US 5,484,894, 1/1996, Woiszwillo (withdrawn) |
US 5,849,884, 12/1998, Woiszwillo et al. (withdrawn) |
Qi Gao et al., Proc. Natl. Acad. Sci. USA, vol. 88, pp. 2422-2426.* |
S. Matysiak et al., Nucleosides & Nucleotides, 16 (5 & 6), pp. 855-861.* |
Hashida, M. et al., “Targeted delivery of plasmid DNA complexed with galactosylated poly(L-lysine),” Journal of Controlled Release 53:301-310 (1998). |
Veronese F.M. and M. Morpurgo, “Bioconjugation in pharmaceutical chemistry,” Il Farmaco 54:497-516 (1999). |
Zangemeister-Wittke, U. et al., “Synergic cytotoxicity of bcl-2 antisense oligodeoxynucleotides and etoposide, doxorubicin and cisplatin on small-cell lung cancer cell lines,” British Journal of Cancer 78(8):1035-1042 (1998). |
Dabrowiak, J.C., “MiniReview: Sequence Specificity of Drug-DNA Interactions”, Life Sciences, 32:2915-2931 (1983). |
Vedaldi, D., et al., “Sequence Specificity in DNA for the Interaction with Adriamycin or Daunomycin”, Il Farmaco—Ed. Sc., 9:571-581 (1982). |
Chollet, A., “Selective Attachment of Oligonucleotides to Interleukin-1β and Targeted Delivery to Cells”, Nucleosides & Nucleotides, 9(7):957-966 (1990). |
Searle, M.S., “NMR Studies of Drug-DNA Interactions”, Progress in NMR Spectroscopy, 25:403-480 (1993). |
Rajur, S.B., et al., “Covalent Protein-Oligonucleotide Conjugates for Efficient Delivery of Antisense Molecules”, Bioconjugate Chem., 8:935-940 (1997). |
McConnaughie, A.W. and Jenkins, T.C., “Novel Acridine-Triazenes as Prototype Combilexins: Synthesis, DNA Binding, and Biological Activity”, J. Med. Chem., 38:3488-3501 (1995). |
Morham, S.G. and Shuman, S., “Covalent and Noncovalent DNA Binding by Mutants of Vaccinia DNA Topoisomerase I*”, J. of Biol. Chem., 267(22):15984-15992 (1992). |
Hill, G.C., et al., “Computer Simulation of the Binding of Naphthyridinomycin and Cyanocycline A to DNA”, J. Med. Chem., 34:2079-2088 (1991). |
Hope, M.J., et al., “Cationic lipids, phosphatidylethanolamine and the intracellular delivery of polymeric, nucleic acid-based drugs (Review)”, Molecular Membrane Biology, 15:1-14 (1998). |
Garbesi, A., et al., “Synthesis and binding properties of conjugates between oligodeoxynucleotides and daunorubicine derivatives”, Nucleic Acids Research, 25(11):2121-2128 (1997). |
Jolles, B., et al., “Comparison of DNA sequence selectivity of anthracycline antibiotics and their 3′ -hydroxylated analogs”, Chemico-Biological Interactions, 100:165-176 (1996). |
Gao, Q., et al., “Drug-induced DNA repair: X-ray structure of a DNA-ditercalinium complex”, Proc. Natl. Acad. Sci. USA, 88:2422-2426 (1991). |
Kumar, S., et al., “Solution structure of a highly stable DNA duplex conjugated to a minor groove binder”, Nucleic Acids Research, 26(3):831-838 (1998). |
Capranico, G., et al., “Conformational Drug Determinants of the Sequence Specificity of Drug-stimulated Topoisomerase II DNA Cleavage”, J. Mol. Biol., 235:1218-1230 (1994). |
Capranico, G., et al., “Unique Sequence Specificity of Topoisomerase II DNA Cleavage Stimulation and DNA Binding Mode of Streptonigrin”, J. Biol. Chem., 269(40):25004-25009 (1994). |
Cullinane, C., et al., Formation of adriamycin—DNA adducts in vitro, Nucleic Acids Research, 22(12):2296-2303 (1994). |
Cullinane, C. and Phillips, D.R., “Sequence Specificity of (Cyanomorpholino) adriamycin Adducts in Human Cells”, Biochemistry, 33:6207-6212 (1994). |
