Droplet actuators are used to conduct a wide variety of droplet operations. A droplet actuator typically includes one or more substrates configured to form a surface or gap for conducting droplet operations. The one or more substrates include electrodes for conducting droplet operations. The gap between the substrates is typically filled or coated with a filler fluid that is immiscible with the liquid that is to be subjected to droplet operations. Droplet operations are controlled by electrodes associated with the one or more substrates. There is a need for new approaches to guiding, sizing, and shaping droplets in a droplet actuator.
The top and bottom substrates are coupled and sealed to prevent leakage of fluid from the droplet actuator. There is a need for improved methods of attaching and sealing a droplet actuator that provides for quick and easy assembly and disassembly.
Droplet actuators are used in a variety of applications, including diagnostic assays, such as immunoassays and genetic analysis (e.g., polymerase chain reaction (PCR) and pyrosequencing), where time to result is directly affected by the protocols used for each step of the assay. Serial processing of samples on a droplet actuator is time consuming and consequently results in a delay in time to result of a diagnostic assay. Serial processing of samples on a droplet actuator requires transport of droplets along shared droplet operation pathways, a process that may cause cross-contamination between samples. There is a need for improved droplet actuators configured for assays that provide for increased efficiency in performance of a diagnostic assay (e.g., decreased time to result, reduced contamination between samples, and parallel processing).
The invention provides a droplet actuator substrate that may include a base substrate comprising electrodes, an adhesive layer atop the base substrate, a dielectric layer atop the adhesive layer and bound to the base substrate by the adhesive layer, and a droplet operations surface atop the dielectric layer.
The invention also provides a method of making a droplet actuator substrate, the method may include providing a base substrate comprising electrodes, applying an adhesive layer atop the base substrate, and applying a dielectric layer atop the adhesive layer, wherein the adhesive layer binds the dielectric layer to the base substrate and the droplet actuator substrate comprises a droplet operations surface atop the dielectric layer.
Further, the invention provides a droplet actuator that may include a substrate and electrodes underlying a surface of the substrate, wherein the surface of the substrate may include a three dimensional topography comprising features selected to enhance one or more droplet operations on the droplet operations surface.
The invention also provides a droplet actuator that may include a base substrate comprising electrodes and a removable film applied atop the base substrate.
In another method of operating a droplet actuator, the method may include providing a droplet actuator substrate including electrodes configured for conducting one or more droplet operations, applying a removable film atop the droplet actuator substrate to establish a droplet operations surface, conducting one or more droplet operations on the droplet operations surface, and replacing the film atop the droplet actuator substrate to establish a new droplet operations surface.
Further, the invention provides a droplet actuator that may include one or more cartridges, each including a droplet operations substrate and a cover separated from the droplet operation substrate to form a gap configured for conducting droplet operations and at least two assay unit cell configurations associated with the one or more cartridges, wherein each assay unit cell configuration may include electrodes associated with the droplet operations substrate and/or the cover of one or more of the cartridges and arranged for conducting droplet operations, and is associated with one or more reservoirs for loading reagent into the gap for conducting one or more assays using the assay unit cell configuration and one or more openings for loading sample into the gap for conducting one or more assays using the assay unit cell configuration.
The invention also provides a droplet actuator comprising a substrate including electrodes configured for conducting droplet operations on a surface of the substrate wherein the electrodes includes multiplexed electrode sets, wherein each electrode in a set includes a common electrical source, and independently controlled gating electrodes.
The invention additionally provides a method of conducting one or more droplet operations, wherein the method includes providing two or more sets of electrodes and controlling voltage applied to the electrodes to effect a droplet operation, at least one of the electrodes in each of the droplet dispensing electrode configurations is independently electrically controlled, at least two of the electrodes, each in a different one of the droplet dispensing electrode configurations, are commonly electrically controlled, and by controlling the independently electrically controlled electrodes, the completion of the droplet operation in any combination of the sets may be completed or not completed.
The invention yet further provides a method of dispensing a droplet from a set of droplet dispensing electrode configurations, wherein the method includes providing a droplet source, activating a series of two or more electrodes to form a droplet extension from the droplet source, and deactivating an intermediate one of the electrodes to yield a droplet on a terminal one or more of the electrodes, and at least one of the electrodes in each of the droplet dispensing electrode configurations is independently electrically controlled, at least two of the electrodes, each in a different one of the droplet dispensing electrode configurations, are commonly electrically controlled, and by controlling the independently electrically controlled electrodes, any combination of one or more droplets may be dispensed from the set of droplet dispensing electrode configurations in a single dispensing operation.
Further, the invention provides a method of conducting one or more assays, the method including providing a microfluidic cartridge with multiple unit cells, using a first unit cell to conduct a first assay, sealing off the first unit cell, and using a second unit cell to conduct a second assay.
Still further, the invention provides a droplet actuator that may include a bottom substrate, a top substrate separated from the bottom substrate by a gap suitable for conducting one or more droplet operations, at least one spacer between the bottom substrate and top substrate for defining the size of the gap, and at least one opening in the top substrate and a corresponding plated via on the bottom substrate, each opening substantially aligned with the corresponding plated via, and each opening of a size to accommodate a corresponding fastener for having each corresponding fastener secured to a corresponding plated via.
The invention also provides a droplet actuator that may include a bottom substrate, a top substrate separated from the bottom substrate by a droplet operations gap suitable for conducting one or more droplet operations, at least one spacer between the bottom substrate and top substrate for defining the size of the gap, and material regions on the top substrate and on the bottom substrate adapted for soldering, for attaching and sealing the top substrate to the bottom substrate.
The invention additionally provides a droplet actuator including a bottom substrate supported by a bottom plate, the bottom plate having at least one opening, with the bottom substrate supported by the bottom plate in a region defined by the at least one opening, a top substrate separated from the bottom substrate by a gap suitable for conducting one or more droplet operation, at least one spacer between the bottom substrate and top substrate for defining the size of the gap, and at least one fastener on the top substrate corresponding to the at least one opening and aligned therewith for providing self-alignment of the top substrate and the bottom substrate.
As used herein, the following terms have the meanings indicated.
“Activate” with reference to one or more electrodes means effecting a change in the electrical state of the one or more electrodes which, in the presence of a droplet, results in a droplet operation.
