This application claims priority under 35USC 119 from Japanese Patent Application No. 2003-147874, the disclosure of which is incorporated by reference herein.
1. Field of the Invention
The present invention relates to a droplet ejection method and device, and more specifically relates to a droplet ejection method and device for ejecting droplets by the application of thermal energy.
2. Description of the Related Art
Microactuators are known which, by using thermal energy or the like to cause a liquid to fly onto a medium in the form of small particles (known as droplets), form images of patterns and the like or form bodily structures of the liquid. Inkjet printer head technology is widely known as a technology which utilizes one of the functions of these microactuators. That is, in a printer which utilizes inkjet technology, ink droplets are jetted to provide an image on a paper surface.
Microactuators eject some kind of functional liquid onto a medium, implement patterning, and thus provide functionality to the medium.
Microactuators that are known include, for example, microactuators which are used for fabricating color filters, microactuators which are used for fabricating microlenses, microactuators which are used in medical nanopipettes, microactuators which are used for fabricating sensors, microactuators which are used for producing plates, proof plates and the like, and the like.
As applications for microactuators in color filter fabrication technology, a technique relating to a method of arrangement when filter material is to be discharged (see Japanese Patent Application Laid-pen (JP-A) No. 2002-273869) and a technique of controlling thickness and volume when a color filter is to be fabricated (see JP-A No. 9-21909) have been proposed. Further, for cases of applying microactuators to the fabrication of microlenses, a technique of focusing ultrasonic waves on a liquid surface in order to dropletize a curable resin liquid (see JP-A No. 2003-90904), and a structure of a lens fabrication apparatus together with a technique for ejecting variable weight amounts of a lens material liquid (see JP-A No. 2003-53747) have been proposed.
Further still, the application of microactuators to inkjets which serve as pipettes, which are mainly for medical use, has been investigated (see JP-A numbers 2001-228162 and 2001-232245). For the application of microactuators to the fabrication of sensors, a technique of discharging organic material onto electrodes by inkjets to form thin-film sensors has been proposed (see JP-A No. 2000-97894 and the publication of JP-A No. 2000-97894). For the application of microactuators to the production of plates, proof plates and the like, a method of controlling a recording head when fabricating a planographic plate with an inkjet has been proposed (see JP-A No. 2002-205370). Further yet, as microactuators which utilize electric fields, technologies which utilize electric fields for methods of more stably applying functional liquids to media have been investigated (see JP-A Nos. 2001-301154 and 2000-246887).
Variability of discharge amounts, breadth of a range of such variability, larger ejection forces, and the ability to eject various kinds of functional liquid are sought after as characteristics of these microactuators. Piezo-type actuators which are dependent on electromechanical transduction operations, actuators which utilize electric fields, and thermal boiling-type (thermal inkjet (TU)) actuators which utilize rapid heating and boiling are available as actuators that realize these characteristics.
Thermal boiling-type microactuators, in which displacement amounts that are achievable per unit area are large, are preferable for achieving reductions in size, cost and the like of microactuators. For pulse systems which utilize usual inkjets, in which these thermal boiling-type microactuators are applicable, technologies in which a pre-heating bias is applied before rising of a discharge pulse, a signal is applied for preliminary heating without forming bubbles, and a volume of ejected droplets is altered by the pre-heating, and/or in which a heater-driving waveform is varied from a simple rectangular wave have been proposed (see JP-A Nos. 63-132059, 54-39470, 2-214664 and 2000-246899). However, with pulse signals which are heater-driving signals for ejecting ink that is used in inkjets, in a case in which a single heater-driving waveform is simply altered and used at a microactuator, as heretofore, an ejection force for jetting of a functional liquid is inadequate. In other words, conventional techniques provide stable ejection states, but do not consider ejection forces.
In order to achieve a large ejection force with a thermal boiling-type microactuator, it is necessary to control behaviors relating to the generation of bubbles, which is based on rapid heating and boiling due to the application of thermal energy. Therefore, it is necessary to consider such behaviors and provide thermal energy to provide such behaviors.
The present invention will provide a droplet ejection method and device capable of ejecting a functional liquid simply and with large ejection power, i.e., pressure impulse (Ns/m2) which is realized by maintaining bubble growth.
