The aspects of the present disclosure relate to transdermal delivery systems, patches, vehicles and devices as well as methods of making and using same including pharmaceutically active agents such as psilocybin, menthol and optionally cannabinoids.
There is a need for novel treatments for drug addiction, pain and/or inflammation on various parts of the body. Some current agents may be ineffective and can, for example, come with unacceptable side effects. Furthermore, there is a growing concern about the overuse of opioid pain treatments.
Topical delivery systems, patches, vehicles and devices have been used to deliver of pharmaceutically active agents. However, many such delivery systems, patches, vehicles and devices can have shortcomings such as. Such as drug-in-adhesive systems. Such systems mix the pharmaceutically active agent with the adhesive and can be entrapped and/or therefore not sufficient enough to get the full dose.
It would be preferable to have a topical delivery system, vehicle and device that would keep separate the pharmaceutically active agents from the patch adhesive system. This will give full contact of the pharmaceutically active agent onto the skin without the hindrance of the adhesive.
In one embodiment, a transdermal delivery system is provided. The transdermal delivery system comprises an absorbent material including menthol, an effective amount of a compound for treating drug addiction, a carrier solvent, an absorbent polymer and a surfactant.
In another embodiment, a transdermal delivery system is provided. The transdermal delivery system comprises a backing material, an absorbent material layer and a release layer. The backing material includes a first side and a second side, the second side including a topically acceptable adhesive. The absorbent material layer includes a first side and a second side and wherein the first side of the absorbent material layer is positioned adjacent the second side of the backing material and includes menthol, an effective amount of a compound for treating drug addiction a carrier solvent and an absorbent polymer. The release layer is in contact with a portion of the second side of the backing material. The absorbent material is positioned in a cavity in between the backing layer and the release layer.
In another embodiment, a method of treating drug addiction of a human patient using a transdermal delivery system. The transdermal delivery system includes an absorbent material including a first side and a second side, the absorbent material including at least one cannabinoid, menthol, an effective amount of a compound for treating drug addiction, a carrier solvent, an absorbent polymer and a surfactant. The method comprises topically administering to a body part of the human patient the transdermal delivery system.
The accompanying drawings illustrate presently preferred embodiments of the present disclosure, and together with the general description given above and the detailed description given below, serve to explain the principles of the present disclosure. The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
Various embodiments are described hereinafter. It should be noted that the specific embodiments are not intended as an exhaustive description or as a limitation to the broader aspects discussed herein. One aspect described in conjunction with a particular embodiment is not necessarily limited to that embodiment and can be practiced with any other embodiment(s).
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the elements (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the embodiments and does not pose a limitation on the scope of the claims unless otherwise stated. No language in the specification should be construed as indicating any non-claimed element as essential.
Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in this specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by embodiments of the present disclosure. As used herein, “about” may be understood by persons of ordinary skill in the art and can vary to some extent depending upon the context in which it is used. If there are uses of the term which are not clear to persons of ordinary skill in the art, given the context in which it is used, “about” may mean up to plus or minus 10% of the particular term.
The terms “%”, “% by weight”, “weight %” and “wt %” are all intended to mean unless otherwise stated, percents by weight based upon a total weight of 100% end composition weight. Thus 10% by weight means that the component constitutes 10 wt. parts out of every 100 wt. parts of total composition.
The term “pharmaceutically acceptable” means that which is useful in preparing a pharmaceutical composition that is generally non-toxic and is not biologically undesirable and includes that which is acceptable for veterinary use and/or human pharmaceutical use.
The term “topically acceptable” or “dermally acceptable” means the compound, substance or device may be administered to or onto the surface of a patient, including the skin or other accessible tissues, without substantial harmful effects to the body part and/or its surfaces.
As used herein, the term “pharmaceutically active agent” means a composition which, when administered to a human or animal patient, has a biochemical or physiological effect on the patient (i.e., a therapeutic effect or activity).
The delivery systems, patches, vehicles and devices of the present disclosure are also useful in the fields of human medicine for the administration of one or more pharmaceutically active agents to people (i.e., human patients) and in veterinary medicine for the administration of pharmaceutically active agents to animals such as small animals or pets (e.g., dogs, cats, etc.) and large animals (e.g., horses and farm animals (e.g., cows, sheep, etc.)).
Pharmaceutically active agents can include pharmaceutical agents such as agents for the treatment of addiction (e.g. drug addiction), analgesics, decongestants, bronchodilators and other antiasthmatic agents, cardiovascular agents such as beta-blockers, ACE inhibitors, diuretics, antithrombics, etc., diabetic agents, antihistamines, anesthetics, antifungals, antinauseants, antiemetics, antibacterial agents, antifungal agents, corticosteroids, neurological agents, anti-inflammatoireccines, biological agents (such as Humera, Enbrel and Remicade), wound healing agents and anticonvulsants. Vitamins (particularly A, C, D and E) are a particular embodiment of a pharmaceutically active agent. The concentration of the pharmaceutically active ingredient in embodiments of the present disclosure are dependent on the identity of the pharmaceutically active agent, the condition and patient being treated and the potency desired.
One group of particularly interesting pharmaceutically active agents include pharmaceutical agents that are moisture sensitive such as biologicals, enzymes, proteins (and fragments thereof). Other moisture sensitive pharmaceutical agents include Adderall, alprazolam, gemifloxacin, hydromorphone and zolmitriptan.
Another embodiment of the present disclosure relates to antifungal pharmaceutically active agents such as Amphotericin B, Candicidin, Filipin, Hamycin, Natamycin, Nystatin, Rimocidin, Bifonazole, Butoconazole, Clotrimazole, Econazole, Fenticonazole, Isoconazole, Ketoconazole, Luliconazole, Miconazole, Omoconazole, Oxiconazole, Sertaconazole, Sulconazole, Tioconazole, Albaconazole, Fluconazole, Isavuconazole, Itraconazole, Posaconazole, Ravuconazole, Terconazole, Voriconazole, Abafungin, Amorolfin, Butenafine, Naftifine, Terbinafine, Anidulafungin, Caspofungin, and Micafungin.