“Bead,” with respect to beads on a droplet actuator, means any bead or particle that is capable of interacting with a droplet on or in proximity with a droplet actuator. Beads may be any of a wide variety of shapes, such as spherical, generally spherical, egg shaped, disc shaped, cubical and other three dimensional shapes. The bead may, for example, be capable of being transported in a droplet on a droplet actuator or otherwise configured with respect to a droplet actuator in a manner which permits a droplet on the droplet actuator to be brought into contact with the bead, on the droplet actuator and/or off the droplet actuator. Beads may be manufactured using a wide variety of materials, including for example, resins, and polymers. The beads may be any suitable size, including for example, microbeads, microparticles, nanobeads and nanoparticles. In some cases, beads are magnetically responsive; in other cases beads are not significantly magnetically responsive. For magnetically responsive beads, the magnetically responsive material may constitute substantially all of a bead or one component only of a bead. The remainder of the bead may include, among other things, polymeric material, coatings, and moieties which permit attachment of an assay reagent. Examples of suitable magnetically responsive beads include flow cytometry microbeads, polystyrene microparticles and nanoparticles, functionalized polystyrene microparticles and nanoparticles, coated polystyrene microparticles and nanoparticles, silica microbeads, fluorescent microspheres and nanospheres, functionalized fluorescent microspheres and nanospheres, coated fluorescent microspheres and nanospheres, color dyed microparticles and nanoparticles, magnetic microparticles and nanoparticles, superparamagnetic microparticles and nanoparticles (e.g., DYNABEADS® particles, available from Invitrogen Corp., Carlsbad, Calif.), fluorescent microparticles and nanoparticles, coated magnetic microparticles and nanoparticles, ferromagnetic microparticles and nanoparticles, coated ferromagnetic microparticles and nanoparticles, and those described in U.S. Patent Publication No. 20050260686, entitled, “Multiplex flow assays preferably with magnetic particles as solid phase,” published on Nov. 24, 2005, the entire disclosure of which is incorporated herein by reference for its teaching concerning magnetically responsive materials and beads. Beads may be pre-coupled with a biomolecule (ligand). The ligand may, for example, be an antibody, protein or antigen, DNA/RNA probe or any other molecule with an affinity for the desired target. Examples of droplet actuator techniques for immobilizing magnetically responsive beads and/or non-magnetically responsive beads and/or conducting droplet operations protocols using beads are described in U.S. patent application Ser. No. 11/639,566, entitled “Droplet-Based Particle Sorting,” filed on Dec. 15, 2006; U.S. Patent Application No. 61/039,183, entitled “Multiplexing Bead Detection in a Single Droplet,” filed on Mar. 25, 2008; U.S. Patent Application No. 61/047,789, entitled “Droplet Actuator Devices and Droplet Operations Using Beads,” filed on Apr. 25, 2008; U.S. Patent Application No. 61/086,183, entitled “Droplet Actuator Devices and Methods for Manipulating Beads,” filed on Aug. 5, 2008; International Patent Application No. PCT/US2008/053545, entitled “Droplet Actuator Devices and Methods Employing Magnetic Beads,” filed on Feb. 11, 2008; International Patent Application No. PCT/US2008/058018, entitled “Bead-based Multiplexed Analytical Methods and Instrumentation,” filed on Mar. 24, 2008; International Patent Application No. PCT/US2008/058047, “Bead Sorting on a Droplet Actuator,” filed on Mar. 23, 2008; and International Patent Application No. PCT/US2006/047486, entitled “Droplet-based Biochemistry,” filed on Dec. 11, 2006; the entire disclosures of which are incorporated herein by reference.
“Droplet” means a volume of liquid on a droplet actuator that is at least partially bounded by filler fluid. For example, a droplet may be completely surrounded by filler fluid or may be bounded by filler fluid and one or more surfaces of the droplet actuator. Droplets may, for example, be aqueous or non-aqueous or may be mixtures or emulsions including aqueous and non-aqueous components. Droplets may take a wide variety of shapes; nonlimiting examples include generally disc shaped, slug shaped, truncated sphere, ellipsoid, spherical, partially compressed sphere, hemispherical, ovoid, cylindrical, and various shapes formed during droplet operations, such as merging or splitting or formed as a result of contact of such shapes with one or more surfaces of a droplet actuator. For examples of droplet fluids that may be subjected to droplet operations using the approach of the invention, see International Patent Application No. PCT/US 06/47486, entitled, “Droplet-Based Biochemistry,” filed on Dec. 11, 2006. In various embodiments, a droplet may include a biological sample, such as whole blood, lymphatic fluid, serum, plasma, sweat, tear, saliva, sputum, cerebrospinal fluid, amniotic fluid, seminal fluid, vaginal excretion, serous fluid, synovial fluid, pericardial fluid, peritoneal fluid, pleural fluid, transudates, exudates, cystic fluid, bile, urine, gastric fluid, intestinal fluid, fecal samples, liquids containing single or multiple cells, liquids containing organelles, fluidized tissues, fluidized organisms, liquids containing multi-celled organisms, biological swabs and biological washes. Moreover, a droplet may include a reagent, such as water, deionized water, saline solutions, acidic solutions, basic solutions, detergent solutions and/or buffers. Other examples of droplet contents include reagents, such as a reagent for a biochemical protocol, such as a nucleic acid amplification protocol, an affinity-based assay protocol, an enzymatic assay protocol, a sequencing protocol, and/or a protocol for analyses of biological fluids.
“Droplet Actuator” means a device for manipulating droplets. For examples of droplet actuators, see U.S. Pat. No. 6,911,132, entitled “Apparatus for Manipulating Droplets by Electrowetting-Based Techniques,” issued on Jun. 28, 2005 to Pamula et al.; U.S. patent application Ser. No. 11/343,284, entitled “Apparatuses and Methods for Manipulating Droplets on a Printed Circuit Board” filed on filed on Jan. 30, 2006; U.S. Pat. Nos. 6,773,566, entitled “Electrostatic Actuators for Microfluidics and Methods for Using Same,” issued on Aug. 10, 2004 and 6,565,727, entitled “Actuators for Microfluidics Without Moving Parts,” issued on Jan. 24, 2000, both to Shenderov et al.; Pollack et al., International Patent Application No. PCT/US2006/047486, entitled “Droplet-Based Biochemistry,” filed on Dec. 11, 2006; and Roux et al., U.S. Patent Pub. No. 20050179746, entitled “Device for Controlling the Displacement of a Drop Between two or Several Solid Substrates,” published on Aug. 18, 2005; the disclosures of which are incorporated herein by reference. Certain droplet actuators will include a substrate, droplet operations electrodes associated with the substrate, one or more dielectric and/or hydrophobic layers atop the substrate and/or electrodes forming a droplet operations surface, and optionally, a top substrate separated from the droplet operations surface by a gap. One or more reference electrodes may be provided on the top and/or bottom substrates and/or in the gap. In various embodiments, the manipulation of droplets by a droplet actuator may be electrode mediated, e.g., electrowetting mediated or dielectrophoresis mediated or Coulombic force mediated. Examples of other methods of controlling fluid flow that may be used in the droplet actuators of the invention include devices that induce hydrodynamic fluidic pressure, such as those that operate on the basis of mechanical principles (e.g. external syringe pumps, pneumatic membrane pumps, vibrating membrane pumps, vacuum devices, centrifugal forces, piezoelectric/ultrasonic pumps and acoustic forces); electrical or magnetic principles (e.g. electroosmotic flow, electrokinetic pumps, ferrofluidic plugs, electrohydrodynamic pumps, attraction or repulsion using magnetic forces and magnetohydrodynamic pumps); thermodynamic principles (e.g. gas bubble generation/phase-change-induced volume expansion); other kinds of surface-wetting principles (e.g. electrowetting, and optoelectrowetting, as well as chemically, thermally, structurally and radioactively induced surface-tension gradients); gravity; surface tension (e.g., capillary action); electrostatic forces (e.g., electroosmotic flow); centrifugal flow (substrate disposed on a compact disc and rotated); magnetic forces (e.g., oscillating ions causes flow); magnetohydrodynamic forces; and vacuum or pressure differential. In certain embodiments, combinations of two or more of the foregoing techniques may be employed in droplet actuators of the invention.