According to a first aspect of the present invention, a droplet ejection device with high ejection capability is provided, the device including: (a) an actuator including a fluid chamber with an aperture for ejecting a droplet of an operation fluid accommodated in the fluid chamber, and a heater for providing thermal energy to the operation fluid for forming a bubble for droplet ejection; and (b) a controller which controls a driving signal to be inputted to the heater, (c) wherein the driving signal includes a preliminary heating pulse signal, which corresponds to a preliminary heating energy for preliminary heating of the operation fluid, and a trigger pulse signal, which corresponds to an ejection thermal energy for generation and growth of the bubble, a supply power of the preliminary heating pulse signal is smaller than a supply power of the trigger pulse signal, and a duration of heating by the preliminary heating pulse signal is longer than a duration of heating by the trigger pulse signal.
According to another aspect of the present invention, a method for ejecting a droplet by inputting a driving signal to a heater for providing thermal energy to an operation fluid and forming a bubble for droplet ejection is provided, the method including the steps of: inputting to a heater a preliminary heating pulse signal, which corresponds to a preliminary heating energy for preliminary heating of the operation fluid, with a predetermined supply power and a predetermined heating duration, for accumulating the preliminary heating energy in the operation fluid; and inputting to the heater a trigger pulse signal, which corresponds to an ejection thermal energy for generation and growth of the bubble, with a pre-established supply power and a preestablished heating duration, for providing the ejection thermal energy to the operation fluid and generating and growing the bubble, wherein the supply power of the preliminary heating pulse signal is smaller than the supply power of the trigger pulse signal, and the heating duration by the preliminary heating pulse signal is longer than the heating duration by the trigger pulse signal.
Preferred embodiments of the present invention will be described in detail based on the following figures, wherein:
Now, an embodiment of the present invention will be described in detail with reference to the drawings.
The circulation section 15 is equipped with a pump 14 and a liquid regulation mechanism section 16. The pump 14 and the liquid regulation mechanism section 16 communicate through circulation piping 13. Further, the sensor output detection section 18 is connected to the actuator 12 by sensor signal wiring 17, and the driving section 20 is connected to the actuator 12 by driving signal wiring 21.
The droplet ejection device 10 is provided with a computer 11, which controls the sensor output detection section 18, the pump 14, the liquid regulation mechanism section 16 and the driving section 20 all together. The computer 11 controls ejection data for ejecting the droplets.
At the actuator 12, portions of the operation fluid are jetted in the form of droplets 24, by driving of the heater which is provided in the actuator 12, and reaches a medium 22. The actuator 12 is mounted at a transport system, and is rendered relatively movable in one dimension or in two or more dimensions relative to the medium 22. Because the actuator 12 is a structure which can move freely within a space, the operation fluid can be jetted to arbitrary positions.
The nozzle 32 side of the unit structural portion 30 described above serves as a side for ejection of the droplets 24. When a plurality of the unit structural portion 30 are arranged in a row or in two dimensions, it is possible to eject pluralities of droplets.
Here, in order to structure the actuator 12 for a high ejection efficiency which enables the provision of large bubbles for discharge of the operation liquid 38, it is preferable for sufficient capacity of the liquid chamber 31 to be assured.
For example, as shown in
The operation liquid 38 is considered to have a consistent physical value when the current value at the sensors 42 is a predetermined value or is within a predetermined range or the like. Current values at the sensors 42 are inputted into the sensor output detection section 18. The sensor output detection section 18 outputs regulation signals to the liquid regulation mechanism section 16 in order to keep properties of the operation liquid 38 constant according to the inputted current values. The liquid regulation mechanism section 16 regulates composition of the operation liquid 38 in accordance with the regulation signals that are inputted thereat. Thus, the physical value of the operation fluid is kept constant; that is, the properties of the operation liquid 38 can be kept constant.
For the present embodiment, a case in which ethanol is used as the operation liquid 38 will be described. However, the present invention is not limited to this. That is, operation fluids can be selected in accordance with respective goals. As will be described later, in accordance with physical characteristics of an operation fluid, it is possible to structure and control the actuator with consideration of a starting temperature of rapid heating and boiling, of electrical power that is inputted for implementing the rapid heating and boiling and of a heating rate thereof, of excess heat energy that is accumulated in layers of the fluid, and the like.
Additionally, the heater can provide thermal energy to the operation fluid at least one of directly and via a heater protection layer.