Another embodiment of the present disclosure relates to pharmaceutically active agents for wart removal compounds such as salicylic acids. Such treatments are of specific interest due to heightened response to the anhydrous medium of the hydrogel.
Another embodiment relates to pharmaceutically active agents for wound healing agents and products (such as gauze, bandage, and synthetic skin). Such agents include aloe, benzyl alcohol, coagulants (such as styptic, chitosan, vitamin K, phytomenadione, menadione, etamsylate, carbazochrome batroxobin), ferric sulfate, ticosan, becaplermin, antimicrobial agents (including antibiotics such as gentamycin, polymyxin B, zinc bacitracin, metronidazole, ofloxacin, minocycline, hydrocortisone, triamcinolone and tetracycline), antifungals, silver, povidone-iodine, polyhexamethylene biguanide, dialkylcarbamoylchloride, lactoferrin, growth factors (such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), transforming growth factor (TGF-b1), insulin-like growth factor (IGF-1), human growth hormone, granulocyte macrophage colony stimulating (GM-CSF)).
Another embodiment relates to pharmaceutically active agents for scar healing agents such as vitamins, aloe vera, and benzyl alcohol.
Pharmaceutically active agents can also include cosmetic agents such as caffeine, sunscreens (such as butyl methoxydibenzoylmethane, oxybenzone, bumetrizole, ecamsule, phenylbenzimidazole sulfonic acid, ethylhexyl methoxycinnamate, menthyl anthranilate, octocrylene, para-aminobenzoic acid (PABA), and Tinosorb M), anti-inflammatoirech as salicylates), anti-acne agents (such as (isotretinoin, Benzamycin, clindamycin, erythromycin, minocycline and tretinoin), vitamins (particularly vitamins C and E, Biotin), ubiquinone, retinoids, minoxidyl, zinc pyrithion, ketoconazole, allantoin, herbal extracts (such as passion fruit extract (Passiflora edulis), red rose extract, raspberry extract (Rubus idaeus), yucca herbal extract, aloe vera leaf gel, tea tree oil (Melaleuca alternifolia), peppermint leaf oil, spearmint leaf oil, wintergreen leaf oil (Gaultheria procumbens), lavender oil, cinnamon leaf oil, lemon peel oil, valencia orange peel oil, pink grapefruit peel oil, Roman chamomile oil (Anthemis nobilis flower oil), and jasmine oil), protein hydrolysates (i.e. short protein fragments that are still called “peptides”) and skin lightening agents.
One particular cosmetic agent of interest that is a pharmaceutically active agent is coenzyme Q10 (Co Q10), also known as ubiquinone, ubidecarenone, coenzyme Q, and abbreviated at times to CoQ10, CoQ or Q10. Ubiquinone is a 1,4-benzoquinone, where Q refers to the quinone chemical group, and 10 refers to the number of isoprenyl chemical subunits in its tail.
“Pain” relief, reduction or treatment thereof as referred to herein for the composition and method embodiments of the current disclosure includes an analgesic or pain relieving or pain treating composition or component thereof that treats pain and includes, but is not limited to local pain, systemic pain, oral pain, dental pain and general pain, regardless of the location on the body to which the embodiment of the current disclosure is administered.
“Anti-inflammatory” as referred to herein for the composition and method embodiments of the current disclosure includes an anti-inflammatory composition or component thereof that treats inflammation and includes, but is not limited to local inflammation, systemic inflammation, oral inflammation, dental inflammation and general inflammation, regardless of the location on the body to which the embodiment of the current disclosure is administered.
As used herein, the terms “addiction” and “drug addiction” refer to a persistent behavioral pattern marked by physical and/or psychological dependency to a substance, particularly drugs such as narcotics, stimulants, and sedatives, including but not limited to opioids, heroin, cocaine, alcohol, nicotine, caffeine, amphetamine, desoxyephedrine, methadone and combinations thereof. As used herein, the “treatment of addiction in a patient” refers to reducing the symptoms (including withdrawal symptoms) associated with drug dependency as well as alleviating drug cravings in addicts. Such symptoms include nausea, vomiting, anxiety, abdominal cramps, muscle pain, chills and headache.
Pharmaceutically active agents can also include exosomes that include cellular materials that naturally occur therein or that have been loaded with other pharmaceutically active agents, including those disclosed herein as well as protein and/or peptide materials including antibodies and fragments thereof.
Other pharmaceutically active agents can include the following class of active ingredients: laxatives, analgesics, antibiotics, antirheumatics, antiallergics, antiarrhythmics, antibiotics, antiepileptics, beta-receptor blockers, calcium channel blockers, chemotherapeutics, enzymes, extracts, inhibitors of the rennin-angiotensin system, broncholytics/antasthmatics cholinergics, diuretics, circulation promoters, gout agents influenza agents, coronary agents, osteoporosis agents (biphosphonates), lipid reducers, gastrointestinal agents, peptides, proteins, proton pump blockers, psychopharmaceuticals, platelet aggregation inhibitors urological agents venous therapeutic agents, vitamins and minerals.
The aspects of the present disclosure relate to transdermal delivery systems, patches, vehicles and devices as well as methods of use and methods of treatment (including treatment or treating a human or animal patient) using same and methods of manufacture of same including pharmaceutically active agents and can be used, for example, to relieve pain (i.e., analgesics), symptoms of drug addiction (including withdrawal symptoms) and/or inflammation, methods of making such as transdermal delivery systems, patches, vehicles and devices and methods of using such transdermal delivery systems, patches, vehicles and devices including topically applied (e.g., to skin or another body part) transdermal delivery systems, patches, vehicles and devices including pharmaceutical transdermal delivery systems, patches, vehicles and devices, including analgesic, drug addiction and/or anti-inflammatory pharmaceutical compositions for the treatment of pain), symptoms of drug addiction (including withdrawal symptoms) and/or inflammation, that contain a pharmaceutically effective amount of more or more than one pharmaceutically active agents, such as, for example, psilocybin, menthol and optionally a pharmaceutically acceptable and effective cannabinoid.
