the flushing operation. More specifically, the purge control section 75 controls each section of the maintenance unit 7, such as the suction pump 14, to suck and discharge ink through all the nozzles 40 via the cap member 13. In contrast, if the ejection-state determining section 72 determines that the ejection state of all the nozzles 40 is normal at the final ejection of a droplet in the flushing operation, the maintenance control section 71 ends the maintenance process by determining that the abnormal ejection of the nozzles 40 has been recovered by the flushing operation.
As described above, the ejection-state determining section 72 determines the ejection state for each of all the nozzles 40. In other words, the ejection-state determining section 72 is capable of identifying the nozzle 40 in an abnormal ejection state. Hence, the flushing control section 74 can control the head driver 54 to perform flushing only for the nozzle 40 that has been determined to be in an abnormal ejection state by the ejection-state determining section 72, and not to perform flushing for the nozzle 40 that has been determined to be in a normal ejection state. Alternatively, the flushing control section 74 may control the head driver 54 to perform flushing with an increased number of flushing ejection times for the nozzle 40 that has been determined to be in an abnormal ejection state, compared with the nozzle 40 in a normal ejection state. With these controls, the amount of ink discharged during the flushing operation can be reduced.
<Change of Ejection Direction>
Next, the ejection-direction changing section 73 will be described in detail. When the ejection direction of a droplet from a nozzle 40 is slanted relative to the normal direction (downward in the vertical direction), the ejection-direction changing section 73 controls the driving circuit 66 (electric-potential applying section) to adjust the electric potential applied to each of the three first electrodes 61 so that the ejection direction of droplets becomes the normal direction, thereby changing the ejection direction.
In the present embodiment, information on whether the ejection direction of each nozzle 40 is slanted relative to the normal direction and, if slanted, in which direction and by what angle the ejection direction is slanted is detected in advance during inspection processes or the like at the manufacture stage of the printer 1. The detection results (i.e., the information on the slant direction and the slant angle) are stored in the ROM of the control unit 8. In that state, the ejection-direction changing section 73 refers to the ROM to identify the nozzle 40 having slanted ejection direction, and controls the piezoelectric section 60 to adjust the ejection direction of the nozzle 40 to become the normal direction (downward in the vertical direction).
However, the detection of the ejection direction of the nozzles 40 may be performed at the time other than the manufacture stage of the printer 1. More specifically, if during a use of the printer 1 the ejection-state determining section 72 can infer an approximate ejection direction of the nozzle 40 based on the potential differences between the each of the three first electrodes 61 and the second electrode 62, the ejection-direction changing section 73 may adjust the ejection direction of the nozzle 40 based on the inferred ejection direction.
In this case, as shown in
The ejection-direction changing section 73 also controls the driving circuit 66 to keep the first electrode 61 arranged at the right side part (in the drawing) of the nozzle plate 33 to a ground potential (shown as “GND” in
In other words, the amount of deformation at the left side part (in the drawing) of the nozzle plate 33 increases, whereas the amount of deformation at the right side part of the nozzle plate 33 does not change. Accordingly, as shown in
In contrast to the case of
In the present embodiment, the three slits 33a are formed in the nozzle plate 33 in the regions between any two of the three first electrodes 61, the three slits 33a extending radially from the nozzle 40 (see
According to the above-described printer 1, the following advantageous effects can be obtained.
The channel unit 22 of the inkjet head 3 is provided integrally with the piezoelectric section 60 including the nozzle plate 33 made of piezoelectric material and the first and second electrodes 61 and 62 arranged respectively on the both surfaces of the nozzle peripheral region PR of the nozzle plate 33. Thus, the ejection-state determining section 72 can determine whether the ejection state of droplets is normal, based on the potential difference between each of the first electrodes 61 and the second electrode 62, the potential difference being generated in response to deformation of the nozzle plate 33 when a droplet is ejected through the nozzle 40.
