The disclosed examples generally relate to medication delivery. More particularly, the disclosed examples relate to techniques, processes, devices or systems for monitoring glucose using an optical-based glucose monitor integrated within a drug delivery device.
Wearable drug delivery devices are integrated devices, which combine a fluid reservoir, a pumping mechanism, and a mechanism for inserting an integrated subcutaneous cannula. The wearable drug delivery device is adhesively attached to an infusion site on the patient's skin, and typically does not require the use of a separate infusion or tubing set. Some wearable devices deliver a liquid drug (e.g., insulin) to the patient over a period of time via the cannula. The wearable drug delivery device may wirelessly communicate with a separate controller device, such as a personal diabetes manager (PDM).
Drug delivery devices can be used in conjunction with continuous glucose monitoring (CGM) devices. A CGM provides a substantially continuous estimated blood glucose level through a transcutaneous sensor that measures analytes, such as glucose, in the patient's interstitial fluid rather than their blood. CGM systems typically consist of a transcutaneously-placed sensor, a transmitter and a monitor. Some CGM systems allow a patient or caregiver to insert a single sensor probe under the skin for multiple days. Thus, the patient is only required to perform a single moderately invasive action with a single entry point. The CGM may communicate with the drug delivery device via, e.g., a wireless data communication protocol.
One approach for determining a concentration of glucose in a sample includes the use of an optical sensor, which may be fully implanted under the skin of the patient, remaining in place for up to 90 days in some cases. However, the sensor must be surgically implanted and removed by a qualified health care provider during outpatient procedures, thus increasing risk and inconvenience for the patient.
Accordingly, there is a need for a less invasive method for measuring glucose in a patient using an optical based glucose sensor.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended as an aid in determining the scope of the claimed subject matter.
In one approach, a wearable drug delivery device may include a needle deployment component including a cannula and an optical conduit deployable into a user, the cannula operable to deliver a liquid drug to the user. The wearable drug delivery device may further include a glucose monitor including an optical sensor, the optical sensor operable to measure a light output received via the optical conduit.
In another approach, a method may include providing a wearable drug delivery device, the wearable drug delivery device having a needle deployment component including a cannula and an optical conduit, the cannula operable to deliver a liquid drug into a user, and a glucose monitor including an optical sensor. The method may further include deploying the cannula and the optical conduit into the user, and detecting, by the optical sensor, a light output received via the optical conduit.
In yet another approach, a wearable drug delivery device may include a needle deployment component including a cannula and an optical conduit coupled together, the cannula operable to deliver a liquid drug into a user. The wearable drug delivery device may further include a glucose monitor including an optical sensor, wherein the optical sensor is operable to measure a light output received via the optical conduit, and wherein the needle deployment component and the glucose monitor are located within a same outer housing.
In the drawings, like reference characters generally refer to the same parts throughout the different views. In the following description, various embodiments of the present disclosure are described with reference to the following drawings, in which:
The drawings are not necessarily to scale. The drawings are merely representations, not intended to portray specific parameters of the disclosure. The drawings are intended to depict exemplary embodiments of the disclosure, and therefore are not be considered as limiting in scope. Furthermore, certain elements in some of the figures may be omitted, or illustrated not-to-scale, for illustrative clarity. Still furthermore, for clarity, some reference numbers may be omitted in certain drawings.
Systems, devices, and methods in accordance with the present disclosure will now be described more fully with reference to the accompanying drawings, where one or more embodiments are shown. The systems, devices, and methods may be embodied in many different forms and are not to be construed as being limited to the embodiments set forth herein. Instead, these embodiments are provided so the disclosure will be thorough and complete, and will fully convey the scope of the systems, devices, and methods to those skilled in the art. Each of the systems, devices, and methods disclosed herein provides one or more advantages over conventional systems, devices, and methods.
Embodiments of the present disclosure include a open-loop system, closed-loop system, or hybrid system having a pump and a continuous glucose monitor (CGM) housed together. A mechanism in the pump, such as a needle deployment component, may simultaneously introduce a cannula for liquid drug (e.g., insulin) infusion into tissue of a patient together with one or more optical conduits (e.g., optical fibers) operable with an optical sensor. The cannula and the optical conduit may be coupled together, thus preventing the need of multiple injection mechanisms and additional steps by the patient. In some embodiments, the optical sensor and the optical conduit measure glucose levels of the patient tissue and send information to the pump and/or an external device (e.g., smart phone, smart watch, HCP, etc.) to indicate when glucose levels are too high (hyperglycemia) or too low (hypoglycemia). In some embodiments, the optical conduit and/or the cannula may be coated with a fluorescent material which, when exposed to glucose, produces a small amount of light that is delivered through the optical conduit for measurement by the optical sensor.
As shown, the pump 102 may include a pump mechanism 124 and a needle deployment component 128. In various examples, the pump mechanism 124 may include a pump or a plunger (not shown), while the needle deployment component 128 may include a needle and/or cannula 137 for communicating a stored liquid drug in a reservoir 125 to the patient. As will be described in greater detail herein, the needle deployment component 128 may further include one or more optical conduits 138 insertable into the patient for detecting blood glucose levels.
The wearable drug delivery device 100 may further include a controller 121 and a communications interface device 126. The controller 121 may be implemented in hardware, software, or any combination thereof. The controller 121 may, for example, be a processor, microprocessor, a logic circuit, or a microcontroller coupled to a memory. The controller 121 may maintain a date and time as well as other functions (e.g., calculations or the like) performed by processors. The controller 121 may be operable to execute an artificial pancreas algorithm (AP app) 129 stored in memory 123 that enables the controller 121 to direct operation of the pump 102. In addition, the controller 121 may be operable to receive data or information from the glucose monitor 104, as well as from any other sensor, such as an inertia motion unit (IMU) 107. As will be described in greater detail below, the controller 121 may be further operable to receive data from the glucose monitor 104 to control delivery of the liquid drug to the patient.
The controller 121 may process the data from the glucose monitor 104 or any other sensor to determine if an alert or other communication is to be issued to the user and/or a caregiver of the user, or if an operational mode of the drug delivery device 100 is to be adjusted. The controller 121 may provide the alert, for example, through the communications interface device 126. The communication link provided by the communications interface device 126 may include any wired or wireless communication link operating according to any known communications protocol or standard, such as RFID, Bluetooth, NFC, or a cellular standard, for example.
In some embodiments, the pump 102 may further include a power supply 130, such as a battery, a piezoelectric device, or the like, for supplying electrical power to the pump mechanism 124 and/or other components of the pump, such as the controller 121, memory 123, the needle deployment component 128, and the communication interface device 126. In some embodiments, the glucose monitor 104 may also include a power supply 133. In some embodiments, power supply 133 and power supply 130 may be the same power supply on drug delivery device 100 such that one power supply powers both the pump 102 and glucose monitor 104.
In some embodiments, the wearable drug delivery device 100 may, when operating in a normal mode of operation, provide insulin stored in reservoir 125 to the user based on information (e.g., blood glucose measurement values, target blood glucose values, insulin on board, prior insulin deliveries, time of day, day of week, inputs from the IMU 107, global positioning system-enabled devices, Wi-Fi-enabled devices, or the like) provided by the glucose monitor 104 or other functional elements on drug delivery device 100. For example, the wearable drug delivery device 100 may contain analog and/or digital circuitry that may be implemented as the controller 121 for controlling delivery of the drug or therapeutic agent. The circuitry used to implement the controller 121 may include discrete, specialized logic and/or components, an application-specific integrated circuit, a microcontroller or processor that executes software instructions, firmware, programming instructions or programming code enabling, for example, the AP App 129 stored in memory 123, or any combination thereof. For example, the controller 121 may execute a control algorithm, such as the AP application 129, and other programming code, that may make the controller 121 operable to cause the pump mechanism 124 to deliver doses of the liquid drug to the patient at predetermined intervals or as needed to bring blood glucose measurement values to a target blood glucose value. Furthermore, the size and/or timing of the doses may be pre-programmed, for example, into the AP application 129 by the user or by a third party (such as a health care provider, a parent or guardian, a manufacturer of the wearable drug delivery device, or the like) using a wired or wireless link.
In some embodiments, the glucose monitor 104 may include a processor 141, a memory 143, a sensing or measuring device, such as an optical sensor 144, and a communication device 146. The memory 143 may store an instance of an AP application 149 as well as other programming code and be operable to store data related to the AP application 149. The optical sensor 144, the processor 141, and the AP application 149 may form an optical system. Although not shown, the optical system may further consist of filters, dichroic elements, beam splitters, polarizers, and/or electronics for signal detection and modulation. The optical sensor 144 may communicate with the processor 141, wherein the processor 141 may include discrete, specialized logic and/or components, an application-specific integrated circuit, a microcontroller or processor that executes software instructions, firmware, programming instructions stored in memory (such as memory 143), or any combination thereof.