One embodiment of the present disclosure includes a combination of psilocybin, menthol and optionally cannabinoid into a single therapeutic composition, for example, a transdermal delivery system, patch, vehicle or device can provide improved and better focused delivery of the pharmaceutically active agents to a patient than separately applying the psilocybin, menthol and optionally cannabinoid (to different areas of the body or layered one on top of another) without the hydrous hydrogel vehicle.
Transdermal delivery systems, patches, vehicles and devices as well as methods of use and methods of treatment using same and methods of manufacture of same, such as, for example, embodiments of the present disclosure, include transdermal delivery systems, patches, vehicles and devices in a desired size, shape and weight which, in the ordinary course of usage, can be placed topically on a body part (e.g., arm, leg, knee, torso, head, neck, foot as well as those parts that make-up them) for purposes of local and/or systemic administration of particular pharmaceutically active agents for a time sufficient to be effective for purposes of therapeutic activity to the body part and tissues thereof or other tissues remote from the application site in order to provide relief from the malady being suffered (e.g., drug addiction and the symptoms thereof, pain relief though an analgesic and/or anesthetic effect) including a malady of the body part (e.g., drug addiction, pain and/or inflammation) to which the transdermal delivery systems, patches, vehicles and devices of the present disclosure can be directly applied for relief. After being present in contact with the body part for a time sufficient to be effective for purposes of therapeutic activity, they can be removed from the body part. Such application to the body part includes placing the transdermal delivery systems, patches, vehicles and devices in contact with the skin covering the body part.
Embodiments of the present disclosure may be delivered for local or systemic administration to a body part of a person to be treated with the embodiment, for example, a body or skin surface thereof by placing an embodiment of the present disclosure on a body part or skin surface thereof, for example, a knee, leg, back of hand, arm, lower back, upper back, shoulder and forehead, in pharmaceutically active agent-transmitting relation thereto, the pharmaceutically active agents can include cannabinoid, for example, a phytocannabinoid or full spectrum hemp oil, psilocybin and menthol. Alternatively, an embodiment of the present disclosure may be incorporated into a transdermal delivery system, patch, vehicle or device, such as a unit dose delivery transdermal delivery system, patch, vehicle or device.
The transdermal delivery systems, patches, vehicles and devices of the present disclosure can be of a suitable size and shape to fit against a body part so as to be applied to the skin surface thereof. The transdermal delivery systems, patches, vehicles and devices of the present disclosure include a woven or nonwoven absorbent material that is a mechanical or structural matrix in which the pharmaceutically active agent or agents along with other components (e.g., absorbent polymer, carrier solvent, surfactant, humectant, etc.) of the present disclosure are held. The absorbent material can be a layer or more than one layer in embodiments of the present disclosure and examples include gauze (e.g., cotton gauze) as well as other dressings that use synthetic and natural fibers such as nylon, rayon, abaca, hemp, flax, lyocell, pina, modal, acetate, bamboo, banana, coir, soy protein, linen, silk, polyester, polypropylene, polyethylene, polyacrylates, alginates, to name a few). Another example is a 3M Tagaderm+Pad. A suitable size for the absorbent material, for example, is illustrated in
Material thickness 122 can range from about 0.01 cm to about 0.03 cm. Volumes of the patches can range from about 0.10 ml to about 5.0 ml, in keeping with the above patch dimensions. For example, the above referenced embodiments that include patches with a surface area of about 8.0 cm2 based on the above ranges of thickness could have volumes ranging from about 0.50 ml to about 2.0 ml.
In the embodiment of illustrated in
Other embodiment shapes of the absorbent material can also include a circle 200 illustrated in
The thickness 216 in circle 200 in
Non-limiting examples of injuries or other physical diseases or conditions causing pain and/or inflammation for which embodiments of the present disclosure can be used to reduce or lessen the pain and/or inflammation can include arthritis conditions (e.g., osteo, rheumatoid, psoriatic, fibromyalgia, etc.), head pain (e.g., concussion, head ache, migraine), orthopedic injuries or conditions (e.g., bone fracture or break; dislocated joint or bone; torn, stressed or strained ligament or tendon; bruising or trauma to tissue; back or spinal pain or herniated disc; tendonitis; gout, bursitis), muscles aches and pains (e.g., from stress and physical exertion) and post-surgery recovery (e.g., recovery from orthopedic surgery to repair a broken bone, back condition such as herniated disk or torn ligament, orthoscopic surgery).
Embodiments of the present disclosure include a treated absorbent material including one or more transdermally delivered therapeutic hydrophobic or hydrophilic pharmaceutically active agents, a carrier solvent, an absorbent polymer (e.g., a superabsorbent polymer) and optionally a surfactant, a humectant and a heat source material. The transdermally delivered therapeutic pharmaceutically active agents can be aqueous on non-aqueous agents.
Embodiments of the present disclosure include the treated absorbent material including a compound for treating drug addiction, menthol, and optionally cannabinoids as well as a carrier solvent, an absorbent polymer (e.g., a superabsorbent polymer) and optionally a surfactant, a humectant and a heat source material.
Cannabinoids are a pharmaceutically active agent and a class of chemical compounds that can be derived from plants (phytocannabinoids) or synthetically produced. Cannabinoids can have local and systemic analgesic, pain relieving, pain treating and anti-inflammatory therapeutic properties. Cannabinoids may also have other medical benefits and/or be useful in treating other medical conditions including, for example, reduction of anxiety and depression, reduction of symptoms like nausea, vomiting and pain related to cancer treatments, reduction of acne, protection of the neural system and benefits for the heart and circulatory system by the lowering of blood pressure. Cannabinoids can also have therapeutic value as a nutrient and can be included in composition and method embodiments of the present disclosure in an effective amount to perform that function.