“Droplet operation” means any manipulation of a droplet on a droplet actuator. A droplet operation may, for example, include: loading a droplet into the droplet actuator; dispensing one or more droplets from a source droplet; splitting, separating or dividing a droplet into two or more droplets; transporting a droplet from one location to another in any direction; merging or combining two or more droplets into a single droplet; diluting a droplet; mixing a droplet; agitating a droplet; deforming a droplet; retaining a droplet in position; incubating a droplet; heating a droplet; vaporizing a droplet; cooling a droplet; disposing of a droplet; transporting a droplet out of a droplet actuator; other droplet operations described herein; and/or any combination of the foregoing. The terms “merge,” “merging,” “combine,” “combining” and the like are used to describe the creation of one droplet from two or more droplets. It should be understood that when such a term is used in reference to two or more droplets, any combination of droplet operations that are sufficient to result in the combination of the two or more droplets into one droplet may be used. For example, “merging droplet A with droplet B,” can be achieved by transporting droplet A into contact with a stationary droplet B, transporting droplet B into contact with a stationary droplet A, or transporting droplets A and B into contact with each other. The terms “splitting,” “separating” and “dividing” are not intended to imply any particular outcome with respect to volume of the resulting droplets (i.e., the volume of the resulting droplets can be the same or different) or number of resulting droplets (the number of resulting droplets may be 2, 3, 4, 5 or more). The term “mixing” refers to droplet operations which result in more homogenous distribution of one or more components within a droplet. Examples of “loading” droplet operations include microdialysis loading, pressure assisted loading, robotic loading, passive loading, and pipette loading. Droplet operations may be electrode-mediated. In some cases, droplet operations are further facilitated by the use of hydrophilic and/or hydrophobic regions on surfaces and/or by physical obstacles.
“Filler fluid” means a fluid associated with a droplet operations substrate of a droplet actuator, which fluid is sufficiently immiscible with a droplet phase to render the droplet phase subject to electrode-mediated droplet operations. The filler fluid may, for example, be a low-viscosity oil, such as silicone oil. Other examples of filler fluids are provided in International Patent Application No. PCT/US2006/047486, entitled, “Droplet-Based Biochemistry,” filed on Dec. 11, 2006; International Patent Application No. PCT/US2008/072604, entitled “Use of additives for enhancing droplet actuation,” filed on Aug. 8, 2008; and U.S. Patent Publication No. 20080283414, entitled “Electrowetting Devices,” filed on May 17, 2007; the entire disclosures of which are incorporated herein by reference. The filler fluid may fill the entire gap of the droplet actuator or may coat one or more surfaces of the droplet actuator. Filler fluid may be conductive or non-conductive.
“Immobilize” with respect to magnetically responsive beads, means that the beads are substantially restrained in position in a droplet or in filler fluid on a droplet actuator. For example, in one embodiment, immobilized beads are sufficiently restrained in position to permit execution of a splitting operation on a droplet, yielding one droplet with substantially all of the beads and one droplet substantially lacking in the beads.
“Magnetically responsive” means responsive to a magnetic field. “Magnetically responsive beads” include or are composed of magnetically responsive materials. Examples of magnetically responsive materials include paramagnetic materials, ferromagnetic materials, ferrimagnetic materials, and metamagnetic materials. Examples of suitable paramagnetic materials include iron, nickel, and cobalt, as well as metal oxides, such as Fe3O4, BaFe12O19, CoO, NiO, Mn2O3, Cr2O3, and CoMnP.
“Washing” with respect to washing a magnetically responsive bead means reducing the amount and/or concentration of one or more substances in contact with the magnetically responsive bead or exposed to the magnetically responsive bead from a droplet in contact with the magnetically responsive bead. The reduction in the amount and/or concentration of the substance may be partial, substantially complete, or even complete. The substance may be any of a wide variety of substances; examples include target substances for further analysis, and unwanted substances, such as components of a sample, contaminants, and/or excess reagent. In some embodiments, a washing operation begins with a starting droplet in contact with a magnetically responsive bead, where the droplet includes an initial amount and initial concentration of a substance. The washing operation may proceed using a variety of droplet operations. The washing operation may yield a droplet including the magnetically responsive bead, where the droplet has a total amount and/or concentration of the substance which is less than the initial amount and/or concentration of the substance. Examples of suitable washing techniques are described in Pamula et al., U.S. Pat. No. 7,439,014, entitled “Droplet-Based Surface Modification and Washing,” granted on Oct. 21, 2008, the entire disclosure of which is incorporated herein by reference.
The terms “top,” “bottom,” “over,” “under,” and “on” are used throughout the description with reference to the relative positions of components of the droplet actuator, such as relative positions of top and bottom substrates of the droplet actuator. It will be appreciated that the droplet actuator is functional regardless of its orientation in space.
When a liquid in any form (e.g., a droplet or a continuous body, whether moving or stationary) is described as being “on”, “at”, or “over” an electrode, array, matrix, or surface, such liquid could be either in direct contact with the electrode/array/matrix/surface, or could be in contact with one or more layers or films that are interposed between the liquid and the electrode/array/matrix/surface.
When a droplet is described as being “on” or “loaded on” a droplet actuator, it should be understood that the droplet is arranged on the droplet actuator in a manner which facilitates using the droplet actuator to conduct one or more droplet operations on the droplet, the droplet is arranged on the droplet actuator in a manner which facilitates sensing of a property of or a signal from the droplet, and/or the droplet has been subjected to a droplet operation on the droplet actuator.
The invention provides droplet actuators with droplet operations surfaces for manipulating droplets, e.g., by conducting droplet operations. The droplet operations surfaces are typically exposed to a droplet operations gap. One or more regions of a droplet operation surface may include patterned topographic features. The patterned topographic features have a variety of advantages relative to a substantially planar droplet operations surface topography. The patterned topographic features may assist in conducting one or more droplet operations, for example, by providing differences in droplet operations gap height within a droplet actuator. For example, patterned topographic features may be used for guiding, sizing, and/or shaping droplets; and/or retaining a droplet in position in a droplet operations gap without requiring the droplet to be associated with an activated electrode. This requirement reduces the required duration of electrode activation and prolongs the life of the droplet actuator.
The invention also provides a droplet actuator in which one or both gap-facing droplet operations surfaces is formed using a removable film. The removable film may, in various embodiments, also include other components ordinarily associated with the droplet actuator substrate, such as the dielectric layer and the electrodes. Further, the removable/replacement film may be pre-patterned, e.g., using an embossing technique, to provide topographical patterns such as those described herein.
Further, the invention provides droplet actuator devices and methods for coupling and/or sealing substrates of a droplet actuator, such as techniques for self-aligning assembly of droplet actuator substrates. The invention provides droplet actuators and methods of disassembling the droplet actuator in order to provide access for cleaning and/or recycling of droplet actuator surfaces.
The invention provides patterned topographic features, which may be formed using a variety of available techniques. In one aspect, the invention provides methods of embossing the surfaces droplet actuators to produce the patterned topographic features. The patterned topographic features may include impressions in the droplet operations surface, such as depressed and/or elevated features, on the surface of at least one substrate of a droplet actuator. For example, depressed paths formed on the dielectric layer of the substrate may be used to guide droplets during droplet operations and/or to serve as fluid reservoirs. Where the droplet actuator includes top and bottom substrates, the gap-facing substrates of one or both surfaces may include patterned topographic features.