As will be described in greater detail herein, the optical sensor 144 may detect/measure a light output 166 received via the optical conduit(s) 138, wherein the light output 166 correlates to a blood glucose measurement or concentration. In some embodiments, the light output 166 is a fluorescent light generated by a glucose binding material, such as a glucose-indicating hydrogel, which is coated or connected to the optical conduit 138 and/or the cannula 137. The glucose monitor 104 may further include an optical source 148 (e.g., LED light source) for delivering light to the patient's tissue using one of the optical conduits 138.
The pump 102 may also include a user interface 127, which may include any mechanism for the user to input data to the pump 102, such as, for example, a button, a knob, a dial, a switch, a touch-screen display, or any other user interaction component. The user interface 127 may include any mechanism for the drug delivery device 100 to relay data to the user and may include, for example, a numbered dial or knob, a display, a touch-screen display, or any means for providing a visual, audible, or tactile (e.g., vibrational) output (e.g., as an alert). The user interface 127 may also include a number of additional components not specifically shown for the sake brevity and explanation. For example, the user interface 127 may include one or more user input/output components for receiving inputs from or providing outputs to a user or a caregiver (e.g., a parent or nurse), a display that outputs a visible alert, a speaker that outputs an audible alert, or a vibration device that outputs tactile indicators to alert a user or a caregiver of a potential activity or operational mode, a power level, and the like. Inputs to the user interface 127 may, for example, be a via a fingerprint sensor, a tactile input sensor, a button, a touch screen display, a switch, or the like. In yet another alternative, changes to the operation of the drug delivery device 100 may be requested through a management device (not shown), such as an app running on a smartphone or smartwatch or other mobile device, that is communicatively coupled to the controller 121.
Referring to
In this embodiment, the optical conduit 138 may be coupled or otherwise secured to an exterior 160 of the cannula 137. In other embodiments, the optical conduit 138 may be at least partially contained within the cannula 137. In yet other embodiments, the optical conduit 138 may be contained within a separate tube or housing (not shown), which may be attached to the cannula 137. The optical conduit 138, which may vary in length, delivers light into the optical sensor 144. Although non-limiting, the optical conduit 138 may be a lens, a reflective channel, a needle, or an optical fiber. The optical fiber may be either a single strand of optical fiber (single or multimode) or a bundle of more than one fiber. In some embodiments, the bundle of fibers may be bifurcated. The optical conduit 138 may be non-tapered or tapered for easier penetration through the epidermis layer 151 of the user 155, as may be a distal end of cannula 137.
As further shown, a glucose binding material 164 may be coupled to or coated on the first end 153 of the optical conduit 138. In some embodiments, the glucose binding material 164 may additionally or alternatively be disposed on the cannula 137. In some embodiments, the glucose binding material may be a fluorescent, boronic acid-based glucose indicating polymer or hydrogel. Although non-limiting, the hydrogel may be poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA), poly(N-vinyl pyrrolidone) (PVP), or poly(hydroxy ethylmethacrylate) (PHEMA). The hydrogel may also come from the group consisting of ePTFE, polyurethane, silicone rubber, cross-linked collagen, polypropylene, cellulose acetate, poly(vinylidene fluoride) (PVDF), Nafion or other biocompatible material. In one embodiment, the glucose-indicating hydrogel may consist primarily of poly(2-hydroxyethylmethacrylate) (pHEMA) into which a fluorescent indicator (e.g., boronic acids groups) is copolymerized. The glucose reversibly binds to the indicator, which acts as a glucose receptor in an equilibrium binding reaction. Subsequent disruption of photo induced electron transfer (PET) results in an increased fluorescence light intensity upon binding of glucose. The fluorescent light, or light output 166, is then transmitted via the optical conduit 138 back to the optical sensor 144. A change in the wavelength, intensity, lifetime, energy transfer efficiency, and/or polarization of the luminescence of the light output 166 can be processed and interpreted to determine a corresponding change in glucose concentration of the subcutaneous tissue layer 154.
Referring to
In this embodiment, the optical conduit 238A and the second optical conduit 238B may be coupled or otherwise secured to an exterior 260 of the cannula 237. In other embodiments, the first and second optical conduits 238A, 238B may be at least partially contained within the cannula 237. In yet other embodiments, the first and second optical conduits 238A, 238B may be contained within one or more separate tubes (not shown). The optical conduit 238A and the second optical conduit 238B may be non-tapered or tapered for easier penetration through an epidermis layer 251, as may be a distal end of cannula 237.
As further shown, a glucose binding material 264 may be disposed between the optical conduit 238A and the second optical conduit 238B. The glucose binding material 264 may be a layer extending entirely or partially along a length of the optical conduit 238A and the second optical conduit 238B. In some embodiments, the glucose binding material 264 may be a fluorescent, boronic acid-based glucose indicating polymer or hydrogel, which fluoresces in the presence of glucose. The glucose binding material 264 may further fluoresce in response to a light input 270 from the optical source 268, which acts as an excitation source. For example, the light input 270 may improve luminescence and/or amplify the return signal of a light output 266. The fluorescent light, or light output 266, is then transmitted via the optical conduit 238 back to the optical sensor 244 for further processing and interpretation. A wavelength, intensity, lifetime, energy transfer efficiency, and/or polarization of the luminescence of the light output 266 indicates a corresponding glucose concentration. For example, a higher intensity of light output 266 may indicate a higher concentration of glucose bound to glucose binding material 264. Hence, the light output 266 may be used to determine a glucose concentration in the subcutaneous space, and such glucose concentrations may be determined regularly over time, for example, every 5 minutes, to determine changes or a trend in glucose concentration over time. These concentrations or trends in concentrations may be used to indicate how much insulin should be delivered via cannula 237 now or in the future.
Referring to
As further shown, a glucose binding material 364 may be coupled to or coated on a first end 352 of the cannula 337. For example, the glucose binding material 364 may be coated or attached to the outer surface 369 of the cylindrical wall 338. In some embodiments, the glucose binding material may be a fluorescent, boronic acid-based glucose indicating polymer or hydrogel. The fluorescent light, or light output 360, is then transmitted via the cylindrical wall 338 back to the optical sensor 344. A change in the wavelength, intensity, lifetime, energy transfer efficiency, and/or polarization of the luminescence of the light output 366 can be processed and interpreted to determine a corresponding change in glucose concentration, as explained above.
Referring to
As further shown, a glucose binding material 464 may be disposed between the optical conduits 438A-438C. In some embodiments, the glucose binding material 464 may include a first layer 464A extending entirely or partially along a length of the optical conduit 438A, and a second layer extending entirely or partially along a length of the optical conduits 438B, 438C. For example, glucose binding material 464 may be positioned around a distal end of optical conduits 438A, 438B, and 438C. In some embodiments, the glucose binding material 464 may be a fluorescent, boronic acid-based glucose indicating polymer or hydrogel, which fluoresces in the presence of glucose. The glucose binding material 464 may fluoresce in response to a light input from the optical source 468, which acts as an excitation source. For example, the light input may improve luminescence and/or amplify the return signal of a first light output traveling through the optical conduit 438A and a second light output traveling through the third optical conduit 438C. The fluorescent light outputs are transmitted back to the optical sensor 444 for further processing and interpretation. A wavelength, intensity, lifetime, energy transfer efficiency, and/or polarization of the luminescence of the first and second light outputs indicates a corresponding glucose concentration.
In this embodiment, the optical sensor 444 may advantageously sense glucose at two different biological tissue layers, e.g., the dermis tissue layer 457 and the subcutaneous tissue layer 454. The subcutaneous tissue layer 454 and the dermis tissue layer 457 have different rates of response to glucose changes, as the dermis tissue layer 457 generally reflects glucose changes faster than the subcutaneous tissue layer 454. By measuring both at the same time, glucose trends can be determined from a single snapshot in time as opposed to waiting for multiple measurements over a longer period of time from a single layer of the tissue. In some embodiments, the optical sensor 444 can include multiple optical sensors, one for each of optical conduits 438A, 438C. Furthermore, more than one optical source 468 may be employed in the case more than one optical conduit is present. Each optical source may feed light into one or more of the optical conduits 438A, 438C. In various embodiments, each of the optical sources may be the same or different. For example, the type of optical source may differ (e.g., LED, Infrared, ultraviolet, fluorescent) and/or one or more light characteristics may differ (e.g., color, intensity, propagation direction, frequency or wavelength, polarization, etc.) across the different optical sources. Embodiments herein are not limited in this context.
Turning now to
In other embodiments, multiple optical conduits may be present. For example, as described above with respect to
The optical sensor 544 may include one or more photodiodes 545 positioned within a first chamber 547. In the case multiple optical conduits are delivering light inputs from the tissue end 567 to the optical sensor 544, multiple photodiodes each located in a separate chamber may be provided. The photodiode 545 may be a spectrally filtered photodiode, which measures the glucose-dependent fluorescence intensity of the light output 566 at a second end 550 of the optical conduit 538. As shown, the second end 550 of the optical conduit 538 may extend through a wall 554 of the first chamber 547, terminating proximate the photodiode 545.