Examples of phytocannabinoids include cannabidiol (CBD), cannabigerol (CBG), including, for example, CBD oil, cannabinol (CBN) and tetrahydrocannabinol (THC), the latter being a known psychotropic compound and the first two being non-psychotropic. Cannabis and hemp plants can exhibit wide variation in the quantity and type of cannabinoids they produce. Selective breeding of the plants can be used to control the genetics of plants and modify the cannabinoids produced by the plant. For example, there are strains that are used as fiber (commonly called hemp) and, as a result, have been bred such that they are low in psychoactive chemicals like THC. Such strains (e.g., hemp) used in medicine are, for example, often bred for high CBD content and have minimal levels of THC (less than 0.3%). Some embodiments of the present disclosure include a cannabinoid component with less than 0.3% THC. Examples of topical, transdermal and/or pharmaceutically effective cannabinoids include CBD (for example, full spectrum hemp oil). Cannabinoid, including, for example, phytocannabinoids including CBD, can be in an amount of about 0.10 wt % to about 20.00 wt % (based on 25% CBD conc. in CBD or hemp oil). CBD can be in an amount of 0.025 wt % to about 5.00 wt %. Full spectrum CBD or hemp oil can be in an amount of about 0.10 wt % to about 20.00 wt % (based on 25% CBD conc. in the CBD or hemp oil). Unit dosage formulations of the embodiments of the present disclosure can include cannabinoid, for example, a phytocannabinoid (including for example, CBD) in the amount of about 5.0 mg. to about 5000.00 mg. (based on 25% CBD conc. in the CBD or hemp oil). Unit dosage formulations of the embodiments of the present disclosure can include CBD in the amount of about 1.250 mg. to about 1250.00 mg. Unit doses of full spectrum CBD or hemp oil can include an amount of about 5.0 mg. to about 5000.00 mg. (based on 25% CBD conc. in the CBD or hemp oil). Unit dosage formulations of the embodiments of the present disclosure can include cannabinoid, for example, a phytocannabinoid (including for example, CBD) or full spectrum hemp oil in the amount of about 5.0 mg./ml. to about 1000.00 mg./ml. (based on 25% CBD conc. in the hemp oil). Unit dosage formulations of the embodiments of the present disclosure can include CBD in the amount of about 1.25 mg./ml. to about 250.00 mg./ml. Unit dosage formulations of the embodiments of the present disclosure can include full spectrum CBD oil in an amount of about 5.0 mg./ml. to about 1000.00 mg./ml (based on 25% CBD conc. in the CBD oil).
Unit dosage formulations of the embodiments of the present disclosure can include cannabinoid, for example, a phytocannabinoid (including for example, CBD) in the amount per unit of surface area (e.g., surface areas 102 and 104 in
Cannabinoids, for example, CBD can have a local and/or a systemic effect and may reduce pain imparting and regulating the endocannabinoid (neurotransmitter of the nervous system) receptor activity. The subsequent body functions that may be regulated include pain, sleep, appetite and immune system response (through, at least, in part, by reducing inflammation).
For the purpose of the present disclosure, the word “cannabinoid” refers to one or more cannabinoids or cannabinoid compounds or oils or extracts from plants (for example, hemp including hemp oil and full spectrum CBD or full spectrum hemp oil) that include one or a plurality of phytocannabinoids.
Full spectrum hemp oil is oil derived from the entire plant except the flower (which contains THC) and can have over 85 phytocannabinoids which can have a positive synergistic effect as compared to compositions having fewer cannabinoids. There may also be benefits to other components of it (e.g., terpenes). Such benefits and effect may include faster penetration and/or permeation of the therapeutic components thereof. Full spectrum hemp oil can include full spectrum hemp oil that has been purified to include less than the below stated amounts of one or more of the following impurities:
Embodiments of the present disclosure may also optionally include an effective amount of THC. Unit dosage formulations of the embodiments of the present disclosure can include THC in the amount of about 0.1 mg. to about 10 mg., about 1 mg. to about 10 mg., about 4 mg. to about 6 mg, about 5 mg. In addition to the other benefits that can be provided by other cannabinoids, THC may relieve stress and be a sleeping aid.
Cannabinoids of the present disclosure include Cannabidiol (CBD; a non-psychotropic) including, for example, CBD oil, Cannabinol (CBN; non-psychotropic), tetrahydrocannabinol (THC or dronabinol; a known psychotropic compound), cannabidiol acid (CBDA), cannabigerol (CBG), cannabigerol acid (CBGA), cannabidivarin (CBDV), cannabidivarin acid (CBDVA), cannabinovarin (CBNV), cannabigerovarin (CBGV), cannabichromene (CBC), naphthoylindoles; phenylacetylindoles; benzoylindoles; cyclohexylphenoles; HU-210, 3-dimethylnepty 11 carboxylic acid homologine 8, delta-9 tetrahydrocannabinol (THC or dronabinol), delta-8 tetrahydrocannabinol (D8-THC), tetrahydrocannabinol acid (THCA), tetrahydrocannabivarin (THCV), tetrahydrocannabivarin acid (THCVA), nabilone, rimonabant (SR141716), JWH-018, JWH-073, CP-55940, dimethylheptylpyran, HU-210, HU-331, SR144528, WIN 55,212-2,
JWH-133, levonantradol, AM-2201 and combinations thereof.
Additional embodiments of the present disclosure including compositions and methods used therein for the treatment of addiction can include the following pharmaceutical agents as ingredients:
Dosing of the above pharmaceutical agents for treating drug addiction, as a broad range for starters, can include the pharmaceutical agent or mixture thereof in an amount in the range of about 0.01 wt. % to about 60 wt % or about 0.01 wt % to about 40 wt %. In particular, embodiments of the present disclosure can included psilocybin in an amount in the range of about 1 mg wt. % to about 40 mg, about 10 mg to about 20 mg or about 15 mg per patch.
Some of these pharmaceutical agents can be derived from natural sources, such as fungi or cacti, and/or some of them can be derived using synthetic processes (e.g., chemically or biosynthetically synthesized).
An embodiment of the present disclosure for the treatment of drug addiction (e.g., opioid addiction) and used in a treatment method thereof including a biocompatible polymer, for example, in an amount of from about 1 wt % to about 25 wt %; a polyalcohol, for example, in an amount of from about 1 wt % to about 70 wt %; optionally at least one cannabinoid, for example, is in an amount of from about 1 wt % to about 20 wt %.; a stabilized menthol composition including a pre-formed mixture of menthol and at least one menthol stabilizer compound including undecylenic acid methyl ester, undecylenic acid or a salt of undecylenic acid, wherein the stabilized menthol composition includes a ratio of about 1 molar part menthol to from about 0.0005 molar part to about 1.0 molar part of the at least one menthol stabilizer compound, wherein the therapeutic composition includes, for example, a pain reducing effective amount of menthol and the percentage amounts are all based on the total weight of the therapeutic composition an effective amount of a compound (e.g., psilocybin) for treating drug addiction (e.g. opioid addiction) and optionally at least one cannabinoid, for example, is in an amount of from about 1 wt % to about 20 wt %.