In one embodiment of the invention, adhesive-backed polymer films may be used as the dielectric layer in which the desired impressions are made. The adhesive portion of the dielectric/adhesive layer may be made to flow by application of pressure and/or temperature. As a result, a pattern may be embossed (e.g., heat-embossed) on the dielectric/adhesive layer. Using an embossing process, depressions may be formed that have a certain depth that is less than the adhesive thickness. For example, the depth of the depressions in some embodiments may be up to about 25 microns. Each depression forms a low pressure region which may be used to facilitate droplet operations and/or to assist in retaining one or more droplets in position. Additionally, the geometry of the depressions may assist in sizing and/or shaping droplets.
In another aspect of the invention, the droplet operations surface may be removable and/or replaceable. For example, the surfaces may include materials that may be removed and replaced by new materials. As an example, the droplet operations surface may include a film affixed to a substrate using an adhesive that permits the film to be removed from the surface and replaced with a replacement film. In this embodiment, the droplet operations surface may or may not have patterned three-dimensional (3D) features.
In some embodiments the mold may serve a dual purpose of embossing and transferring a coating material onto the dielectric's surface (not shown in the figure). The coating may be uniform across the mold or may be a patterned coating that is hydrophobic in some areas and hydrophilic in other areas. The coating may be a single layer coating or may comprise of multiple layers of different coating materials. The coating should preferably adhere to the dielectric surface than the mold under the embossing conditions. The dielectric surface may be treated, for example using an oxygen plasma, to increase the affinity of the coating to its surface in comparison to the mold. Examples of hydrophobic coatings include TEFLON®, CYTOP®, organosilane, fluorosilane or a silicone. Examples of hydrophilic coatings include polymers such as polyethylene oxide or polyethylene glycols. In certain embodiments the coating is a conductive coating such as conductive polymer. The conductive coating may serve as a reference electrode for performing droplet operations.
In some embodiments, following use of the droplet actuator, the dielectric portion of the dielectric/adhesive layer 118 may be removed and replaced by a new dielectric. Some or all of the adhesive may also be removed and replaced as needed in order to provide a refurbished droplet operations surface.
In some embodiments, following use of the droplet actuator, dielectric layer 210 may be removed and replaced by a new dielectric layer. Some or all of adhesive layer 214 may also be removed in the process of removing dielectric layer 210. The removed adhesive layer 214 may also be replaced as needed in order to provide a refurbished droplet operations surface. The surface may be re-embossed as needed. In some embodiments, the dielectric layer is patterned to a desired topology before it is mounted on substrate 110, e.g., using an embossing process similar to the one described above.
Following a use of droplet actuator 300, which may contaminate the droplet operations surface, the dielectric layer may be removed and replaced by a new dielectric layer. Some or all of the adhesive layer may also be removed in the process of removing the dielectric layer. The removed adhesive layer 214 may also be replaced as needed in order to provide a refurbished droplet operations surface. The surface may be re-embossed as needed, or the replaced layer may be pre-patterned before being applied to the droplet actuator substrate. The surface of the top substrate 310 that faces the droplet operations gap may also be cleaned and/or refurbished. Alternatively, top substrate 310 may be replaced with a new top substrate. Top substrate 310 may be removed as needed for refurbishment of the droplet operations surface of the bottom substrate.
There is a pressure difference in droplet operations gap 312 of droplet actuator 300 between the area (having the height H) that is inside of each depression 130 and the area (having the height h) that is outside of each depression 130. This pressure is inversely proportional to the height. Therefore, because height H is greater than height h, the pressure inside of each depression 130 is lower than the pressure outside of each depression 130. Consequently, droplets 314 will tend to flow into each depression 130. The pressure equations are generally as follows.
ΔP1=γ(1/H); where ΔP1 is the pressure across height H, where γ is interfacial tension.
ΔP2=γ(1/h); where ΔP2 is the pressure across height h, where γ is interfacial tension.
Because height H is greater than height h, ΔP1 is less than ΔP2. Therefore, liquid tends to flow from the area of height h to the area of height H.
In various embodiments, a droplet actuator of the invention is provided in which H and h are selected to cause a droplet to be retained in a depression within a substrate of the droplet actuator. The substrate may be the top and/or bottom substrate.
In some cases, embossed surfaces are provided atop electrodes, as illustrated in the foregoing figures. In other cases, the pressure differences described above may be used to deposit a droplet in a region of a droplet actuator without requiring an electrode. In still other cases, an electrode is activated to cause the droplet to flow into a region of a droplet actuator. Once the droplet is in place, the activated electrode may be deactivated, and the droplet may be retained in place by the embossed physical structures of the droplet operations surface.
In one embodiment of the invention, electrical fields from activated electrodes are used to move droplets. Once a droplet is in place, the activated electrode may be deactivated, and the droplet may be retained in place by the physical features of the top substrate.
An aspect of the invention is that the presence of a depression at a reservoir electrode may serve to increase the capacity of the fluid reservoir. This is because the height H inside the fluid reservoir area serves to increase the capacity of the fluid reservoir. For example, when height H that is inside the fluid reservoir is about 2 times the height h that is outside of the fluid reservoir, the capacity is doubled.
In another embodiment, depressions may be provided in both the bottom and top substrates of the droplet actuator via the embossing process of the invention. The top and/or bottom substrate features may partially or completely mirror each other. Alternatively, certain regions of the droplet actuator may include the depressions on the top substrate, while other regions include the depressions in the bottom substrate. In one embodiment of the invention, electrical fields from activated electrodes are used to move droplets. Once a droplet is in place, the activated electrode may be deactivated, and the droplet may be retained in place by the physical features of the top and/or bottom substrate. Droplet operations electrodes and reference electrodes may be provided on either or both substrates. In some cases, reference electrodes are provided along ridges, while droplet operations electrodes are aligned with depressions.
The invention provides a droplet actuator in which one or both gap-facing droplet operations surfaces is formed using a removable film. The removable film preferably includes a hydrophobic surface. The removable film may, in various embodiments, also include other components ordinarily associated with the droplet actuator substrate, such as the dielectric layer and the electrodes. Further, the film may be pre-patterned to provide topographical patterns such as those described above, e.g., using a roller mold or a flat mold.
The removable film may be held in place by an adhesive, by tension, by vacuum, by pressure, and/or by other means. In one example, the removable film includes an adhesive backing which is suitable for binding the removable film to the substrate. In another example, openings are provided in the substrate, and the film is held in place by a vacuum pressure applied through the openings. For example, vias in the electrodes may be used to suck the film onto the surface. The vacuum may be applied during operation and removed to release the film and facilitate replacement of the film. An adhesive may or may not be used in various aspects of this embodiment.
In another example, the removable film extends across the droplet actuator substrate and is held in place by tension. In this example, the removable film may be anchored outside the droplet actuator, and the droplet actuator substrate may be pressed into the sheet and/or the sheet may be pulled against the droplet actuator, to create a tension which holds the film in place against the droplet actuator substrate. The tension may be maintained while conducting droplet operations. When the surface of the film becomes fouled, the film may be replaced. In certain aspects of this embodiment, a mildly binding adhesive may be used or no adhesive at all may be used. In some cases, the tension may be released to facilitate replacement of the film. In other aspects, a lubricant may be used to cause the film to slide across the surface of the droplet actuator substrate without requiring the tension to be released. In one embodiment, a reel-to-reel configuration may be provided to supply a fresh film as needed on the droplet actuator. A lubricant may be applied to the film as it rolls off of the supply roll to facilitate sliding of the film across the droplet actuator surface.