The optical source 568 may be located within a second chamber 559. Although non-limiting, the optical source 568 may include a variety of illumination sources, such as one or more LEDs 568, positioned in optical proximity to a second end 561 of a second portion 539 of the optical conduit 538. As used herein, “optical proximity” means that components are close enough to one another such that an optical signal can be transmitted to or received from one object by another. The photodiode 545 may be placed in optical proximity to the second end 550 of the optical conduit 538 in a number of ways, for example, secured to the wall 554 of the first chamber 547, attached directly to the second end 550 of the optical conduit 538, attached to a connector that is attached to the optical conduit 538, etc. The photodiode 545 may be permanently affixed to the optical conduit 538 or replaceably attached such that the photodiode 545 can be replaced conveniently and economically. The second end 561 of the second portion 539 of the optical conduit 538 may similarly be attached to the LED 568 in a variety of ways. Embodiments herein are not limited in this context. As further shown, the optical conduit 538 may pass through a seal 571 along a base 572 of the wearable drug delivery device 500. Although not shown, the optical conduit 538 may be coupled to a cannula to allow the cannula and the optical conduit 538 to be deployed together, as described herein.
During operation, the optical source 568 sends light down the optical conduit 538 for a period of time (e.g, 0.1 second, 1 second, 3 seconds, 5 seconds, etc.) and at a given frequency (e.g., 5 MHz), then shuts off for a second period of time. In the case a glucose binding material is present at the tissue end 567 of the optical conduit 538, the light from the optical source 568 can induce or amplify luminescence at the glucose binding material. Because glucose tends to bind to the glucose binding material (e.g., hydrogel), subsequent disruption of photo induced electron transfer (PET) results in an increased fluorescence light intensity upon binding of glucose. In other embodiments, no glucose binding material is present, and the fluorescence of glucose may be monitored directly.
After the optical source 568 is turned off, the light output 566 returns along the optical conduit 538 to be sensed by the optical sensor 544. The luminescent properties of the light output 566, such as wavelength, intensity, lifetime, energy transfer efficiency, or polarization, change in response to binding or unbinding of the glucose to/from the glucose binding material. These luminescent changes may be detected by the optical sensor 544 and returned to the processor 141 of the glucose monitor 104 (
The various components of the drug delivery device 500 may also be incorporated into drug delivery devices 100, 200, 300, 400 described above and shown in the figures. Although non-limiting, the first chamber 547, the second chamber 559, the optical sensor 544, and the optical source 568 may be present in any of drug delivery devices 100, 200, 300, 400.
At block 602, the process 600 may further include deploying the cannula and the optical conduit into the user. In some embodiments, the cannula and the optical conduit are deployed simultaneously. In some embodiments, a first end of the optical conduit may be inserted into a subcutaneous tissue layer of the user, while a second end of the optical fiber is positioned optically proximate the optical sensor. In some embodiments, the process may further include deploying a second optical conduit into the user, and delivering, via the second optical conduit, a light input from an optical source to the second end of the optical conduit. The light input from the optical source may act as an excitation source to improve luminescence and/or amplify the return signal of the light output. In some embodiments, the process may further include deploying a third optical conduit into the user, wherein a first end of the third optical conduit terminates in a dermis tissue layer, for example. When a third optical conduit is deployed, the optical sensor may simultaneously sense glucose at two different biological tissue layers, e.g., the dermis tissue layer and the subcutaneous tissue layer.
At block 603, the process 600 may further include detecting, by the optical sensor, a light output received via the optical conduit. In some embodiments, the process may include connecting a glucose binding material to at least one of the cannula and the optical conduit, the glucose binding material adapted to generate the light output in response to glucose within the user binding to the glucose binding material and photochemically exciting photons. In some embodiments, the glucose binding material may be positioned between the optical conduit and the second optical conduit. In some embodiments, the process may further include coating a surface of the optical conduit with the glucose binding material, wherein the glucose binding material is a glucose-indicating hydrogel operable to generate a fluorescent light, and detecting the fluorescent light using a photodiode of the optical sensor.
At optional block 604, the process 600 may include controlling delivery of the liquid drug into the user based on the measured light output. For example, insulin delivery can be increased or decreased in response to different levels of glucose concentration detected. For example, a higher intensity of light output may indicate a higher concentration of glucose bound to glucose binding material. Hence, the light output may be used to determine a glucose concentration in the subcutaneous space, and such glucose concentrations may be determined regularly over time, for example, at least every 5 minutes, to determine changes or a trend in glucose concentration over time. These concentrations or trends in concentrations may be used to indicate how much insulin should be delivered to a patient using the wearable drug delivery device as a bolus or basal delivery of insulin. And depending on the changes in concentration of glucose, the bolus or basal amounts of insulin delivered may be modified over time based on such changes in concentrations.
The techniques described herein for a drug delivery system or device (e.g., the devices 100, 200, 300, 400, 500, or any components thereof) may be implemented in hardware, software, or any combination thereof. Any component as described herein may be implemented in hardware, software, or any combination thereof. For example, the system 100 or any components thereof may be implemented in hardware, software, or any combination thereof. Software related implementations of the techniques described herein may include, but are not limited to, firmware, application specific software, or any other type of computer readable instructions that may be executed by one or more processors. Hardware related implementations of the techniques described herein may include, but are not limited to, integrated circuits (ICs), application specific ICs (ASICs), field programmable arrays (FPGAs), and/or programmable logic devices (PLDs). In some examples, the techniques described herein, and/or any system or constituent component described herein may be implemented with a processor executing computer readable instructions stored on one or more memory components.
Some examples of the disclosed devices may be implemented, for example, using a storage medium, a computer-readable medium, or an article of manufacture which may store an instruction or a set of instructions that, if executed by a machine (i.e., processor or controller), may cause the machine to perform a method and/or operation in accordance with examples of the disclosure. Such a machine may include, for example, any suitable processing platform, computing platform, computing device, processing device, computing system, processing system, computer, processor, or the like, and may be implemented using any suitable combination of hardware and/or software. The computer-readable medium or article may include, for example, any suitable type of memory unit, memory, memory article, memory medium, storage device, storage article, storage medium and/or storage unit, for example, memory (including non-transitory memory), removable or non-removable media, erasable or non-erasable media, writeable or re-writeable media, digital or analog media, hard disk, floppy disk, Compact Disk Read Only Memory (CD-ROM), Compact Disk Recordable (CD-R), Compact Disk Rewriteable (CD-RW), optical disk, magnetic media, magneto-optical media, removable memory cards or disks, various types of Digital Versatile Disk (DVD), a tape, a cassette, or the like. The instructions may include any suitable type of code, such as source code, compiled code, interpreted code, executable code, static code, dynamic code, encrypted code, programming code, and the like, implemented using any suitable high-level, low-level, object-oriented, visual, compiled and/or interpreted programming language. The non-transitory computer readable medium embodied programming code may cause a processor when executing the programming code to perform functions, such as those described herein.
Certain examples of the present disclosed subject matter were described above. It is, however, expressly noted that the present disclosed subject matter is not limited to those examples, but rather the intention is that additions and modifications to what was expressly described herein are also included within the scope of the disclosed subject matter. Moreover, it is to be understood that the features of the various examples described herein were not mutually exclusive and may exist in various combinations and permutations, even if such combinations or permutations were not made express herein, without departing from the spirit and scope of the disclosed subject matter. In fact, variations, modifications, and other implementations of what was described herein will occur to those of ordinary skill in the art without departing from the spirit and the scope of the disclosed subject matter. As such, the disclosed subject matter is not to be defined only by the preceding illustrative description.
Program aspects of the technology may be thought of as “products” or “articles of manufacture” typically in the form of executable code and/or associated data that is carried on or embodied in a type of machine readable medium. Storage type media include any or all of the tangible memory of the computers, processors or the like, or associated modules thereof, such as various semiconductor memories, tape drives, disk drives and the like, which may provide non-transitory storage at any time for the software programming. It is emphasized that the Abstract of the Disclosure is provided to allow a reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, various features are grouped together in a single example for streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed examples require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed example. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate example.
The foregoing description of example examples has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the present disclosure to the precise forms disclosed. Many modifications and variations are possible in light of this disclosure. It is intended that the scope of the present disclosure be limited not by this detailed description, but rather by the claims appended hereto. Future filed applications claiming priority to this application may claim the disclosed subject matter in a different manner and may generally include any set of one or more limitations as variously disclosed or otherwise demonstrated herein.