In the present embodiment, as the rectangular area that is effective for heating, a rectangular heater fabricated of platinum with an illustrated effective heating length of 400 μm and heating width of 100 μm is employed to serve as the heater 34. This platinum rectangular heater is formed by vapor-depositing titanium and platinum on a quartz glass surface so as to form a sequence of layers with predetermined thicknesses (Ti: 0.05 μm and Pt: 0.20 μm).
Now, although platinum, which is resistant to corrosion, is used as the heater material for the present embodiment, Ta, TaN and the like are available as metallic materials to be applied to other heaters. Furthermore, it is possible to utilize materials which are applied to transistor processes, such as PolySi and the like.
Next, a process of creating bubbles, by heating the operation liquid 38 with the heater 34, and ejecting the droplets 24 in the present embodiment will be described with reference to
Before operation, the operation liquid 38 is accommodated in the liquid chamber 31 of the unit structural portion 30 (see
The present inventors have, by various investigations and experiments, obtained findings that: when a bubble is to be created by heating and a droplet is to be ejected, in order to attain an adequate droplet amount, it is preferable to provide adequate heat energy beforehand to a fluid layer which is in contact with the heater 34, which is to apply a heating amount (thermal energy); and, before the creation of the bubble has commenced in accordance with the rapid heating and boiling, it is preferable to apply heating at an interface of the operation liquid 38 with the heater 34 to an extent which does not cause the operation liquid 38 to bubble, that is, to apply sufficient pre-heating to the liquid boundary surface contacting the heater 34.
The application of heating, that is, a thermal energy which is capable of providing an adequate droplet amount when the droplet is to be ejected will be described.
When the single pulse is applied to the heater 34, the heater 34 commences heat generation, and generates bubbles in accordance therewith (see
As shown in
The present inventors have, through various investigations, found that an extremely large bubble as shown in
A driving signal provided to the heater 34 is constituted by a preliminary heating pulse signal of duration t1 and a trigger pulse signal of duration t2 (
Accordingly, the results of detailed investigations of two-step pulse waveforms for obtaining larger bubbles are illustrated herebelow.
<Investigation 1>
In a first investigation, maximum bubble sizes were measured and studied for cases in which the duration t2 of the trigger pulse signal was set to a constant (1 μs) and the duration t1 of the preliminary trigger pulse signal was variably set, as shown in
The power of the trigger pulse signal was set to 6.0 W and the power of the preliminary heating pulse signal was set to 1.5 W. Although this power ratio was set to 1/4, the present invention is not limited thus. However, there will be cases in which it is preferable for the power ratio to be smaller than 1/3, and there will be cases in which settings of around 1/4 are more preferable. That is, the energy applied by the preliminary heating pulse signal (power×duration, unit: Joules) may be equal to the energy that is supplied by the trigger pulse signal, may be higher than the same, and may be lower than the same.
However, when the duration t1 of the preliminary heating pulse signal was set to 70 μs or more, bubble generation started at around the time when application of the preliminary heating pulse signal was finishing, and significant growth of the bubble could not be obtained.
From the above, it can be seen that, in order to obtain large bubbles, it is preferable for the duration t1 of the preliminary heating pulse signal to be set to not less than around 10 times the duration t2 of the trigger pulse.
<Investigation 2>
In a second investigation, in cases in which, similarly to
First, a case in which the power of the trigger pulse signal is set to 6.0 W and the power applied by the preliminary heating pulse signal is set to 0.25 W will be described. A power output ratio thereof is 1/24, and the power Qt1 from the preliminary heating pulse signal has a ratio of 1/6 to the same power in the first investigation. These ratios are an example of settings relating to the values mentioned above, and are not limitations.
Because the power applied by the preliminary heating pulse signal is lowered, it is possible to increase the duration t1 of the preliminary heating pulse signal. Accordingly, the duration t1 of the preliminary heating pulse signal was measured for steps increasing by increments of 1000 μs from 1500 to 4500 μs.
Next, a case in which, as shown in
Here, the duration of the preliminary heating pulse signal was varied in two steps (500 μs and 1000 μs), and a bubble area after the commencement of bubble generation (i.e., in a state in which the bubble was growing) was measured for each duration t1.
A gradient of each curve, that is, a rate of growth of the bubbles, can be seen to be approximately the same for each case. Accordingly, it can be seen that the growth rate of a bubble is sufficiently rapid even in a case in which a low-power, long-duration pulse signal is applied as pre-heating. That is, it can be seen that an impulse, which is pressure and time, is different in each condition. This can be explained by a boiling state having momentary explosive generation and growth, which in both cases is similarly based on spontaneous nucleation. In case of pre-heating, the period of bubble growth is much longer because the heat flux into liquid before boiling incipience is much larger and which obtained larger ejection power.