The terms “treating” and “effective amount”, as used herein, unless otherwise indicated, means minimizing, reversing, alleviating, inhibiting the progress of, or preventing the disorder or condition to which such term applies, or one or more symptoms of such disorder or condition. The term “treatment”, as used herein, unless otherwise indicated, refers to the act of treating as “treating” is defined immediately above. The term “treating” also includes adjuvant and neo-adjuvant treatment of a subject.
All of the embodiments included here are with the proviso that the sum of ingredients in the exemplary compositions does not exceed 100%.
Extraction methods for magic mushroom active psilocybin include the mushrooms being dried and ground to a powder that is made into tea, capsulated, added to cookies/brownies etc., or inhaled/smoked. Other ways to consume are through beverages such as smoothies.
Chemical methods can also be used to extract pure psilocybin involves drying and grounding to a powder. The mushroom powder is then dispersed in an organic solvent such as chloroform, ethanol, ethanol, water-acetic acid.
Physical methods to extract psilocybin involves using a homogenizer and/or sonification. This method still requires the use of an alcohol-water solution.
An embodiment of the present disclosure is a method to extract psilocybin only using water and freezing-thawing which results in the rupturing of the mushrooms cell walls. The cell wall is mainly composed of glucans, chitin, and glycoproteins. These form mushroom structures called, pileipellis, stipitipellis, basidia and pleurocystidia, basidiospores; pleurocystidia, cheilocysitidia, as are shown in in
In one embodiment, freezing caused the mushroom structures below to rupture thus releasing psilocybin. This will apply to all the parts of the mushroom, from top to bottom: cap, gills, stem, ring, volva, mycellium, and hyphae.
The pileipellis (from the ½-radius part of the pileus) and the pileipellis (from the submarginal part of the pileus) parts of the mushrooms can be whole or chopped and soaked in water. This is then subject to a vacuum at about 28-30″ of Hg for at least about 1-hour. This allows the air in the mushroom to evacuate and is displaced by water, saturating the mushroom. The saturated mushroom is then subject to freezing for at least about 8 hours (e.g. overnight) at about 0° C. to about −4° C. This step ruptures the cell walls therefor releasing psilocybin during the thawing phase. Typical purifying methods (i.e. filtration, centrifugation, sonication, etc.) can then be used to collect the purified psilocybin/psilocin active.
The rupturing of these mushroom structures is from the expansion of water as it turns into ice by freezing the structures. The target temperature for the expansion of ice is between about 0° C. to about −4° C. Within these temperatures, water density decreases and expands approximately 9% by volume.
To prove that freeze-thawing ruptures the mushroom cell wall, typical button edible mushrooms (Agaricus bisporus) were used. Slide samples were prepared. They were viewed using a typical optical microscope with 40× magnification. Pictures were taken using a camera adapter attachment to the left eyepiece.
Menthol is a pharmaceutically active agent and an organic compound that can be made synthetically or obtained from mint oils such as corn mint and peppermint. Medicinally, it been found that menthol can have anesthetic (e.g., local) by, for example, blocking nerve signal transmission) and counterirritant properties as well as anti-inflammatory properties (e.g., systemic and local) as well as a cooling effect when administered topically to a patient. Furthermore, menthol is a vasodilator that can accelerate the transport of other pharmaceutically active agents in the circulatory system. In general, the action of local anesthetics can restrict to the site of application and rapidly reverses upon diffusion from the site of action in the nerve. Local anesthetics can also serve an important function in providing peripheral pain relief. Topical administration of pain-relieving anesthetics can provide important advantages over systemic or local, non-topical administration. Menthol can be in an amount of about 0.05 wt % to about 20.00 wt %. Unit dosage formulations of the embodiments of the present disclosure can include menthol in the amount of about 0.0025 mg. to about 1000.00 mg. Unit dosage formulations of the embodiments of the present disclosure can include menthol in the amount of about 0.0025 mg./ml. to about 200 mg./ml. Unit dosage formulations of the embodiments of the present disclosure can include menthol in the amount per unit of surface area (e.g., surface areas 102 and 104 in
Menthol may be stabilized or made less volatile using methods know in the art, such as, for example, mixing it with about 0.1 wt % to about 10 wt %, about 0.5 wt % to about 5 wt % of a surfactant including edible nonionic surfactants and ionic surfactants, such as, for example, sucrose fatty acid ester, polysorbate (e.g., polysorbate 80), hydrogenated castor oil (e.g., polyoxyethylene hydrogenated castor oil), cocamidopropyl betaine, cyclodextrins, adsorbents, encapsulations, nano-emulsions etc.
The aspects of the present disclosure also relate to embodiments including compositions, methods of making and methods of using included herein which also comprise the menthol component included in embodiments of the present disclosure in a stabilized, less volatile or more stable menthol composition as well as methods of making and using them including a pre-formed mixture of (a) menthol and (b) at least one menthol stabilizer compound including undecylenic acid methyl ester or undecylenic acid or a salt (preferably a pharmaceutically acceptable salt) thereof where the menthol in the stabilized menthol compositions is less susceptible to volatizing into a gas and remains in a form that can be administered in a composition in an amount closer to the amount originally included in the composition when formulated with less menthol volatizing away (i.e., lowering the rate of volatilization of the menthol from what it would be for menthol alone) from the original concentration and, thus, lowering the original concentration and diminishing the amount of the menthol originally added. The pre-mixing of menthol and the menthol stabilizer compound and the resulting premixture is formed before it is added to any of the other components of the composition.