In one embodiment, the film may be backed by an adhesive which binds the film to the droplet actuator surface. In some cases, the adhesive reversibly binds the film to the droplet actuator surface.
In one embodiment, the film comprises a dielectric material, such as a polyimide film. In some cases, the dielectric material is coated with a hydrophobic coating. In some cases, the dielectric material is backed by an adhesive, such as a polyimide film backed by an acrylic adhesive. In some cases, the adhesive-backed dielectric material may serve as the only dielectric for the droplet actuator substrate. In another embodiment, the adhesive-backed dielectric material may be provided atop another dielectric, which is provided atop the electrodes. In this case, the adhesive-backed dielectric material may supplement the second dielectric. The adhesive itself may, in some embodiments, serve as a dielectric.
In the embodiment illustrated, adhesive layer 715 binds dielectric layer 720 to electrodes 710 and to substrate 705. Dielectric layer 720 may be any dielectric material. Hydrophobic coating 725 may be any hydrophobic coating that binds to the underlying layers in a manner which is sufficient to permit one or more droplet operations to be conducted atop droplet actuator substrate 700. In one example, dielectric layer 720 is a polyimide film. In yet another example, adhesive layer 715 includes an acrylic adhesive. In still another example, an adhesive-backed polyimide film 730 provides adhesive layer 715 and dielectric layer 720. For example, adhesive-backed polyimide film 730 may be a PYRALUX® LF flexible composite (DuPont). PYRALUX® LF7013, for example, is an approximately 13 microns thick Dupont KAPTON® polyimide film and 25 microns thick acrylic adhesive. Other examples of suitable adhesive-backed films include PYRALUX® LF LF0110, LF0120, LF0130, LF0150, LF0210, LF0220, LF0230, LF0250, LF0310, LF7001, LF7082, LF1510, and LF7034.
The adhesive-backed polyimide film 730 may be coated with a hydrophobic layer. Examples of suitable hydrophobic coatings include fluoropolymers and perfluoroploymers, such as polytetrafluoroethylenes; perfluoroalkoxy polymer resins; fluorinated ethylene-propylenes; polyethylenetetrafluoroethylenes; polyvinylfluorides; polyethylenechlorotrifluoroethylenes; polyvinylidene fluorides; polychlorotrifluoroethylenes; and perfluoropolyethers. In one embodiment, the hydrophobic, coating includes a TEFLON® fluoropolymer. In another embodiment, the hydrophobic coating includes a CYTOP™ perfluoropolymer.
In some embodiments, the adhesive is selected to be releasable, so that the adhesive-backed film may be removed following use and replaced with a fresh adhesive-backed film. In some embodiments, the adhesive may serve as the dielectric and the backing may serve as a hydrophobic coating. In other embodiments, the dielectric may be permanent and a film having a hydrophilic backing may be applied to the permanent dielectric. In yet another embodiment, multiple films may be used and replaced together or separately. For example, a hydrophobic film may be used atop a dielectric film, and both films may be applied atop a droplet actuator substrate including electrodes. Each of the hydrophobic film and dielectric film may be replaced together or separately, as needed. A lubricant may be applied between the hydrophobic film and dielectric film and/or between the dielectric film and the substrate. In some cases, the lubricant may also serve as a dielectric.
In one embodiment, the film includes a dielectric film, and the droplet actuator substrate includes the substrate, electrodes and a dielectric atop the substrate. The film is placed atop the dielectric, and a lubricant or an adhesive may optionally be included between the dielectric and the film.
In another embodiment, the film includes a dielectric film, and the droplet actuator substrate includes the substrate, electrodes and a dielectric atop the substrate. The film may be placed atop the dielectric, and a lubricant or an adhesive may optionally be included between the dielectric and the film. Alternatively, the droplet actuator substrate may include the substrate and electrodes with no dielectric atop the substrate. The film may be placed atop the substrate and electrodes, and a lubricant or an adhesive may optionally be included between the substrate and electrodes and the film.
Replacement of the film may be automated. For example, a diagnostic may be executed to determine the extent of contamination of the film. When contamination reaches a predetermined threshold, the film may be replaced. Alternatively, for certain applications, the film may simply be replaced after each use of the droplet actuator to avoid the possibility of contamination from one batch to another.
In some embodiments, the filler fluid (when used) may also be replaced as needed. For example, the filler fluid may be replaced when the film is replaced. In another example, the filler fluid may be replaced more or less frequently than the film.
The invention provides droplet actuator devices and methods for coupling and/or sealing the top and bottom substrates of a droplet actuator. In various embodiments, the invention provides droplet actuators and methods for self-aligning assembly of droplet actuator substrates, such that the top and bottom substrate may be quickly and easily assembled and sealed. In various embodiments, the invention provides droplet actuators and methods of readily disassembling the droplet actuator in order to provide access for cleaning and/or recycling of components (e.g., bottom substrate, top substrate).
6.3.1 Soldering Attachment
As shown in
Bottom substrate 810 may include an arrangement of droplet operations electrodes 818 (e.g., electrowetting electrodes). Bottom substrate 810 may, for example, be formed of a PCB that includes plated vias 820. Top substrate 812 may, for example, be formed of silicon based materials, glass, plastic or another suitable substrate (that does not include material suitable for soldering). Top substrate 812 may also include electrodes, such as one or more ground electrodes (not shown). One or more openings 822 are provided within top substrate 812. Each opening 822 is substantially aligned with a respective placed via 820 of bottom substrate 810. Each opening 822 is of sufficient size to accommodate a fastener 824. Each fastener 824 may, for example, be a copper rivet.
Bottom substrate 910 may include an arrangement of droplet operations electrodes 918 (e.g., electrowetting electrodes). Bottom substrate 910 may, for example, be formed of a PCB. Top substrate 912 may, for example, be formed of a PCB that includes a copper layer 920. Copper layer 920 provides material that is suitable for soldering and may also function as an electrical ground. Copper layer 920 may also be patterned such that no hydrophobic material is present in the area at which a seal is to be formed. Bottom substrate 910 may be coupled to top substrate 912 by a solder ring 922. Solder ring 922 may also seal droplet actuator 900 such that fluids within droplet actuator 900 are retained.
In another embodiment, an area that is suitable for soldering (i.e., devoid of hydrophobic materials) may be formed by use of masking, prior to coating the top and bottom substrates with hydrophobic materials. For example, latex body paint may be used to mask the substrate components. The latex paint may be applied using a foam applicator and allowed to air dry. A hydrophobic coating may then be applied and the latex paint removed to provide an area that is suitable for soldering.
As shown in
Bottom substrate 1012 may be separated from top substrate 1014 by a gap 1016. One or more spacers 1018 may be used to set the size of gap 1016. Spacers 1018 may, for example, be formed of an o-ring or other suitable spacer materials that provides a sufficient gap size and a sufficient seal. Bottom substrate 1012 may include an arrangement of droplet operations electrodes 1022 (e.g., electrowetting electrodes) configured to conduct droplet operations.
Top substrate 1014 may, for example, be formed of a plastic material or a plastic material that supports a glass top plate (not shown). One or more fasteners 1024 may be provided on top substrate 1014 such that each fastener 1024 is aligned with a respective opening 1020 on bottom plate 1010. Each fastener 1024 and opening 1020 provide for self-aligning of bottom plate 1010 and top substrate 1014. Each fastener 1024 may be a deformable fastener that includes a shaft 1026 and a flexible tab or deformable head 1028. Each opening 1020 is of sufficient size to accommodate shaft 1026 of fastener 1024.