This application claims the benefit to U.S. Provisional Application No. 63/085,853, filed Sep. 30, 2020, the entire contents of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
303013 | Horton | Aug 1884 | A |
2797149 | Skeggs | Jun 1957 | A |
3631847 | Hobbs | Jan 1972 | A |
3634039 | Brondy | Jan 1972 | A |
3812843 | Wootten et al. | May 1974 | A |
3841328 | Jensen | Oct 1974 | A |
3963380 | Thomas, Jr. et al. | Jun 1976 | A |
4055175 | Clemens et al. | Oct 1977 | A |
4146029 | Ellinwood, Jr. | Mar 1979 | A |
4151845 | Clemens | May 1979 | A |
4245634 | Albisser et al. | Jan 1981 | A |
4368980 | Aldred et al. | Jan 1983 | A |
4373527 | Fischell | Feb 1983 | A |
4403984 | Ash et al. | Sep 1983 | A |
4464170 | Clemens et al. | Aug 1984 | A |
4469481 | Kobayashi | Sep 1984 | A |
4475901 | Kraegen et al. | Oct 1984 | A |
4526568 | Clemens et al. | Jul 1985 | A |
4526569 | Bernardi | Jul 1985 | A |
4529401 | Leslie et al. | Jul 1985 | A |
4559033 | Stephen et al. | Dec 1985 | A |
4559037 | Franetzki et al. | Dec 1985 | A |
4573968 | Parker | Mar 1986 | A |
4624661 | Arimond | Nov 1986 | A |
4633878 | Bombardieri | Jan 1987 | A |
4657529 | Prince et al. | Apr 1987 | A |
4685903 | Cable et al. | Aug 1987 | A |
4731726 | Allen, III | Mar 1988 | A |
4743243 | Vaillancourt | May 1988 | A |
4755173 | Konopka et al. | Jul 1988 | A |
4781688 | Thoma et al. | Nov 1988 | A |
4781693 | Martinez et al. | Nov 1988 | A |
4808161 | Kamen | Feb 1989 | A |
4854170 | Brimhall et al. | Aug 1989 | A |
4886499 | Cirelli et al. | Dec 1989 | A |
4900292 | Berry et al. | Feb 1990 | A |
4919596 | Slate et al. | Apr 1990 | A |
4925444 | Orkin et al. | May 1990 | A |
4940527 | Kazlauskas et al. | Jul 1990 | A |
4975581 | Robinson et al. | Dec 1990 | A |
4976720 | Machold et al. | Dec 1990 | A |
4981140 | Wyatt | Jan 1991 | A |
4994047 | Walker et al. | Feb 1991 | A |
5007286 | Malcolm et al. | Apr 1991 | A |
5097834 | Skrabal | Mar 1992 | A |
5102406 | Arnold | Apr 1992 | A |
5109850 | Blanco et al. | May 1992 | A |
5125415 | Bell | Jun 1992 | A |
5134079 | Cusack et al. | Jul 1992 | A |
5153827 | Coutre et al. | Oct 1992 | A |
5165406 | Wong | Nov 1992 | A |
5176662 | Bartholomew et al. | Jan 1993 | A |
5178609 | Ishikawa | Jan 1993 | A |
5207642 | Orkin et al. | May 1993 | A |
5232439 | Campbell et al. | Aug 1993 | A |
5237993 | Skrabal | Aug 1993 | A |
5244463 | Cordner, Jr. et al. | Sep 1993 | A |
5257980 | Van Antwerp et al. | Nov 1993 | A |
5273517 | Barone et al. | Dec 1993 | A |
5281808 | Kunkel | Jan 1994 | A |
5299571 | Mastrototaro | Apr 1994 | A |
5308982 | Ivaldi et al. | May 1994 | A |
5342298 | Michaels et al. | Aug 1994 | A |
5377674 | Kuestner | Jan 1995 | A |
5380665 | Cusack et al. | Jan 1995 | A |
5385539 | Maynard | Jan 1995 | A |
5389078 | Zalesky | Feb 1995 | A |
5411889 | Hoots et al. | May 1995 | A |
5421812 | Langley et al. | Jun 1995 | A |
5468727 | Phillips et al. | Nov 1995 | A |
5505709 | Funderburk et al. | Apr 1996 | A |
5505828 | Wong et al. | Apr 1996 | A |
5507288 | Bocker et al. | Apr 1996 | A |
5533389 | Kamen et al. | Jul 1996 | A |
5558640 | Pfeiler et al. | Sep 1996 | A |
5569186 | Lord et al. | Oct 1996 | A |
5584813 | Livingston et al. | Dec 1996 | A |
5609572 | Lang | Mar 1997 | A |
5665065 | Colman et al. | Sep 1997 | A |
5678539 | Schubert et al. | Oct 1997 | A |
5685844 | Marttila | Nov 1997 | A |
5685859 | Kommerup | Nov 1997 | A |
5693018 | Kriesel et al. | Dec 1997 | A |
5697899 | Hillman et al. | Dec 1997 | A |
5700695 | Yassinzadeh et al. | Dec 1997 | A |
5703364 | Rosenthal | Dec 1997 | A |
5714123 | Sohrab | Feb 1998 | A |
5716343 | Kriesel et al. | Feb 1998 | A |
5722397 | Eppstein | Mar 1998 | A |
5741228 | Lambrecht et al. | Apr 1998 | A |
5746217 | Erickson et al. | May 1998 | A |
5755682 | Knudson et al. | May 1998 | A |
5758643 | Wong et al. | Jun 1998 | A |
5800405 | McPhee | Sep 1998 | A |
5800420 | Gross et al. | Sep 1998 | A |
5801057 | Smart et al. | Sep 1998 | A |
5804048 | Wong et al. | Sep 1998 | A |
5817007 | Fodgaard et al. | Oct 1998 | A |
5820622 | Gross et al. | Oct 1998 | A |
5823951 | Messerschmidt | Oct 1998 | A |
5840020 | Heinonen et al. | Nov 1998 | A |
5848991 | Gross et al. | Dec 1998 | A |
5851197 | Marano et al. | Dec 1998 | A |
5858005 | Kriesel | Jan 1999 | A |
5865806 | Howell | Feb 1999 | A |
5871470 | McWha | Feb 1999 | A |
5879310 | Sopp et al. | Mar 1999 | A |
5902253 | Pfeiffer et al. | May 1999 | A |
5931814 | Alex et al. | Aug 1999 | A |
5932175 | Knute et al. | Aug 1999 | A |
5935099 | Peterson et al. | Aug 1999 | A |
5947911 | Wong et al. | Sep 1999 | A |
5971941 | Simons et al. | Oct 1999 | A |
5993423 | Choi | Nov 1999 | A |
5997501 | Gross et al. | Dec 1999 | A |
6017318 | Gauthier et al. | Jan 2000 | A |
6024539 | Blomquist | Feb 2000 | A |
6032059 | Henning et al. | Feb 2000 | A |
6036924 | Simons et al. | Mar 2000 | A |
6040578 | Malin et al. | Mar 2000 | A |
6049727 | Crothall | Apr 2000 | A |
6050978 | Orr et al. | Apr 2000 | A |
6058934 | Sullivan | May 2000 | A |
6066103 | Duchon et al. | May 2000 | A |
6071292 | Makower et al. | Jun 2000 | A |
6072180 | Kramer et al. | Jun 2000 | A |
6077055 | Vilks | Jun 2000 | A |
6090092 | Fowles et al. | Jul 2000 | A |
6101406 | Hacker et al. | Aug 2000 | A |
6102872 | Doneen et al. | Aug 2000 | A |
6115673 | Malin et al. | Sep 2000 | A |
6123827 | Wong et al. | Sep 2000 | A |
6124134 | Stark | Sep 2000 | A |
6126637 | Kriesel et al. | Oct 2000 | A |
6128519 | Say | Oct 2000 | A |
6142939 | Eppstein et al. | Nov 2000 | A |
6143164 | Heller et al. | Nov 2000 | A |
6157041 | Thomas et al. | Dec 2000 | A |
6161028 | Braig et al. | Dec 2000 | A |
6162639 | Douglas | Dec 2000 | A |
6196046 | Braig et al. | Mar 2001 | B1 |
6200287 | Keller et al. | Mar 2001 | B1 |
6200338 | Solomon et al. | Mar 2001 | B1 |
6214629 | Freitag et al. | Apr 2001 | B1 |
6226082 | Roe | May 2001 | B1 |
6244776 | Wiley | Jun 2001 | B1 |
6261065 | Nayak et al. | Jul 2001 | B1 |
6262798 | Shepherd et al. | Jul 2001 | B1 |
6270455 | Brown | Aug 2001 | B1 |
6271045 | Douglas et al. | Aug 2001 | B1 |
6280381 | Malin et al. | Aug 2001 | B1 |
6285448 | Kuenstner | Sep 2001 | B1 |
6309370 | Haim et al. | Oct 2001 | B1 |
6312888 | Wong et al. | Nov 2001 | B1 |
6334851 | Hayes et al. | Jan 2002 | B1 |
6375627 | Mauze et al. | Apr 2002 | B1 |
6379301 | Worthington et al. | Apr 2002 | B1 |
6402689 | Scarantino et al. | Jun 2002 | B1 |
6470279 | Samsoondar | Oct 2002 | B1 |
6475196 | Vachon | Nov 2002 | B1 |