Further, according to the results described above, it is required: (1) that bubble generation does not occur during application of the preliminary heating pulse signal and that superheating goes beyond a saturation temperature (boiling point) of the operation fluid; and (2) that boiling by the trigger pulse generates numerous very small bubbles at the heater surface and that this is principally based on spontaneous nucleation. For such conditions, it is desirable if a rate of temperature rise is at least of the order of 1×107.
As described above, it is possible to generate large bubbles by changing pulse conditions relating to the driving signals applied to the heater 34. Thus, by applying this principle to the actuator 12 of the present embodiment, it is possible to provide a microactuator having a liquid driving force of a magnitude that cannot be obtained conventionally.
Next, operation of the droplet ejection device 10 of the present embodiment will be described with reference to the flowchart of
The actuator 12 in the present embodiment is moved in one or more dimensions by an unillustrated transport system to a positional relationship relative to the medium 22, and the operation fluid is set to be ejectable. At this time, the processing routine of
In step 102, a physical value of the operation liquid 38 is detected from output signals of the sensors 42. In a next step S104, control signals are outputted to the liquid regulation mechanism section 16 in order to keep properties constant. As a result, the operation liquid 38, which is circulated in the circulation piping 13 and liquid chamber 31 by the pump 14, is maintained with constant properties. This corresponds to the liquid regulation mechanism section 16 regulating composition of the operation liquid 38 in accordance with the signals from the sensor output detection section 18.
In step S106, ejection data, which represents whether or not one of the droplets 24 is to be ejected from the actuator 12, is read in. In a next step S108, it is judged whether or not to perform ejection. If ejection is be performed, the routine advances to step S110, and if ejection is not to be performed, the routine advances to step S116.
In step S110, a driving signal pattern according to the two-step pulse signal described above is read in. In a next step S112, electrical powers and durations are specified for this driving signal. That is, a power and duration t1 of a preliminary heating pulse signal and a power and duration t2 of a trigger pulse signal are set.
In step S114, the driving signal that has been specified in the above-described step S112 is outputted to the heater 34. The output of this driving signal corresponds to output of a driving signal by the driving section 20.
In step S116, it is judged whether or not driving of the actuator 12 has finished. If the judgment is negative, the routine returns to step S100 and the processing described above is repeated. If the judgement is positive, the present routine finishes.
Thus, according to the present embodiment, driving signals when droplets are to be ejected are constituted by preliminary heating pulse signals and trigger pulse signals, and the ejection of droplets by the generation of bubbles which are larger than a heat generation area of a heater is possible.
For the present embodiment, a case has been described in which a fixed trigger pulse signal is continuous with a fixed preliminary heating pulse signal to serve as the waveform pattern of a driving signal. However, the present invention is not limited thus. For example, the preliminary heating pulse signal and the trigger pulse signal may be separated, and one or both of the preliminary heating pulse signal and the trigger pulse signal may be varied.
Now,
According to the present invention as described above, because, in a step prior to applying ejection thermal energy for ejecting a droplet, preliminary heating is performed at a liquid interface region which contacts a heater, a bubble which is much larger than an area of the heater can be created for ejecting the droplet.
Number | Date | Country | Kind |
---|---|---|---|
2003-147874 | May 2003 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6139125 | Otsuka et al. | Oct 2000 | A |
6231167 | Tsuboi et al. | May 2001 | B1 |
Number | Date | Country |
---|---|---|
54-39470 | Mar 1979 | JP |
A 63-132059 | Jun 1988 | JP |
A 2-214664 | Aug 1990 | JP |
A 9-21909 | Jan 1997 | JP |
A 2000-97894 | Apr 2000 | JP |
A 2000-246887 | Sep 2000 | JP |
A 2000-246899 | Sep 2000 | JP |
A 2001-228162 | Aug 2001 | JP |
A 2001-232245 | Aug 2001 | JP |
A 2001-301154 | Oct 2001 | JP |
A 2002-205370 | Jul 2002 | JP |
A 2002-273869 | Sep 2002 | JP |
A 2003-53747 | Feb 2003 | JP |
A 2003-90904 | Mar 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20050007423 A1 | Jan 2005 | US |