In another embodiment, threaded structures may be used to couple and seal a top substrate to a bottom substrate. For example, a top substrate and a bottom substrate may be circular or rectangular and include threaded structures that are circular or linear, respectively. The threaded structure provides secure attachment of a top substrate to a bottom substrate such that a leak-proof seal is formed.
The embodiments of the invention providing droplet actuator devices and methods for coupling and/or scaling the top and bottom substrates of a droplet actuator as described above with relation to
The present invention provides devices and methods for parallel processing of assays on a droplet actuator. The invention provides droplet actuators wherein droplet operations electrodes are organized into unit cells. The configuration of a unit cell may be optimized for a specific molecular assay or immunoassay such that all steps in an assay protocol may be performed within the unit cell. The configuration of the unit cell may be repeated any number of times (and/or in any combination) on the droplet actuator. The unit cells on a droplet actuator may be operated in parallel. The unit cells may also be configured to be electrically similar. The unit cell architecture provides for increased throughput in molecular assays or immunoassays (e.g., time to result). The unit cell architecture also provides dedicated lanes for each sample in a molecular assay or immunoassay and for each type of assay such that cross-contamination between samples is minimized, preferably entirely avoided.
In some embodiments all unit cells may not be configured to be functional. For example some unit cells may not have elements of a cartridge such as a top plate or a hydrophobic coating.
The architecture (i.e., configuration of droplet operations electrodes 1112) of droplet actuator 1100 is such that each unit cell 1114 may be connected to adjoining unit cells 1114 by electrode arrangements 1122, i.e., electrode arrangements 1122 may be used to transport droplets from one unit cell to the next. Unit cells 1114 also include sample reservoirs 1120 (e.g., 4 sample reservoirs 1120 in each unit cell). Detection cell 1118 may be connected to unit cells 1114 by electrode arrangement 1122. In alternative embodiments, one or more unit cells may include its own detection zone. In one embodiment, the detection modality is electrochemical, and the unit cell is fully self-contained, i.e., including all elements needed for dispensing sample and reagents, conducting an assay protocol, and detecting any signal produced as a result of the assay protocol.
In another embodiment, the detection modality is optical, and the unit cell is fully self-contained. In yet another embodiment, each unit cell includes a detection window, and the cartridge is moved to place each window into proximity with a common sensor for detection. Alternatively, the sensor may be moved to sequentially place each detection window into proximity with a common sensor for detection. In yet another embodiment, an array of sensors (such as a charge-coupled device (CCD) or photodiode array or an array of waveguides connected to photodetectors) perform simultaneous detection using a clear top or bottom substrate and/or using multiple detection windows.
In some cases, the reservoirs in different unit cells, such as wash reservoirs or reagent reservoirs, are coupled to common external liquid sources. A single wash fluid source, such as a well or reservoir formed in or associated with the top substrate, may supply multiple wash reservoirs within the droplet operations gap. As an example, a wash reservoir formed in a top substrate may be configured to overly multiple wash reservoirs in the droplet operations gap. The wash reservoir formed in the top substrate may include multiple openings, each opening providing a path from the top substrate wash reservoir into a droplet operations gap wash reservoir. In another embodiment, a single off-actuator wash reservoir may be coupled to a fluid path network, which supplies wash buffer into multiple on-actuator reservoirs.
In some cases, unit cells 1114 provide dedicated lanes for each sample or each type of assay such that any potential cross-contamination between samples is minimized, preferably entirely avoided. Unit cells 1114 may be operated in parallel such that assay throughput is sufficiently increased. In one embodiment, a droplet actuator is provided for multiple uses. During each use, one or more unit cells is used to conduct an assay protocol and then sealed, leaving unused unit cells for later use.
Detection cell 1118 may include a substrate reservoir 1130, a waste reservoir 1132, and a detection spot 1134. A single detection cell 1118 provides for serial detection of the end product of each of the 48 assays.
In the illustrated embodiment, all the steps of an assay (e.g., an immunoassay), except detection of an end product, are performed within each unit cell 1114. In one example, droplet actuator 1100 may be used to perform four different immunoassays (e.g., assay #1 in unit cell 1114a, assay #2 in unit cell 1114b, assay #3 in unit cell 1114c, and assay #4 in unit cell 1114d) on 12 samples from sample reservoirs 1120, for a total of 48 assays. Samples are loaded into sample reservoirs 1120 and then into unit cells 1114a through 1114d. Sample droplets are dispensed from sample reservoirs 1120 via droplet operations and transported using droplet operations along electrode arrangements 1122. A first reagent, such as a primary antibody, may be dispensed from reagent reservoir 1126a and incubated with the sample droplet. A waste supernatant droplet produced by a bead-washing protocol may be transported into waste reservoir 1128. A second reagent, such as a secondary antibody, may be dispensed from reagent reservoir 1126b and incubated with the sample droplet. A waste supernatant droplet produced by a bead-washing protocol may be transported into waste reservoir 1128. Wash buffer droplets are dispensed from wash reservoir 1124 and the beads may be washed a sufficient number of times using droplet operations to remove unbound material. Each sample (i.e., sample-antibody complex) may be then transported serially along electrode arrangements 1122 using droplet operations to detection cell 1118. A detection substrate may be dispensed from substrate reservoir 1130 and incubated with the sample-antibody complex to produce a signal. The sample-antibody complex may be then transported using droplet operations to detection spot 1134 for detection of the end product (e.g., chemiluminescent detection). The sample-antibody complex may be then discarded into waste reservoir 1132. Alternatively, the detection substrate may be processed in the presence of the sensor.
In another embodiment, detection cell 1118 may be connected to each of the unit cells 1114 by an electrode arrangement 1122 that is configured outside of unit cells 1114 such that the transportation of sample droplets across electrodes 1112 in adjacent unit cells 1114 is minimized.
In yet another embodiment, unit cells 1114 may be configured for different assays. For example, unit cell 1114a may be configured for PCR assay and unit cells 1114b through 1114d configured for immunoassays.
As illustrated in
In operation, a sample that includes magnetically responsive beads is loaded on and dispensed from a sample reservoir via droplet operations. A first reagent, e.g., a primary antibody, is dispensed from a reagent reservoir and incubated with the sample droplet (e.g., incubation region). A supernatant droplet is split off and dispensed into a waste reservoir. A second reagent, such as a secondary antibody, is dispensed from a second reagent reservoir and incubated with the sample droplet (e.g., incubation region). A waste supernatant droplet is dispensed into a waste reservoir. Wash buffer droplets are dispensed from a wash reservoir and the sample-antibody complex is washed over a magnet (not shown) using droplet operations a sufficient number of times to remove unbound material. A substrate droplet is dispensed from a substrate reservoir, mixed with the sample-antibody complex and transported to the detection spot. Following detection of antigen-antibody complexes, the sample-antibody complex is discarded in a waste reservoir.