6477901 | Tadigadapa et al. | Nov 2002 | B1 |
6484044 | Lilienfeld-Toal | Nov 2002 | B1 |
6491656 | Morris | Dec 2002 | B1 |
6512937 | Blank et al. | Jan 2003 | B2 |
6525509 | Petersson et al. | Feb 2003 | B1 |
6528809 | Thomas et al. | Mar 2003 | B1 |
6540672 | Simonsen et al. | Apr 2003 | B1 |
6544212 | Galley et al. | Apr 2003 | B2 |
6546268 | Ishikawa et al. | Apr 2003 | B1 |
6546269 | Kurnik | Apr 2003 | B1 |
6553841 | Blouch | Apr 2003 | B1 |
6554798 | Mann et al. | Apr 2003 | B1 |
6556850 | Braig et al. | Apr 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6560471 | Heller et al. | May 2003 | B1 |
6561978 | Conn et al. | May 2003 | B1 |
6562001 | Lebel et al. | May 2003 | B2 |
6562014 | Lin et al. | May 2003 | B2 |
6569125 | Jepson et al. | May 2003 | B2 |
6572542 | Houben et al. | Jun 2003 | B1 |
6572545 | Knobbe et al. | Jun 2003 | B2 |
6574490 | Abbink et al. | Jun 2003 | B2 |
6575905 | Knobbe et al. | Jun 2003 | B2 |
6580934 | Braig et al. | Jun 2003 | B1 |
6618603 | Varalli et al. | Sep 2003 | B2 |
6633772 | Ford et al. | Oct 2003 | B2 |
6645142 | Braig et al. | Nov 2003 | B2 |
6653091 | Dunn et al. | Nov 2003 | B1 |
6662030 | Khalil et al. | Dec 2003 | B2 |
6669663 | Thompson | Dec 2003 | B1 |
6678542 | Braig et al. | Jan 2004 | B2 |
6699221 | Vaillancourt | Mar 2004 | B2 |
6718189 | Rohrscheib et al. | Apr 2004 | B2 |
6721582 | Trepagnier et al. | Apr 2004 | B2 |
6728560 | Kollias et al. | Apr 2004 | B2 |
6740059 | Flaherty | May 2004 | B2 |
6740072 | Starkweather et al. | May 2004 | B2 |
6751490 | Esenaliev et al. | Jun 2004 | B2 |
6758835 | Close et al. | Jul 2004 | B2 |
6780156 | Haueter et al. | Aug 2004 | B2 |
6810290 | Lebel et al. | Oct 2004 | B2 |
6837858 | Cunningham et al. | Jan 2005 | B2 |
6837988 | Eong et al. | Jan 2005 | B2 |
6846288 | Nagar et al. | Jan 2005 | B2 |
6862534 | Sterling et al. | Mar 2005 | B2 |
6865408 | Abbink et al. | Mar 2005 | B1 |
6890291 | Robinson et al. | May 2005 | B2 |
6936029 | Mann et al. | Aug 2005 | B2 |
6949081 | Chance | Sep 2005 | B1 |
6958809 | Sterling et al. | Oct 2005 | B2 |
6989891 | Braig et al. | Jan 2006 | B2 |
6990366 | Say et al. | Jan 2006 | B2 |
7008404 | Nakajima | Mar 2006 | B2 |
7009180 | Sterling et al. | Mar 2006 | B2 |
7016713 | Gardner et al. | Mar 2006 | B2 |
7018360 | Flaherty et al. | Mar 2006 | B2 |
7025743 | Mann et al. | Apr 2006 | B2 |
7025744 | Utterberg et al. | Apr 2006 | B2 |
7027848 | Robinson et al. | Apr 2006 | B2 |
7043288 | Davis, III et al. | May 2006 | B2 |
7060059 | Keith et al. | Jun 2006 | B2 |
7061593 | Braig et al. | Jun 2006 | B2 |
7096124 | Sterling et al. | Aug 2006 | B2 |
7115205 | Robinson et al. | Oct 2006 | B2 |
7128727 | Flaherty et al. | Oct 2006 | B2 |
7139593 | Kavak et al. | Nov 2006 | B2 |
7139598 | Hull et al. | Nov 2006 | B2 |
7144384 | Gorman et al. | Dec 2006 | B2 |
7171252 | Scarantino et al. | Jan 2007 | B1 |
7190988 | Say et al. | Mar 2007 | B2 |
7204823 | Estes et al. | Apr 2007 | B2 |
7248912 | Gough et al. | Jul 2007 | B2 |
7267665 | Steil et al. | Sep 2007 | B2 |
7271912 | Sterling et al. | Sep 2007 | B2 |
7278983 | Ireland et al. | Oct 2007 | B2 |
7291107 | Hellwig et al. | Nov 2007 | B2 |
7291497 | Holmes et al. | Nov 2007 | B2 |
7303549 | Flaherty et al. | Dec 2007 | B2 |
7303622 | Loch et al. | Dec 2007 | B2 |
7303922 | Jeng et al. | Dec 2007 | B2 |
7354420 | Steil et al. | Apr 2008 | B2 |
7388202 | Sterling et al. | Jun 2008 | B2 |
7402153 | Steil et al. | Jul 2008 | B2 |
7404796 | Ginsberg | Jul 2008 | B2 |
7429255 | Thompson | Sep 2008 | B2 |
7460130 | Salganicoff | Dec 2008 | B2 |
7481787 | Gable et al. | Jan 2009 | B2 |
7491187 | Van Den Berghe et al. | Feb 2009 | B2 |
7500949 | Gottlieb et al. | Mar 2009 | B2 |
7509156 | Flanders | Mar 2009 | B2 |
7547281 | Hayes et al. | Jun 2009 | B2 |
7569030 | Lebel et al. | Aug 2009 | B2 |
7608042 | Goldberger et al. | Oct 2009 | B2 |
7651845 | Doyle, III et al. | Jan 2010 | B2 |
7680529 | Kroll | Mar 2010 | B2 |
7734323 | Blomquist et al. | Jun 2010 | B2 |
7766829 | Sloan et al. | Aug 2010 | B2 |
7785258 | Braig et al. | Aug 2010 | B2 |
7806854 | Damiano et al. | Oct 2010 | B2 |
7806886 | Kanderian, Jr. et al. | Oct 2010 | B2 |
7918825 | OConnor et al. | Apr 2011 | B2 |
7946985 | Mastrototaro et al. | May 2011 | B2 |
7972296 | Braig et al. | Jul 2011 | B2 |
8221345 | Blomquist | Jul 2012 | B2 |
8251907 | Sterling et al. | Aug 2012 | B2 |
8449524 | Braig et al. | May 2013 | B2 |
8452359 | Rebec et al. | May 2013 | B2 |
8454576 | Mastrototaro et al. | Jun 2013 | B2 |
8467980 | Campbell et al. | Jun 2013 | B2 |
8478557 | Hayter et al. | Jul 2013 | B2 |
8547239 | Peatfield et al. | Oct 2013 | B2 |
8597274 | Sloan et al. | Dec 2013 | B2 |
8622988 | Hayter | Jan 2014 | B2 |
8810394 | Kalpin | Aug 2014 | B2 |
9061097 | Holt et al. | Jun 2015 | B2 |
9171343 | Fischell et al. | Oct 2015 | B1 |
9233204 | Booth et al. | Jan 2016 | B2 |
9486571 | Rosinko | Nov 2016 | B2 |
9579456 | Budiman et al. | Feb 2017 | B2 |
9743224 | San Vicente et al. | Aug 2017 | B2 |
9907515 | Doyle, III et al. | Mar 2018 | B2 |
9980140 | Spencer et al. | May 2018 | B1 |
9984773 | Gondhalekar et al. | May 2018 | B2 |
10248839 | Levy et al. | Apr 2019 | B2 |
10335464 | Michelich et al. | Jul 2019 | B1 |
10583250 | Mazlish et al. | Mar 2020 | B2 |
10737024 | Schmid | Aug 2020 | B2 |
10987468 | Mazlish et al. | Apr 2021 | B2 |
11197964 | Sjolund et al. | Dec 2021 | B2 |
11260169 | Estes | Mar 2022 | B2 |
20010021803 | Blank et al. | Sep 2001 | A1 |
20010034023 | Stanton, Jr. et al. | Oct 2001 | A1 |
20010034502 | Moberg et al. | Oct 2001 | A1 |
20010051377 | Hammer et al. | Dec 2001 | A1 |
20010053895 | Vaillancourt | Dec 2001 | A1 |
20020010401 | Bushmakin et al. | Jan 2002 | A1 |
20020010423 | Gross et al. | Jan 2002 | A1 |
20020016568 | Lebel et al. | Feb 2002 | A1 |
20020040208 | Flaherty et al. | Apr 2002 | A1 |
20020123740 | Flaherty et al. | Sep 2002 | A1 |
20020128543 | Leonhardt | Sep 2002 | A1 |
20020147423 | Burbank et al. | Oct 2002 | A1 |
20020155425 | Han | Oct 2002 | A1 |
20020161288 | Shin et al. | Oct 2002 | A1 |
20030023148 | Lorenz et al. | Jan 2003 | A1 |
20030050621 | Lebel et al. | Mar 2003 | A1 |
20030060692 | Ruchti et al. | Mar 2003 | A1 |
20030086074 | Braig et al. | May 2003 | A1 |
20030086075 | Braig et al. | May 2003 | A1 |
20030090649 | Sterling et al. | May 2003 | A1 |
20030100040 | Bonnecaze et al. | May 2003 | A1 |
20030130616 | Steil et al. | Jul 2003 | A1 |
20030135388 | Martucci et al. | Jul 2003 | A1 |