In addition, the configuration for detecting the ejection state of the nozzles 40 (the piezoelectric section 60) is integrated with the channel unit 22. Hence, addition of this configuration does not cause the size of the printer 1 to increase. Further, determination of the ejection state can be performed whenever droplets can be ejected through the nozzles 40. Accordingly, it is possible to detect whether the ejection state of the nozzles 40 is normal, even when normal droplet ejection is being performed through the nozzles 40 and/or when droplet ejection is being performed for recovering the ejection performance of the nozzles 40 (flushing). Thus, abnormal ejection of the nozzles 40 can be detected promptly.
In addition, if there is a nozzle 40 whose ejection direction is slanted relative to the normal direction, the ejection-direction changing section 73 can control the driving circuit 66 to adjust the electric potentials applied to the first electrodes 61 of the piezoelectric section 60, thereby changing the ejection direction of droplets.
While the invention has been described in detail with reference to the above aspects thereof, it would be apparent to those skilled in the art that various changes and modifications may be made therein without departing from the scope of the claims. Here, like parts and components are designated by the same reference numerals to avoid duplicating description.
[1] The number of the first electrodes, the number of slits formed in the nozzle plate, the shapes of the first and second electrodes, and the like are not limited to those in the above-described embodiment, and may be changed appropriately according to needs. As the number of the slits increases (that is, as the number of division of the nozzle plate increases), the ejection direction can be detected more finely and also the ejection direction can be adjusted more finely.
Further, the second electrode may be divided into a plurality of number of second electrodes which is the same number as the first electrodes, and the same number of the first and second electrodes may be arranged in confrontation with each other with the nozzle plate interposed therebetween.
[2] In the above-described embodiment, the inkjet head 3 that ejects droplets is a serial-type inkjet head mounted on the carriage that moves in a direction in a reciprocating manner. However, the invention can also be applied to a printer including a fixed line-type inkjet head having one or more nozzle arrays extending in the width direction of printing paper.
With a serial-type inkjet head, even when abnormal ejection occurs at part of the nozzles, the nozzles in a abnormal ejection state can be covered (compensated) to some extent by the other nozzles in a normal ejection state, by adjusting the scanning speed of the carriage, adjusting the ejection timing of the nozzles in a normal ejection state, or the like. However, because the fixed line-type inkjet head does not move, it is impossible to perform the above-described compensation by the nozzles in a normal ejection state. Accordingly, it is especially effective to apply the configuration of the invention to the fixed line-type inkjet head because nozzles in an abnormal ejection state can be detected promptly and because the ejection direction can be adjusted.
[3] In the above-described embodiment, the piezoelectric section 60 provided integrally to the inkjet head 3 is used both for detection of the ejection state and for adjustments of the ejection direction. However, the piezoelectric section may be used only for detection of the ejection state.
If the piezoelectric section is used only for detection of the ejection state, it is not necessary to independently deform a plurality of parts of the nozzle peripheral region PR of the nozzle plate 33. Hence, for example, as shown in
[4] In the above-described embodiment, the nozzle plate 33 itself is made of piezoelectric material. However, a piezoelectric element may be attached to the nozzle plate made of non-piezoelectric material.
[5] In the above-described embodiment, as shown in
[6] According to the above-described embodiment, in S11 in the flowchart of
However, in the step corresponding to S11, the ejection-state determining section 72 may determine whether, for all of the three first electrodes 61, the potential difference V1 between the first electrode 61 and the second electrode 62 is less than or equal to a predetermined value V0′ (V0′ is a value different from V0). Here, if the potential differences V1 for all of the three first electrodes 61 are less than or equal to the predetermined value V0′, the ejection-state determining section 72 may determine that the ejection state is abnormal by determining that the deformation amount of the nozzle plate 33 is small and thus a droplet has not been ejected.
[7] In the above-described embodiment and modifications, the invention is applied to an inkjet-type printer which records images and the like by ejecting ink droplets on recording paper. However, the application of the invention is not limited to such a printer. That is, the invention can be applied to various droplet ejecting devices that eject various kinds of liquid on an object, depending on the usage.
Number | Date | Country | Kind |
---|---|---|---|
2007-306705 | Nov 2007 | JP | national |