In another embodiment, droplet actuator 1200 may be configured to provide 48 unit cells 1210 or any number of unit cells 1210. In yet another embodiment, all unit cells 1210 may be configured for conducting PCR assays. In yet another embodiment, unit cells 1210 may be configured for conducting pyrosequencing assays. For example unit cell 1210 may include 4 nucleotide input reservoirs (A, G, C, T), a wash reservoir, a reaction zone, a waste reservoir, and a detection zone arranged along a linear path. In yet another embodiment, unit cells 1210 may be configured for a combination of assays (e.g., immunoassays, PCR, pyrosequencing).
In yet another embodiment, a sample may be dispensed to two or more unit cells 1210 through a sample feed mechanism (e.g., path or array of droplet operations electrodes, not shown) to provide some degree of parallelism on droplet actuator 1200. Similarly, one or more reagents may be dispensed to two or more unit cells 1210 through a reagent feed mechanism, such as an arrangement of droplet operations electrodes (not shown).
Washing cell 1400 may include an arrangement of droplet operations electrodes 1410 (e.g., electrowetting electrodes) that are aligned with a wash reservoir electrode 1412 and a waste reservoir electrode 1414. A magnet 1416 is arranged in close proximity to droplet operations electrodes 1410. In particular, magnet 1416 is arranged such that certain droplet operations electrodes 1410 (e.g., two droplet operations electrodes 1410M) are within the magnetic field of magnet 1416. Magnet 1416 may, for example, be a permanent magnet or an electromagnet.
An opening 1418 in a top substrate (not shown) may be substantially aligned with or slightly overlapping wash reservoir electrode 1412. Opening 1418 is of sufficient size to dispense a number of droplets onto wash reservoir electrode 1412. Opening 1418 provides a fluid path for flowing fluid, such as wash buffer fluid, into washing cell 1400 and then onto wash reservoir electrode 1412. An opening 1420 in the top substrate (not shown) may be overlapping waste reservoir electrode 1414. Opening 1420 provides a fluid path for flowing fluid out of washing cell 1400.
Washing cell 1400 is arranged in proximity of an immunoassay cell 1422 such that a sample may be transported into and out of washing cell 1400. Immunoassay cell 1422 is configured for performing immunoassays.
Washing cell 1400 may include a wash buffer 1424 and a sample droplet 1426. Sample droplet 1426 may, for example, include a quantity of magnetically responsive beads 1428 that includes bound antigen and reporter antibody (i.e., antigen-antibody-reporter complex), and unbound material, such as excess unbound reporter antibody. Wash buffer 1424 is drawn from a wash buffer reservoir (not shown) through opening 1418 and onto reservoir electrode 1412 by activating reservoir electrode 1412.
In another embodiment, droplet operations electrodes 1410 may be activated such that a slug of wash buffer 1424 extends from wash reservoir electrode 1412 to waste reservoir electrode 1414 to provide for continuous washing of beads 1428 on magnet 1416. In this embodiment, liquid from wash reservoir 1412 is dispensed into the waste reservoir 1414 continuously so that while the beads are held over the magnet, the continuous flow of the liquid removes the supernatant. It should be noted that no droplets need to be formed in this approach.
It will be appreciated that the configuration may include more or less droplet operations electrodes 1410. Further, the path of droplet operations electrodes 1410 need not be organized in a straight line as shown, but may include bends or turns. Moreover, various intermediate steps may be included, such as using droplet operations electrodes 1410 to move droplet 1426 off of magnet 1416 to cause beads 1428 to be resuspended in the droplet and release any material that may be trapped between beads 1428. Other examples of suitable washing techniques are described in Pamula et al., U.S. Pat. No. 7,439,014, entitled “Droplet-Based Surface Modification and Washing,” granted on Oct. 21, 2008; and Allen et al., International Patent Application No., PCT/US2008/074151, entitled “Bead manipulations on a droplet actuator” filed on Aug. 25, 2008; the entire disclosures of which are incorporated herein by reference.
Droplet actuator 1500 may include a bottom substrate 1510. Bottom substrate 1510 may include an arrangement of droplet operations electrodes 1512 that are configured for droplet operations. Droplet actuator 1500 may also include a top substrate (not shown) that is arranged in a generally parallel fashion with bottom substrate 1510, separated from bottom substrate 1510 to provide a gap for conducting droplet operations. Droplet operations electrodes 1512 may be arranged in a manner to form spiral-shaped unit cells 1514. In the example illustrated, droplet actuator 1500 includes 18 spiral-shaped unit cells 1514. Any number of such cells may be provided.
One or more openings may be provided in a top substrate for supplying sample and/or reagents to the spiral cells. As illustrated, opening 1550 may provide a fluid passage for loading a sample droplet; opening 1552 may provide a fluid passage for loading droplets including assay reagents or beads; opening 1554 may provide a fluid passage for loading a wash buffer; opening 1556 may provide an opening for removing waste from the spiral cell; opening 1558 may include an opening for adding reagent, such as substrate; opening 1560 may provide another opening for removing waste from the spiral cell.
Electrode path segment 1570 may be used for conducting droplet operations for mixing sample and reagent loaded from openings 1550 and 1552. Reagent may, for example, include beads having affinity for a target substance possibly present in the sample droplet. Wash droplets may be introduced via opening 1554 subjected to a washing protocol in path segment 1572 and/or path segment 1570. A magnet 1574 may be associated with the spiral cell for immobilizing beads during the execution of a washing protocol. Waste from a washing protocol may be removed from the spiral cell via opening 1556. Reagents for an immunoassay protocol, such as substrate, may be introduced via opening 1558 and combined with the bead-containing droplet. Mixing of substrate and the washed-bead droplet may occur in path segment 1576. Detection of signal generated by the protocol may be effected on path 1576, e.g., at electrode 1578.
Each spiral-shaped unit cell 1514 may be self-sufficient and may be operated in parallel. Alternatively, various reservoirs my feed multiple spiral cells; as with other unit cell embodiments described herein, substrate 1510 may include paths or networks of additional electrodes connecting the spiral cells to each other and/or to common, reservoirs. In one example, a common wash reservoir (not shown) may be provided on the top substrate, such that one wash reservoir supplies the wash reservoir of all spiral-shaped unit cells 1514 with wash buffer via a common opening corresponding to opening 1554 in
The spiral cells may be reoriented, e.g., as shown by electrode arrangement 1580 in
A variety of configurations and protocols will be apparent to the skilled artisan in light of this specification. In one alternative embodiment, the process is reversed, so that sample is loaded via opening 1560 and waste is removed via opening 1550. On or more magnets may be provided at various locations around the spiral cell as needed for handling magnetically responsive beads, e.g., conducting merge-and-split droplet washing protocols.
Droplet actuator 1600 may include an arrangement of droplet operations electrodes 1610 (e.g., electrowetting electrodes) that are configured to provide, for example, 16 columns 1612. Each column 1612 may have, for example, 32 flow-through unit cells 1614. In this example, 16 columns 1612×32 flow-through unit cells 1614 results in 512 reactions. Each column 1612 may also include a sample reservoir (not shown) for loading 16 different samples. A sample loaded on a column 1612 may be dispensed and transported via droplet operations along the column 1612 such that each flow-through unit cell 1614 in the column 1612 is populated with sample.
Droplet operations electrodes 1610 may also be configured to include one or more reagents reservoirs (not shown) that are located, for example, opposite from the samples reservoirs of columns 1612. The arrangement of reagent reservoirs may be such that any combination of reagents may be routed to any combination of samples.