20030144582 | Cohen et al. | Jul 2003 | A1 |
20030163097 | Fleury et al. | Aug 2003 | A1 |
20030195404 | Knobbe et al. | Oct 2003 | A1 |
20030208113 | Mault et al. | Nov 2003 | A1 |
20030208154 | Close et al. | Nov 2003 | A1 |
20030212379 | Bylund et al. | Nov 2003 | A1 |
20030216627 | Lorenz et al. | Nov 2003 | A1 |
20030220605 | Bowman, Jr. et al. | Nov 2003 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040034295 | Salganicoff | Feb 2004 | A1 |
20040045879 | Shults et al. | Mar 2004 | A1 |
20040051368 | Caputo et al. | Mar 2004 | A1 |
20040064259 | Haaland et al. | Apr 2004 | A1 |
20040097796 | Berman et al. | May 2004 | A1 |
20040116847 | Wall | Jun 2004 | A1 |
20040122353 | Shahmirian et al. | Jun 2004 | A1 |
20040133166 | Moberg et al. | Jul 2004 | A1 |
20040147034 | Gore et al. | Jul 2004 | A1 |
20040171983 | Sparks et al. | Sep 2004 | A1 |
20040203357 | Nassimi | Oct 2004 | A1 |
20040204868 | Maynard et al. | Oct 2004 | A1 |
20040215492 | Choi | Oct 2004 | A1 |
20040220517 | Starkweather et al. | Nov 2004 | A1 |
20040241736 | Hendee et al. | Dec 2004 | A1 |
20040249308 | Forssell | Dec 2004 | A1 |
20050003470 | Nelson et al. | Jan 2005 | A1 |
20050020980 | Inoue et al. | Jan 2005 | A1 |
20050022274 | Campbell et al. | Jan 2005 | A1 |
20050033148 | Haueter et al. | Feb 2005 | A1 |
20050049179 | Davidson et al. | Mar 2005 | A1 |
20050065464 | Talbot et al. | Mar 2005 | A1 |
20050065465 | Lebel et al. | Mar 2005 | A1 |
20050075624 | Miesel | Apr 2005 | A1 |
20050105095 | Pesach et al. | May 2005 | A1 |
20050137573 | McLaughlin | Jun 2005 | A1 |
20050171503 | Van Den Berghe et al. | Aug 2005 | A1 |
20050182306 | Sloan | Aug 2005 | A1 |
20050192494 | Ginsberg | Sep 2005 | A1 |
20050192557 | Brauker et al. | Sep 2005 | A1 |
20050197621 | Poulsen et al. | Sep 2005 | A1 |
20050203360 | Brauker et al. | Sep 2005 | A1 |
20050203461 | Flaherty et al. | Sep 2005 | A1 |
20050238507 | Dilanni et al. | Oct 2005 | A1 |
20050261660 | Choi | Nov 2005 | A1 |
20050272640 | Doyle et al. | Dec 2005 | A1 |
20050277912 | John | Dec 2005 | A1 |
20060009727 | OMahony et al. | Jan 2006 | A1 |
20060079809 | Goldberger et al. | Apr 2006 | A1 |
20060100494 | Kroll | May 2006 | A1 |
20060134323 | OBrien | Jun 2006 | A1 |
20060167350 | Monfre et al. | Jul 2006 | A1 |
20060173406 | Hayes et al. | Aug 2006 | A1 |
20060189925 | Gable et al. | Aug 2006 | A1 |
20060189926 | Hall et al. | Aug 2006 | A1 |
20060197015 | Sterling et al. | Sep 2006 | A1 |
20060200070 | Callicoat et al. | Sep 2006 | A1 |
20060204535 | Johnson | Sep 2006 | A1 |
20060229531 | Goldberger et al. | Oct 2006 | A1 |
20060253085 | Geismar et al. | Nov 2006 | A1 |
20060264895 | Flanders | Nov 2006 | A1 |
20060270983 | Lord et al. | Nov 2006 | A1 |
20060276771 | Galley et al. | Dec 2006 | A1 |
20060282290 | Flaherty et al. | Dec 2006 | A1 |
20070016127 | Staib et al. | Jan 2007 | A1 |
20070060796 | Kim | Mar 2007 | A1 |
20070060869 | Tolle et al. | Mar 2007 | A1 |
20070060872 | Hall et al. | Mar 2007 | A1 |
20070083160 | Hall et al. | Apr 2007 | A1 |
20070106135 | Sloan et al. | May 2007 | A1 |
20070116601 | Patton | May 2007 | A1 |
20070118405 | Campbell et al. | May 2007 | A1 |
20070129690 | Rosenblatt et al. | Jun 2007 | A1 |
20070142720 | Ridder et al. | Jun 2007 | A1 |
20070173761 | Kanderian et al. | Jul 2007 | A1 |
20070173974 | Lin et al. | Jul 2007 | A1 |
20070179352 | Randlov et al. | Aug 2007 | A1 |
20070191716 | Goldberger et al. | Aug 2007 | A1 |
20070197163 | Robertson | Aug 2007 | A1 |
20070225675 | Robinson et al. | Sep 2007 | A1 |
20070244381 | Robinson et al. | Oct 2007 | A1 |
20070249007 | Rosero | Oct 2007 | A1 |
20070264707 | Liederman et al. | Nov 2007 | A1 |
20070282269 | Carter et al. | Dec 2007 | A1 |
20070287985 | Estes et al. | Dec 2007 | A1 |
20070293843 | Ireland et al. | Dec 2007 | A1 |
20080033272 | Gough et al. | Feb 2008 | A1 |
20080051764 | Dent et al. | Feb 2008 | A1 |
20080058625 | McGarraugh et al. | Mar 2008 | A1 |
20080065050 | Sparks et al. | Mar 2008 | A1 |
20080071157 | McGarraugh et al. | Mar 2008 | A1 |
20080071158 | McGarraugh et al. | Mar 2008 | A1 |
20080078400 | Martens et al. | Apr 2008 | A1 |
20080097289 | Steil et al. | Apr 2008 | A1 |
20080132880 | Buchman | Jun 2008 | A1 |
20080161664 | Mastrototaro et al. | Jul 2008 | A1 |
20080172026 | Blomquist | Jul 2008 | A1 |
20080177165 | Blomquist et al. | Jul 2008 | A1 |
20080188796 | Steil et al. | Aug 2008 | A1 |
20080200838 | Goldberger et al. | Aug 2008 | A1 |
20080206067 | De Corral et al. | Aug 2008 | A1 |
20080208113 | Damiano et al. | Aug 2008 | A1 |
20080214919 | Harmon et al. | Sep 2008 | A1 |
20080228056 | Blomquist et al. | Sep 2008 | A1 |
20080249386 | Besterman et al. | Oct 2008 | A1 |
20080269585 | Ginsberg | Oct 2008 | A1 |
20080269714 | Mastrototaro et al. | Oct 2008 | A1 |
20080269723 | Mastrototaro et al. | Oct 2008 | A1 |
20080287906 | Burkholz et al. | Nov 2008 | A1 |
20090006061 | Thukral et al. | Jan 2009 | A1 |
20090018406 | Yodfat et al. | Jan 2009 | A1 |
20090030398 | Yodfat et al. | Jan 2009 | A1 |
20090036753 | King | Feb 2009 | A1 |
20090043240 | Robinson et al. | Feb 2009 | A1 |
20090054753 | Robinson et al. | Feb 2009 | A1 |
20090069743 | Krishnamoorthy et al. | Mar 2009 | A1 |
20090069745 | Estes et al. | Mar 2009 | A1 |
20090069787 | Estes et al. | Mar 2009 | A1 |
20090099521 | Gravesen et al. | Apr 2009 | A1 |
20090105573 | Malecha | Apr 2009 | A1 |
20090131861 | Braig et al. | May 2009 | A1 |
20090156922 | Goldberger et al. | Jun 2009 | A1 |
20090156924 | Shariati et al. | Jun 2009 | A1 |
20090163781 | Say et al. | Jun 2009 | A1 |
20090198350 | Thiele | Aug 2009 | A1 |
20090221890 | Saffer et al. | Sep 2009 | A1 |
20090228214 | Say et al. | Sep 2009 | A1 |
20090318791 | Kaastrup | Dec 2009 | A1 |
20090326343 | Gable et al. | Dec 2009 | A1 |
20100057042 | Hayter | Mar 2010 | A1 |
20100114026 | Karratt et al. | May 2010 | A1 |
20100121170 | Rule | May 2010 | A1 |
20100137784 | Cefai et al. | Jun 2010 | A1 |
20100152658 | Hanson et al. | Jun 2010 | A1 |
20100174228 | Buckingham et al. | Jul 2010 | A1 |
20100211003 | Sundar et al. | Aug 2010 | A1 |
20100228110 | Tsoukalis | Sep 2010 | A1 |
20100256593 | Yodfat | Oct 2010 | A1 |
20100262117 | Magni et al. | Oct 2010 | A1 |
20100262434 | Shaya | Oct 2010 | A1 |
20100295686 | Sloan et al. | Nov 2010 | A1 |
20100298765 | Budiman et al. | Nov 2010 | A1 |
20110021584 | Berggren et al. | Jan 2011 | A1 |
20110028817 | Jin et al. | Feb 2011 | A1 |