Cornarotti, M., et al., “Drug Sensitivity and Sequence Specificity of Human Recombinant DNA Topoisomerases Iaα (p170) and Iiβ (p180)”, The American Society for Pharmacology and Experimental Therapeutics, 50:1463-1471 (1998). |
Binaschi, M., et al., “Relationship between Lethal Effects and Topoisomerase II-Mediated Double-Stranded DNA Breaks Produced by Anthracyclines with Different Sequence Specificity”, The American Society for Pharmacology and Experimental Therapeutics, 51:1053-1059 (1997). |
Gao, Y., et al., “Substitutions at C2′ of daunosamine in the anticancer drug daunorubicin alter its DNA-binding sequence specificity”, Am. J. Biochem., 240:331-335 (1996). |
Sriram, M., et al., “Molecular Structure of Antitumor Drug Steffimycin and Modelling of its Binding to DNA”, J. Biomolecular Structure & Dynamics, 9(2):251-269 (1991). |
Pullman, B., “Sequence specificity in the binding of anti-tumor anthracyclines to DNA: a success of theory”, Anti-Cancer Drug Design, 7:95-105 (1991). |
van Houte, L.P.A., et al., “The Antitumor Drug Nogalamycin Forms Two Different Intercalation Complexes with d(GCGT)—d(ACGC)”, Biochemistry, 32:1667-1674 (1993). |
Capranico, G., et al, “Similar Sequence Specificity of Mitoxantrone and VM-26 Stimulation of in Vitro DNA Cleavage by Mammalian DNA Topoisomerase II”, Biochemistry, 32:3038-3046 (1993). |
D'Incalci, M., “DNA-topoisomerase inhibitors”, Current Opinion in Oncology, 5:1023-1028 (1993). |
Phillips, D.R., et al., “DNA sequence-specific adducts of adriamycin and mitomycin C”, FEBS, 246(1) (2):233-240 (1989). |
Borgnetto, M.E., et al., “Drug-specific Sites of Topoisomerase II DNA Cleavage in Drosophila Chromatin: Heterogeneous Localization and Reversibility”, Cancer Research, 56:1855-1862 (1996). |
Mee, S.L., et al., “S16020-2, a New Highly Cytotoxic Antitumor Olivacine Derivative: DNA Interaction and DNA Topoisomerase II Inhibition”, Molecular Pharmacology, 53:213-220 (1998). |
Patel, D.J., et al., “Hydrogen bonding, overlap geometry, and sequence specificity in anthracycline antitumor antibiotic: DNA complexes in solution”, Proc. Natl. Acad. Sci. USA, 78(6):3333-3337 (1981). |
Phillips, D.R., “Kinetics and Sequence Specificity of Drug-DNA Interactions: An in Vitro Transcription Assay”, Biochemistry, 25:7355-7362 (1986). |
Skorobogaty, A., et al., “Elucidation of the DNA Sequence Preferences of Daunomycin”, Drug Design and Delivery, 3:125-151 (1988). |
Hook, R.J., et al., “Synthesis of polyamine-linked bis-daunomycin hydrazones and their interaction with DNA”, Anti-Cancer Drug Design, 4:173-189 (1989). |
Taatjes, D.J., et al., “Epidoxoform: A Hydrolytically More Stable Anthracycline-Formaldehyde Conjugate Toxic to Resistant Tumor Cells”, J. Med. Chem., 41:1306-1314 (1998). |
Rizzo, V., et al., “Association of Anthracyclines and Synthetic Hexanucleotides. Structural Factors Influencing Sequence Specificity”, J. Molec. Recognition, 2(3):132-141 (1989). |
Krugh, T.R., “Drug-DNA interactions”, Current Opinion in Structural Biology, 4:351-364 (1994). |
Cummings, J., et al., “Determination of Covalent Binding to Intact DNA, RNA, and Oligonucleotides by Intercalating Anticancer Drugs Using High-Performance Liquid Chromatography. Studies with Doxorubicin and NADPH Cytochrome P-450 Reductase”, Analytical Biochemistry, 194:146-155 (1991). |
Cullinane, C., et al., “The DNA Sequence Specificity of Cyanomorpholinoadriamycin”, FEBS, 293(1) (2):195-198 (1991). |