Undecylenic acid salts, including pharmaceutically acceptable salts may include, for example, inorganic acid addition, hydrochloride salts, sulfate and phosphate salts; and organic acid addition salts, such as alkyl sulfonate, arylsulfonate, acetate, maleate, fumarate, tartrate, citrate and lactate and metal salts including alkali metal salts, such as lithium salt, sodium salt and potassium salt and alkaline earth metal salts, such as magnesium salt and calcium salt, strontium salt, aluminum salt and zinc salt, and other multivalent salts such as for example, zirconium, iron, copper, silver, bismuth etc. Additionally, primary secondary, and tertiary amine salts, organic and inorganic, mono and polyamines compounds could be utilized. Examples include compounds such as urea, and amino acids such as lysine, histidine, arginine etc., could be utilized.
The stabilized, less volatile or more stable menthol compositions can made by mixing together (a) menthol and (b) a menthol stabilizer compound in a ratio of (a) about 1 molar part menthol to (b) the amount of one or more than one of the menthol stabilizer compounds (undecylenic acid methyl ester, undecylenic acid or a salt (preferably a pharmaceutically acceptable salt) of undecylenic acid, including mixtures thereof) of from about 0.005 molar part to about 1.00 molar part, about 0.010 molar part to about 0.750 molar part, about 0.020 molar part to about 0.50 molar part, about 0.050 molar part to about 0.250 molar part, or about 0.10 molar part. It is believed that the menthol stabilizer compounds (e.g., undecylenic acid methyl ester and others included herein) and menthol may associate to form a menthol analog where the menthol analog's vapor pressure becomes lower than menthol itself. As a result of having a lower vapor pressure, the menthol component of the menthol analog volatizes as a lower rate than menthol by itself.
One possible explanation for the stabilization of menthol by the compound of formula (I) may be that the menthol associates with the alkenyl side chain of the menthol stabilizer compounds may provide a molecular attraction connecting the menthol stabilizer compounds and a menthol molecule, such that more than one menthol molecule may associate with a molecule of one of the menthol stabilizer compounds.
The stabilized, less volatile or more stable menthol compositions including menthol and at least one of the menthol stabilizer compounds (e.g., undecylenic acid methyl ester and others included herein) can also be made first by dissolving menthol in a pharmaceutically acceptable suitable solvent such as, for example, as a low, medium, or long chain triglyceride. Examples of such solvents are coconut oil, olive oil, palm oil, hemp oil and castor oil. Still other acceptable solvents, such as alcohols, ethers and polyalcohols, for example, propylene glycol, butylene glycol, and polyethylene glycols (PEGs) can also be used. The desired amount of at least one of the menthol stabilizer compounds disclosed herein (e.g., undecylenic acid methyl ester and others disclosed herein) is then added to that mixture. Such compositions that include menthol, solvent and one or more than one of the menthol stabilizer compounds included herein may be made where the mixture of the these ingredients includes a molar ratio of about one molar part menthol to a range of from about 0.0050 molar part to about 1.00 molar part, about 0.010 molar part to about 0.750 molar part, about 0.020 molar part to about 0.50 molar part, about 0.050 molar part to about 0.250 molar part, or about 0.10 molar part of at least one of the menthol stabilizer compounds (i.e., one of the menthol stabilizer compounds or a mixture of more than one of the menthol stabilizer compounds) included herein, preferably a molar ratio of about one molar part menthol to at most about 0.50 molar part, at most about 0.250 molar part or at most about 0.10 molar part of one or more than one of the menthol stabilizer compounds included herein. Such mixtures of menthol, solvent and menthol stabilizer compounds may be used when smaller amounts of menthol need to be stabilized (where the amount of menthol stabilizer compound to be mixed with the menthol is so small that there isn't enough of it to dissolve the menthol).
Both stabilized, less volatile or more stable menthol compositions (i.e., where the menthol is first dissolved in a solvent then dissolved in a menthol stabilizer compound included herein or where the menthol is directly dissolved in a menthol stabilizer compound included herein) can be used in orally administrated and non-orally administrated compositions (e.g., non-orally topically administrated compositions (e.g., place on the skin or other external tissues)). However, the menthol stabilizer compounds can have a bitter taste. The dissolving of the menthol in solvent prior to the addition of at least one of the menthol stabilizer compounds included herein is preferably used in menthol containing therapeutic compositions to be administered orally because by first dissolving the menthol in a suitable solvent, less of the menthol stabilizer compounds may be used, thus lessening the bitter taste of the menthol stabilized composition and the final product in which it is included that is imparted by the menthol stabilizer compound.
The carrier solvent is used to form a solution matrix in which the other ingredients in the absorbent material and specifically in the absorbent polymer in the absorbent material are held. Examples of carrier solvents can include coconut oil, medium chain triglycerides, olive oil, castor oil, canola oil, triacetin, corn oil, petrolatum, mineral oil, shea butter, avocado oil, squalene. Essential oils such as anise oil, bay oil, sage oil, cranberry and fennel seed oil, lemongrass oil, tea tree oil, etc. The carrier solvent can be in an amount of about 20.00 wt % to about 90.00 wt %.
The absorbent polymer (e.g., a superabsorbent polymer) can include suitable biocompatible polymers that act as gelling, thickening and/or stabilizing agents can include for example of, including pharmaceutically acceptable biocompatible polymers, can include gelatin, agar, sodium carboxymethylcellulose, pectin, sodium alginate, sodium/calcium alginate, polylactic acid, chitosan, carageenan, xanthan, gellan, polyaspartic acid, polyglutamic acid, hyaluronic acid or salts or derivatives thereof, polyacrylates, polyacrylamides, methylvinylether maleic acid/anhydride, PVP, polyethylene oxide, etc. A preferred biocompatible polymer is sodium carboxymethylcellulose, preferably crosslinked, such as crosscarmellose sodium, sodium starch glycolate, soy polysaccharides, PVPP, etc. The absorbent polymer, such as, for example, crosscarmellose sodium, can be in an amount of about 0.01 wt % to about 5.00 wt %. Some of the absorbent polymers may also stabilize or make more stable the menthol component of embodiments of the present disclosure. The absorbent polymer may contain less than 0.5% lower residual water, less than 0.3% lower residual water, less than 0.1% lower residual water.