20110054390 | Searle et al. | Mar 2011 | A1 |
20110054399 | Chong et al. | Mar 2011 | A1 |
20110124996 | Reinke et al. | May 2011 | A1 |
20110144586 | Michaud et al. | Jun 2011 | A1 |
20110160652 | Yodfat et al. | Jun 2011 | A1 |
20110178472 | Cabiri | Jul 2011 | A1 |
20110190694 | Anier, Jr. et al. | Aug 2011 | A1 |
20110202005 | Yodfat et al. | Aug 2011 | A1 |
20110218495 | Remde | Sep 2011 | A1 |
20110230833 | Landman et al. | Sep 2011 | A1 |
20110251509 | Beyhan et al. | Oct 2011 | A1 |
20110313680 | Doyle et al. | Dec 2011 | A1 |
20110316562 | Cefai et al. | Dec 2011 | A1 |
20120003935 | Lydon et al. | Jan 2012 | A1 |
20120010594 | Holt et al. | Jan 2012 | A1 |
20120030393 | Ganesh et al. | Feb 2012 | A1 |
20120053556 | Lee | Mar 2012 | A1 |
20120078067 | Kovatchev et al. | Mar 2012 | A1 |
20120078161 | Masterson et al. | Mar 2012 | A1 |
20120078181 | Smith et al. | Mar 2012 | A1 |
20120101451 | Boit et al. | Apr 2012 | A1 |
20120123234 | Atlas et al. | May 2012 | A1 |
20120136336 | Mastrototaro et al. | May 2012 | A1 |
20120190955 | Rao et al. | Jul 2012 | A1 |
20120203085 | Rebec | Aug 2012 | A1 |
20120203178 | Tverskoy | Aug 2012 | A1 |
20120215087 | Cobelli et al. | Aug 2012 | A1 |
20120225134 | Komorowski | Sep 2012 | A1 |
20120226259 | Yodfat et al. | Sep 2012 | A1 |
20120232520 | Sloan et al. | Sep 2012 | A1 |
20120238851 | Kamen et al. | Sep 2012 | A1 |
20120271655 | Knobel et al. | Oct 2012 | A1 |
20120277668 | Chawla | Nov 2012 | A1 |
20120282111 | Nip et al. | Nov 2012 | A1 |
20120295550 | Wilson et al. | Nov 2012 | A1 |
20130030358 | Yodfat et al. | Jan 2013 | A1 |
20130158503 | Kanderian, Jr. et al. | Jun 2013 | A1 |
20130178791 | Javitt | Jul 2013 | A1 |
20130231642 | Doyle et al. | Sep 2013 | A1 |
20130253472 | Cabiri | Sep 2013 | A1 |
20130261406 | Rebec et al. | Oct 2013 | A1 |
20130296823 | Melker et al. | Nov 2013 | A1 |
20130317753 | Kamen et al. | Nov 2013 | A1 |
20130338576 | OConnor et al. | Dec 2013 | A1 |
20140005633 | Finan | Jan 2014 | A1 |
20140200426 | Taub et al. | Jan 2014 | A1 |
20140066886 | Roy et al. | Mar 2014 | A1 |
20140074033 | Sonderegger et al. | Mar 2014 | A1 |
20140121635 | Hayter | May 2014 | A1 |
20140128839 | Dilanni et al. | May 2014 | A1 |
20140135880 | Baumgartner et al. | May 2014 | A1 |
20140146202 | Boss et al. | May 2014 | A1 |
20140180203 | Budiman et al. | Jun 2014 | A1 |
20140180240 | Finan et al. | Jun 2014 | A1 |
20140200559 | Doyle et al. | Jul 2014 | A1 |
20140230021 | Birthwhistle et al. | Aug 2014 | A1 |
20140276554 | Finan et al. | Sep 2014 | A1 |
20140276556 | Saint et al. | Sep 2014 | A1 |
20140278123 | Prodhom et al. | Sep 2014 | A1 |
20140309615 | Mazlish | Oct 2014 | A1 |
20140316379 | Sonderegger et al. | Oct 2014 | A1 |
20140325065 | Birthwhistle et al. | Oct 2014 | A1 |
20150018633 | Kovachev et al. | Jan 2015 | A1 |
20150025329 | Amarasingham et al. | Jan 2015 | A1 |
20150025495 | Peyser | Jan 2015 | A1 |
20150120317 | Mayou et al. | Apr 2015 | A1 |
20150134265 | Kohlbrecher et al. | May 2015 | A1 |
20150165119 | Palerm et al. | Jun 2015 | A1 |
20150173674 | Hayes et al. | Jun 2015 | A1 |
20150198607 | Peyser | Jul 2015 | A1 |
20150213217 | Amarasingham et al. | Jul 2015 | A1 |
20150217052 | Keenan et al. | Aug 2015 | A1 |
20150217053 | Booth et al. | Aug 2015 | A1 |
20150265767 | Vazquez et al. | Sep 2015 | A1 |
20150306314 | Doyle et al. | Oct 2015 | A1 |
20150351671 | Vanslyke et al. | Dec 2015 | A1 |
20150366945 | Greene | Dec 2015 | A1 |
20160015891 | Papiorek | Jan 2016 | A1 |
20160038673 | Morales | Feb 2016 | A1 |
20160038689 | Lee et al. | Feb 2016 | A1 |
20160051749 | Istoc | Feb 2016 | A1 |
20160082187 | Schaible et al. | Mar 2016 | A1 |
20160089494 | Guerrini | Mar 2016 | A1 |
20160175520 | Palerm et al. | Jun 2016 | A1 |
20160228641 | Gescheit et al. | Aug 2016 | A1 |
20160243318 | Despa et al. | Aug 2016 | A1 |
20160256087 | Doyle et al. | Sep 2016 | A1 |
20160287512 | Cooper et al. | Oct 2016 | A1 |
20160302054 | Kimura et al. | Oct 2016 | A1 |
20160331310 | Kovatchev | Nov 2016 | A1 |
20160354543 | Cinar et al. | Dec 2016 | A1 |
20170049386 | Abraham et al. | Feb 2017 | A1 |
20170143899 | Gondhalekar et al. | May 2017 | A1 |
20170143900 | Rioux et al. | May 2017 | A1 |
20170156682 | Doyle et al. | Jun 2017 | A1 |
20170173261 | OConnor et al. | Jun 2017 | A1 |
20170189625 | Cirillo et al. | Jul 2017 | A1 |
20170281877 | Marlin et al. | Oct 2017 | A1 |
20170296746 | Chen et al. | Oct 2017 | A1 |
20170311903 | Davis et al. | Nov 2017 | A1 |
20170348482 | Duke et al. | Dec 2017 | A1 |
20180036495 | Searle et al. | Feb 2018 | A1 |
20180040255 | Freeman et al. | Feb 2018 | A1 |
20180075200 | Davis et al. | Mar 2018 | A1 |
20180075201 | Davis et al. | Mar 2018 | A1 |
20180075202 | Davis et al. | Mar 2018 | A1 |
20180092576 | O'Connor et al. | Apr 2018 | A1 |
20180126073 | Wu et al. | May 2018 | A1 |
20180169334 | Grosman et al. | Jun 2018 | A1 |
20180200434 | Mazlish et al. | Jul 2018 | A1 |
20180200438 | Mazlish et al. | Jul 2018 | A1 |
20180200441 | Desborough et al. | Jul 2018 | A1 |
20180204636 | Edwards et al. | Jul 2018 | A1 |
20180277253 | Gondhalekar et al. | Sep 2018 | A1 |
20180289891 | Finan et al. | Oct 2018 | A1 |
20180296757 | Finan et al. | Oct 2018 | A1 |
20180342317 | Skirble et al. | Nov 2018 | A1 |
20180369479 | Hayter et al. | Dec 2018 | A1 |
20190076600 | Grosman et al. | Mar 2019 | A1 |
20190240403 | Palerm et al. | Aug 2019 | A1 |
20190290844 | Monirabbasi et al. | Sep 2019 | A1 |
20190336683 | O'Connor et al. | Nov 2019 | A1 |
20190336684 | O'Connor et al. | Nov 2019 | A1 |
20190348157 | Booth et al. | Nov 2019 | A1 |
20200046268 | Patek et al. | Feb 2020 | A1 |
20200101222 | Linteruer et al. | Apr 2020 | A1 |
20200101223 | Lintereur et al. | Apr 2020 | A1 |
20200101225 | O'Connor et al. | Apr 2020 | A1 |
20200219625 | Kahlbaugh | Jul 2020 | A1 |
20200342974 | Chen et al. | Oct 2020 | A1 |
20210050085 | Hayter et al. | Feb 2021 | A1 |
20210098105 | Lee et al. | Apr 2021 | A1 |
20220023536 | Graham et al. | Jan 2022 | A1 |
Number | Date | Country |
---|---|---|
2015200834 | Mar 2015 | AU |
2015301146 | Mar 2017 | AU |
1297140 | May 2001 | CN |
19756872 | Jul 1999 | DE |
0341049 | Nov 1989 | EP |
0496305 | Jul 1992 | EP |
0549341 | Jun 1993 | EP |
1491144 | Dec 2004 | EP |
0801578 | Jul 2006 | EP |
2139382 | Jan 2010 | EP |
2397181 | Dec 2011 | EP |
2666520 | Nov 2013 | EP |
2695573 | Feb 2014 | EP |
2830499 | Feb 2015 | EP |
2943149 | Nov 2015 | EP |
3177344 | Jun 2017 | EP |