Anderson, R.D., et al., “DNA Sequence Specificity of Doxorubicin-induced Mutational Damage in uvrB- Escherichia coli”, Cancer Research, 51:3930-3937 (1991). |
Trist, H. and Phillips, D.R., “In vitro transcription analysis of the role of flanking sequence on the DNA sequence specificity of Adriamycin”, Nucleic Acids Research, 17(10):3673-3688 (1989). |
Chaires, J.B., et al., “Site and Sequence Specificity of the Daunomycin-DNA Interaction”, Biochemistry, 26:8227-8236 (1987). |
Pearlman, L.F. and Simpkins, H., “The Differential Effects Produced by Daunomycin and Adriamycin on RNA, Polynucleotides, Single Stranded, Supercoiled DNA, and Nucleosomes”, Biochemical and Biophysical Research Communications, 131(2):1033-1040 (1985). |
Wang, L., et al., “Inhibition of Topoisomerase I Function by Nitidine and Fagaronine”, Chem. Res. Toxicol., 6:813-818 (1993). |
Capranico, G., et al., “Change of the Sequence Specificity of Daunorubicin-stimulated Topoisomerase II DNA Cleavage by Epimerization of the Amino Group of the Sugar Moiety”, Cancer Research, 55:312-317 (1995). |
Oxenius, A. et a., “CpG-Containing Oligonucleotides Are Efficient Adjuvants for Induction of Protective Antiviral Immune Response with T-Cell Peptide Vaccines,” J. Virol. 73(5):4120-4126 (1999). |
Bonora, G. M. et al., “Synthesis and Characterization of High-Molecular Mass Polyethylene Glycol-Conjugated Oligonucleotides,” Bioconjugate Chem. 8(6):793-797 (1997). |
Database PUBMED, Accession No.: 9404651, Bonora, G. M. et al., “Synthesis and Characterization of High-Molecular Mass Polyethylene Glycol-Conjugated Oligonucleotides,” [online], [retrieved from MEDLINE on Jan. 13, 2003], (1997). |
Katayose, S. et al., “Water-Soluble Polyion Complex Associates of DNA and (Poly(ethylene glycol)—Poly(L-lysine) Block Copolymer,” Bioconjugate Chem. 8(5):702-707 (1997). |
Database PUBMED, Accession No: 9327134, Katayose, S. et al., “Water-Soluble Polyion Complex Associates of DNA and Poly(ethylene glycol)—Poly(L-lysine) Block Copolymer,” [online], [retrieved from MEDLINE on Jan. 13, 2003], (1997). |
Jäschke, A. et al., “Synthesis and Properties of Oligodeoxyribonucleotide-Polyethylene Glycol Conjugates,” Nucleic Acids Res. 22(22):4810-4817 (1994). |
Database PUBMED, Accession No.: 7984434. Jäschke, A. et al., “Synthesis and Properties of Oligodeoxyribonucleotide-Polyethylene Glycol Conjugates,” [Online], [retrieved from MEDLINE on Jan. 13, 2003], (1994). |
Kawaguchi, T. et al., “Stability, Specific Binding Activity, and Plamsa Concentration in Mice of an Oligodeoxynucleotide Modified at 5′-Terminal with Poly(ethylene glycol),” Biol. Pharm. Bull. 18(3):474-476 (1995). |
Database PUBMED, Accession No.: 7550108, Kawaguchi, T. et al., “Stability, Specific Binding Activity, and Plasma Concentration in Mice of an Oligodeoxynucleotide Modified at 5′-Terminal with Poly(ethylene glycol),” [online], [retrieved from MEDLINE on Jan. 13, 2003], (1995). |
Wang, J. et al., Use of a Polytheylene Glycol-Peptide Conjugate in a Competition Gel Shift Assay for Screening Potential Antagonists of HIV-1 Tat Protein Binding to TAR RNA, Anal. Biochem. 232:238-242 (1995). |
Database PUBMED, Accesion No.: 8747481. Wang, J. et al., “Use of a Polytheylene Glycol-Peptide Conjugate in a Competition Gel Shift Assay for Screening Potential Antagonists of HIV-1 Tat Protein Binding to TAR RNA,” [online], [retrieved from MEDLINE on Jan. 13, 2003], (1995). |