Embodiments of the present disclosure can also optionally include a humectant, the inclusion of which is preferable because the humectant can act as a moisturizer to keep the skin moist and keeping it from drying out. The humectant can include polyalcohols (e.g., pharmaceutically acceptable biocompatible polyalcohols), hyaluronic acid, sorbitol, honey, allantoin, etc. Pharmaceutically acceptable biocompatible polyalcohols, can include alcohols containing 2 to 10 carbon atoms and 2 to 7 hydroxyl groups including, for example, ethylene glycol, propylene glycol, butylene glycol, glycerin, glycerin betaine, erythrit (meso-1,2,3,4-Butantetrol), sorbit, mannit, methylglucoside, diglycerine, triglycerine and/or pentaerythrit as well as sodium lactate. Humectants, such as for example, glycerin can be in an amount of from about 0.50 wt % to about 10.00 wt %. The humectant may contain less than 0.5% lower residual water, less than 0.3% lower residual water, less than 0.1% lower residual water.
Embodiments of the present disclosure can also optionally include askin penetration enhancer. The skin penetration enhances can include sulphoxides (such as, for example, dimethylsulphoxide), azones (such as, for example, laurocapram), pyrrolidones (such as, for example 2-pyrrolidone, 2P), alcohols and alkanols (such as, for example, ethanol and decanol), glycols (such as, for example, propylene glycol), lecithin, isopropyl myristate, terpenes and mixtures thereof. Askin penetration enhancer can be in an amount of from about 0.10 wt % to about 1.00 wt % for DMSO. For the rest of the penetration enhancers listed above other than DMSO, they can be in an amount of from about 0.10 wt % to about 10.00 wt %.
Embodiments of the present disclosure can also optionally include a surfactant. The surfactant can include anionic surfactants, such as, for example alkylbenzene sulfonates, ammonium lauryl sulfates, ammonium oerfluoronanoate, sodium and potassium sulfate derivatives, phospholipids, cocamidopropylbetaine, sodium docusates, perfluoro acid derivatives, sodium cocoate, etc. and nonionic surfactants, such as, for example, polysorbate 80, hydrogenated Castor oil, alkyl polyglucosides, cetyl alcohol, Cocamide DEA/MEA, glucoside derivatives nonoxynols, poloxamers, sorbitans, PEGs, glycerol monostearates, etc. Surfactants, such as for example, polysorbate 80 can be in an amount of about 0.10 wt % to about 3.00 wt.
Embodiments of the present disclosure can also optionally a heat source material, such as a material that generates heat (e.g., through an exothermic reaction) upon contact with water. The heat source material can be, for example, zeolite, sodium acetate, iron powder, etc.). The heat source material, such as for example, zeolite can be in an amount of about 1.00 wt % to about 20.00 wt.
Embodiments of the present disclosure also includes the treated absorbent material of the present disclosure (for example, in the shapes and dimensions illustrated in
The adhesive (preferably a topically or dermally acceptable adhesive) for the adhesive portion of the backing material 304 or other embodiments of the present disclosure can be a pressure sensitive topically acceptable adhesive, such as, for example, acrylics, butyl rubber, ethylene-vinyl acetate (EVA), natural rubber, nitriles, silicone rubbers, styrene block copolymers (SBC), styrene-butadiene-styrene (SBS), styrene-ethylene/butylene-styrene (SEBS), styrene-ethylene/propylene (SEP), styrene-isoprene-styrene (SIS), as well as hydrophilic pressure sensitive adhesives (PSA) such as for example polyvinylpyrrolidone-polyethylene glycol copolymers (PVP-PEG), maleic anhydride vinyl ether-methyl- and amine-terminated polyethylene glycol copolymers (MVE/MA-PEG), and polyethylene oxide-polyethylene glycol copolymers (PEO-PEG).
Upon application of the transdermal delivery system, patch, vehicle or device embodiments of the present disclosure, including, for example, side 312 being placed against the skin 314 of the user, the carrier solvent (e.g., coconut oil) melts due to the heat of the skin. An embodiment of the present disclosure can also include as part of the absorbent material a surfactant that is released and associates with the skin oils in order to break them up and prepares, cleans and/or conditions the skin and make it easier to wet the skin or make the skin more receptive to receiving the pharmaceutically active agents. An alternative to including a solvent as part of the absorbent material would be to separately clean the area of skin on which the transdermal delivery system, patch, vehicle or device embodiments of the present disclosure is to be placed prior to applying it to the skin. Such cleaning of the area could be done using a surfactant (e.g., as included in embodiments of the present disclosure) or other acceptable cleaning compositions to break them up and prepares and conditions the skin and make it easier to wet the skin.
After application of an embodiment of the present disclosure (where the skin in cleaned prior to application of the embodiment that does not include surfactant or the embodiment including surfactant is applied after the skin), moisture from the skin is wicked into the treated absorbent material and the hydrophilic components (e.g., absorbent polymer and humectant (such as glycerin, if present)) and thereby displaces and drives the other components (for example, oil components or hydrophobic components (e.g., pharmaceutically active agents such as cannabinoids, psilocybin and menthol) out of the treated absorbent material and toward the skin so that they are absorbed through the pores essentially via osmosis but because there is heat radiated from the skin plus the surfactant plus coconut oil, the osmosis is enhanced. The warmth of the skin can also contribute to melting the carrier solvent prior to moisture from the skin wicking into the treated absorbent material. In embodiments where the heat source is present, the moisture from the skin also reacts with the heat source (e.g., zeolite), thereby causing an exothermic reaction and generating additional heat that can contribute to melting the carrier solvent and warms the skin to open the pores of the skin, thereby making the skin more receptive and accelerating the administration and penetration of pharmaceutically active agents, for example, hydrophobic components (e.g., cannabinoids and menthol).
In a further embodiment, a kit is disclosed. One example of such a kit is a kit including one or more of the embodiments of the present disclosure separately packaged and instructions for use.