A set of heaters 1616 is aligned with and positioned in proximity to respective columns 1612. Heaters 1616 control the temperature of filler fluid in their vicinity. Heaters 1616 may provide two different thermal zones for each flow-through unit cell 1614. For example, heaters 1616 may provide a 95° C. zone and a 60° C. zone. Alternating the temperature provided by each heater 1616 (e.g., 95° C., 60° C., 95° C., 60° C., etc.) allows heaters to be shared between adjacent columns 1612. For example, during a PCR assay, a reaction sample in a flow-through unit cell 1614 is transported back and forth between a heater 1616 set at 95° C. and a heater 1616 set at 60° C.
In another embodiment, droplet actuator 1600 may be configured to provide any number of columns 1612 and flow-through cells 1614. In one example, droplet actuator 1600 may be configured to provide 12 columns 1612 and 32 flow-through unit cells 1614 (i.e., 384 reactions).
Droplet actuator 1700 may be aligned with contact pins 1726 of a control instrument 1727 and detector configured to align with detection spot 1728 on disk-shaped droplet actuator 1700. Contact pins 1726 of control instrument 1727 provide for electrical connection to contact pads 1722 on bottom substrate 1710 that are associated with a certain wedge-shaped unit cell 1714. The relative positions of droplet actuator 1700 and control instrument 1727 may be adjustable in order to engage and disengage contact pads 1722 of droplet actuator 1700 and contact pins 1726 of control instrument 1727. In this way, droplet actuator 1700 may be rotated to bring any wedge-shaped unit cell 1714 into contact with control instrument 1727. When positioned, detection spot 1728 is aligned with detection electrode 1720 in wedge-shaped unit cell 1714 for detection of assay results.
In operation, a unit cell, for example, wedge-shaped unit cell 1714a is rotated or otherwise moved into position such that contact pads 1722 associated with wedge-shaped unit cell 1714a and contact pins 1726 of control instrument 1727 are aligned. Alternatively, contact pins 1726 of control instrument 1727 may be moved into alignment with contact pads 1722 associated with wedge-shaped unit cell 1714a. Contact pads 1722 and contact pins 1726 are engaged to provide an electrical connection to wedge-shaped unit cell 1714a. In this position, detection spot 1728 is aligned with detection electrode 1720 of wedge-shaped unit cell 1714a. Sample and reagents are dispensed and an assay is performed using droplet operations. Following die detection operation for determining the assay results and dispensing of waste droplets in waste reservoir 1724, contact pins 1726 of control instrument 1727 are disengaged from contact pads 1722 of wedge-shaped unit cell 1714a. Droplet actuator 1700 is rotated (e.g., clockwise in direction of arrow) such that wedge-shaped unit cell 1714a is moved away from contact pins 1726 of control instrument 1727. Subsequently, the contact pads 1722 associated with wedge-shaped unit cell 1714b are moved into position and are engaged with contact pins 1726 of control instrument 1727. Wedge-shaped unit cell 1714b is now electrically coupled with control instrument 1727 and ready for operation. The process may be repeated until all eight wedge-shaped unit cells 1714 have been assayed. This invention takes advantage of the radial symmetry of droplet actuator 1700. In another embodiment, the detector can be a CCD camera overlooking all the droplets at the center of the droplet actuator. Multiple droplets can be detected simultaneously with the CCD camera within a small area. The wedge shaped unit cell design forming a circular droplet actuator would avoid common paths being used for incubation washing and detection.
In one embodiment, each wedge-shaped unit cell 1714 is configured to perform an assay on different samples. In another embodiment, each wedge-shaped unit cell 1714 is configured to perform a different assay on the same sample (e.g., dispensed from individual sample reservoirs in each unit cell). In yet another embodiment, a single sample reservoir may be used to dispense a sample droplet to each wedge-shaped unit cell 1714 that is configured to perform a different molecular assay. In another embodiment, the centrifugal forces generated during operation of the circular disk can be used to perform separations in the samples, such as separation of cells from whole blood.
The present invention also provides a stat digital microfluidic cartridge. In a stat lab environment, there may be a need to run multiple samples at once or to just run one sample with a very high priority. Currently, once a cartridge is filled with oil and other fluids it is difficult to save the cartridge for future use. Thus, if one urgent sample comes in, the operator may have to waste an entire cartridge (which could be designed for multiple samples) to get an immediate result.
It is contemplated herein for a cartridge with separate chambers or unit cells that allow for stat capabilities. Each chamber would be isolated so that it can be filled with oil separately without impacting other chambers on the same cartridge. The cartridge could be designed to have one stat chamber per cartridge. For example, if you have a ten sample cartridge, one could be a stat lane where the other nine are all in an open environment as currently performed. In another example, the cartridge could be designed so that each sample lane or area is a stat chamber, i.e., all ten samples could be processed independently in a stat methodology.
Chambers could be provided on the cartridge by extending gasket features into the interior of the cartridge to provide isolated regions where oil or other filler fluids are contained without impacting adjacent chambers in the cartridge. Since current procedures use plastic injection molded parts where features can be easily added and current assembly procedures use automation to dispense adhesives, the concept could be implemented in a cost effective manner.
The use of a stat digital microfluidic cartridge enables stat processing of samples in a cost effective manner. Instead of wasting an entire multi-sample cartridge, tire user can either use the stat lane or pull out a special stat cartridge that is designed for use in the stat environment. The user can utilize portions of a cartridge and then save the rest of the cartridge for later use. It is also preferred over using a smaller, single sample cartridge since the multi-chamber version can be made to the same footprint. This aspect allows the use of automation in both the manufacture and use of the cartridge.
The foregoing detailed description of embodiments refers to the accompanying drawings, which illustrate specific embodiments of the invention. The scale of the drawings set forth herein is not intended to limit the scope of the invention. Other embodiments having different structures, operations and scales do not depart from the scope of the present invention. The term “the invention” or the like is used with reference to certain specific examples of the many alternative aspects or embodiments of the applicants' invention set forth in this specification, and neither its use nor its absence is intended to limit the scope of the applicants' invention or the scope of the claims. This specification is divided into sections for the convenience of the reader only. Headings should not be construed as limiting of the scope of the invention. The definitions are intended as a part of the description of the invention. It will be understood that various details of the present invention may be changed without departing from the scope of the present invention. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation, as the present invention is defined by the claims as set forth hereinafter.
This application claims priority to the following U.S. Patent Applications: 61/082,164, entitled “Droplet Actuators with Patterned Surfaces,” filed on Jul. 18, 2008; 61/140,707, entitled “Droplet Actuator Assembly,” filed on Dec. 24, 2008; 61/141,167, entitled “Unit Cells on a Droplet Actuator,” filed on Dec. 29, 2008; 61/142,181, entitled “Unit Cells on a Droplet Actuator,” filed on Dec. 31, 2008; and 61/159,197, entitled “Droplet Actuators with Patterned Surfaces,” filed on Mar. 11, 2009; the entire disclosures of each of these applications is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
20150068903 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
61082164 | Jul 2008 | US | |
61140707 | Dec 2008 | US | |
61141167 | Dec 2008 | US | |
61142181 | Dec 2008 | US | |
61159197 | Mar 2009 | US | |
60910897 | Apr 2007 | US | |
60980202 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13003765 | Jun 2011 | US |
Child | 14498418 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12531809 | Oct 2009 | US |
Child | 13003765 | US |