An example of such a kit is a sealed water-proof package containing an embodiment of the present disclosure. Another aspect of the present disclosure is a water-proof package designed to contain of the composition or patch embodiments of the present disclosure and to keep a substantial amount of the moisture (i.e., water) in the embodiment. One package embodiment is illustrated in
Packaging and application of embodiments of the present disclosure are shown in
Other embodiments of the present disclosure include a method of relieving pain, treating addiction (e.g., drug addiction) and/or inflammation by topically administering and placed topically to a body part (e.g., arm, leg, knee, torso, head, neck, foot as well as those parts that make-up them), of a mammal (e.g., a human patient or veterinary patient) in need of such treatment at least one of the compositions disclosed herein. Still other embodiments of the present disclosure include a method of treating addiction (e.g., drug addiction), relieving bodily pain (local and/or systemic) by topically administering to placed topically on a body part (e.g., arm, leg, knee, torso, head, neck, foot as well as those parts that make-up them), of a mammal (e.g., a human patient or veterinary patient) in need of such treatment at least one of the transdermal delivery system, patch, vehicle or device or composition embodiments disclosed herein. Still other embodiments of the present disclosure include a method of relieving pain and/or inflammation (local and/or systemic) by administering to a body part, for example, placed topically on an arm, leg, knee, torso, head, neck, foot as well as those parts that make-up them, of a mammal (e.g., a human patient or veterinary patient) in need of such treatment at least one of the transdermal delivery system, patch, vehicle or device or composition embodiments disclosed herein. Still other embodiments of the present disclosure include a method of relieving bodily pain treating addiction (e.g., drug addiction), and/or inflammation (local and/or systemic) by topically administering to placed topically on a body part (e.g., arm, leg, knee, torso, head, neck, foot as well as those parts that make-up them), of a mammal (e.g., a human patient or veterinary patient) in need of such treatment at least one of the transdermal delivery system, patch, vehicle or device or composition embodiments disclosed herein by placing the transdermal delivery system, patch, vehicle or device or composition embodiments topically on a body part (e.g., arm, leg, knee, torso, head, neck, foot as well as those parts that make-up them).
Embodiments of the present disclosure are intended to be placed on the skin surface of a body part or body parts or portions thereof where a person is experiencing pain, symptoms of addiction (e.g., drug addiction) and/or inflammation resulting from, for example, injury or other physical diseases, stresses or conditions. Non-limiting exemplary embodiments showing possible placement are illustrated in
Although all surfaces of the embodiments of the present disclosure can be applied to the skin surface of body parts or portions thereof to administer the pharmaceutically active agents included therein (e.g., CBD, psilocybin and menthol) for transdermal delivery into and through the tissues of the skin surface to bring about the intended local and/or systemic effect, the largest surfaces (e.g., surface areas 102 and 104 in
For embodiments that are placed on a body part (e.g., patch embodiments), the dosing time can range from about 30 minutes to about 12 hours, about 30 minutes to about 8 hours (based on in vitro testing), 30 minutes to about 2 hours or about 30 minutes to about 1 hour. The greater the amount of humectant (e.g., glycerin), the longer the maximum the therapeutic dosing time. The remainder can then be removed from the body part or skin surface thereof.
Another embodiment of the present disclosure relates to a composition containing particles which have a core containing a pharmaceutically active agent or a salt thereof coated with a barrier layer. The barrier layer is formed from a coating liquid that contains a least one water insoluble barrier forming component selected from a group consisting of ethyl cellulose, copolymers of acrylic and methacrylic esters and natural or synthetic waxes, and a plasticizer.
The amount of the pharmaceutically active agent administered may be dependent on the subject being treated, the severity of the disorder or condition, the rate of administration, the disposition of the compound and the discretion of the prescribing physician. However, an effective dosage is in the range of about 0.001 to about 100 mg. per kg body weight per day, preferably about 1 to about 35 mg./kg/day, in single or divided doses. For a 70 kg human, this would amount to about 0.05 to about 7 g/day, preferably about 0.1 to about 2.5 g/day. In some instances, dosage levels below the lower limit of the aforesaid range may be more than adequate, while in other cases still larger doses may be employed without causing any harmful side effect, provided that such larger doses are first divided into several small doses for administration throughout the day.
Any standard manufacturing procedure known in the art may be used to manufacture the transdermal delivery system, patch, vehicle or device of the present disclosure. For example, in a vessel blend all the pharmaceutically active agents (e.g., cannabinoids, psilocybin and menthol), a carrier solvent, an absorbent polymer (e.g., a superabsorbent polymer), a humectant and a surfactant and optionally a heat source material at a temperature of, for example, of 76° C. until homogeneous. Then the homogeneous blended mixture is applied to woven or nonwoven absorbent material including for example, gauze (e.g., cotton gauze). The woven or nonwoven absorbent material treated with the homogeneous blended mixture is then placed in a package embodiment of the present disclosure.
The embodiments of the present disclosure may also include a rate-controlling membrane 326 on the skin surface side of the transdermal delivery system, patch, vehicle or device of the present disclosure as shown in
Ingredients: coconut oil 75.25 wt %; psilocybin extract 5 wt %, full spectrum hemp oil 5 wt %; menthol 0.25 wt %; NaCMC/croscarmellose 1.0 wt %; glycerin 3 wt %; polysorbate 80 0.5 wt %; and zeolite 10 wt %. The ingredients are blended together until homogeneous at about 76° C. Then 1 g. of the blend is applied to a 3M Tagaderm+pad.
All publications, including but not limited to, issued patents, patent applications, and journal articles, cited in this application are each herein incorporated by reference in their entirety.
Thus, while there have been shown, described and pointed out, fundamental novel features of the present disclosure as applied to the exemplary embodiments thereof, it will be understood that various omissions and substitutions and changes in the form and details of devices and methods illustrated, and in their operation, may be made by those skilled in the art without departing from the spirit or scope of the present disclosure. Moreover, it is expressly intended that all combinations of those elements and/or method steps, which perform substantially the same function in substantially the same way to achieve the same results, are within the scope of the present disclosure. Moreover, it should be recognized that structures and/or elements and/or method steps shown and/or described in connection with any disclosed form or embodiment of the present disclosure may be incorporated in any other disclosed or described or suggested form or embodiment as a general matter of design choice. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.
This written description uses examples as part of the disclosure, including the best mode, and also to enable any person skilled in the art to practice the disclosed implementations, including making and using any devices or systems and performing any incorporated methods. The patentable scope is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
| Number | Date | Country | |
|---|---|---|---|
| 63586665 | Sep 2023 | US |