3314548 | May 2018 | EP |
1571582 | Apr 2019 | EP |
2897071 | May 2019 | EP |
3607985 | Feb 2020 | EP |
2443261 | Apr 2008 | GB |
S51125993 | Nov 1976 | JP |
02131777 | May 1990 | JP |
2004283378 | Oct 2007 | JP |
2017525451 | Sep 2017 | JP |
2018153569 | Oct 2018 | JP |
2019525276 | Sep 2019 | JP |
200740148 | Oct 2007 | TW |
M452390 | May 2013 | TW |
9800193 | Jan 1998 | WO |
9956803 | Nov 1999 | WO |
0030705 | Jun 2000 | WO |
0032258 | Jun 2000 | WO |
0172354 | Oct 2001 | WO |
2002015954 | Feb 2002 | WO |
0243866 | Jun 2002 | WO |
02082990 | Oct 2002 | WO |
03016882 | Feb 2003 | WO |
03039362 | May 2003 | WO |
03045233 | Jun 2003 | WO |
05110601 | May 2004 | WO |
2004043250 | May 2004 | WO |
04092715 | Oct 2004 | WO |
2005051170 | Jun 2005 | WO |
2005082436 | Sep 2005 | WO |
2005113036 | Dec 2005 | WO |
2006053007 | May 2006 | WO |
2007064835 | Jun 2007 | WO |
2007078937 | Jul 2007 | WO |
2008024810 | Feb 2008 | WO |
2008029403 | Mar 2008 | WO |
2008133702 | Nov 2008 | WO |
2009045462 | Apr 2009 | WO |
2009049252 | Apr 2009 | WO |
2009066287 | May 2009 | WO |
2009066288 | May 2009 | WO |
2009098648 | Aug 2009 | WO |
2009134380 | Nov 2009 | WO |
2010053702 | May 2010 | WO |
2010132077 | Nov 2010 | WO |
2010138848 | Dec 2010 | WO |
2010147659 | Dec 2010 | WO |
2011095483 | Aug 2011 | WO |
2012045667 | Apr 2012 | WO |
2012108959 | Aug 2012 | WO |
2012134588 | Oct 2012 | WO |
2012177353 | Dec 2012 | WO |
2012178134 | Dec 2012 | WO |
2013078200 | May 2013 | WO |
2013134486 | Sep 2013 | WO |
20130149186 | Oct 2013 | WO |
2013177565 | Nov 2013 | WO |
2013182321 | Dec 2013 | WO |
2014109898 | Jul 2014 | WO |
2014110538 | Jul 2014 | WO |
2014194183 | Dec 2014 | WO |
2015056259 | Apr 2015 | WO |
2015061493 | Apr 2015 | WO |
2015073211 | May 2015 | WO |
2015081337 | Jun 2015 | WO |
2015187366 | Dec 2015 | WO |
2016004088 | Jan 2016 | WO |
2016022650 | Feb 2016 | WO |
2016041873 | Mar 2016 | WO |
2016089702 | Jun 2016 | WO |
2016141082 | Sep 2016 | WO |
2016161254 | Oct 2016 | WO |
2017004278 | Jan 2017 | WO |
2017091624 | Jun 2017 | WO |
2017105600 | Jun 2017 | WO |
2017184988 | Oct 2017 | WO |
2017205816 | Nov 2017 | WO |
2018009614 | Jan 2018 | WO |
2018067748 | Apr 2018 | WO |
2018120104 | Jul 2018 | WO |
2018136799 | Jul 2018 | WO |
2018204568 | Nov 2018 | WO |
2019077482 | Apr 2019 | WO |
2019094440 | May 2019 | WO |
2019213493 | Nov 2019 | WO |
2019246381 | Dec 2019 | WO |
2020081393 | Apr 2020 | WO |
2021011738 | Jan 2021 | WO |
Entry |
---|
US 5,954,699 A, 09/1999, Jost et al. (withdrawn) |
Anonymous: “Artificial pancreas—Wikipedia”, Mar. 13, 2018 (Mar. 13, 2018), XP055603712, Retrieved from the Internet: URL: https://en.wikipedia.org/wiki/Artificial_pancreas [retrieved on Jul. 9, 2019] section “Medical Equipment” and the figure labeled “The medical equipment approach to an artifical pancreas”. |
Kaveh et al., “Blood Glucose Regulation via Double Loop Higher Order Sliding Mode Control and Multiple Sampling Rate.” Paper presented at the proceedings of the 17th IFAC World Congress, Seoul, Korea (Jul. 2008). |
Dassau et al., “Real-Time Hypoglycemia Prediction Suite Using Contineous Glucose Monitoring,” Diabetes Care, vol. 33, No. 6, 1249-1254 (2010). |
International Search Report and Written Opinion for International Patent Application No. PCT/US17/53262, mailed on Dec. 13, 2017, 8 pages. |
Van Heusden et al., “Control-Relevant Models for Glucose Control using A Priori Patient Characteristics”, IEEE Transactions on Biomedical Engineering, vol. 59, No. 7, (Jul. 1, 2012) pp. 1839-1849. |
Doyle III et al., “Run-to-Run Control Strategy for Diabetes Management.” Paper presented at 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey. (Oct. 2001). |
Bequette, B.W., and Desemone, J., “Intelligent Dosing Systems”: Need for Design and Analysis Based on Control Theory, Diabetes Technology and Therapeutics 9(6): 868-873 (2004). |
Parker et al., “A Model-Based Agorithm for Blood Gucose Control in Type 1 Diabetic Patients.” IEEE Transactions on Biomedical Engineering, 46 (2) 148-147 (1999). |
International Search Report and Written Opinion for International Patent Application No. PCT/US2017/015601, mailed May 16, 2017, 12 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2018/018901, mailed on Aug. 6, 2018, 12 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2018/052467, mailed Jan. 4, 2019, 13 pages. |
“How to Create a QR Code that Deep Links to Your Mobile App”, Pure Oxygen Labs, web<https://pureoxygenlabs.com/how-to-create-a-qr-codes-that-deep-link-to-your-mobile-app/> Year:2017. |
“Read NFC Tags with an iPHone App on iOS 11”, GoToTags, 11 Sep. 2017, web <https://gototags.com/blog/read-hfc-tags-with-an-iphone-app-on-ios-11/> (Year:2017). |
International Search Report and Written Opinion for International Patent Application No. PCT/US2016/063350, mailed on Mar. 27, 2017, 9 pages. |
Extended Search Report mailed Aug. 13, 2018, issued in European Patent Application No. 16753053.4, 9 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US16/18452, mailed on Apr. 29, 2015, 9 pages. |
International Preliminary Report on Patentability mailed Aug. 31, 2017, issued in PCT Patent Application No. PCT/US2016/018452, 7 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/055862, mailed on Mar. 11, 2020. |
International Search Report and Written Opinion for Application No. PCT/US2019/030652, Sep. 25, 2019, 19 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2022/013470, mailed May 6, 2022, 14 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2022/013473, mailed May 6, 2022, 13 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2022/019079, mailed Jun. 2, 2022, 14 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2022/018453, mailed Jun. 2, 2022, 13 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US22/018700, mailed Jun. 7, 2022, 13 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US22/019080, mailed Jun. 7, 2022, 14 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US22/019664, mailed Jun. 7, 2022, 14 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US21/060618, mailed Mar. 21, 2022, 15 pages. |
Herrero Pau et al: “Enhancing automatic closed-loop glucose control in type 1 diabetes with an adaptive meal bolus calculator-in silicoevaluation under intra-day variability”, Computer Methods and Programs in Biomedicine, Elsevier, Amsterdam, NL, vol. 146, Jun. 1, 2017 (Jun. 1, 2017), pp. 125-131, XP085115607, ISSN: 0169-2607, DOI:10.1016/J.CMPB.2017.05.010. |
Marie Aude Qemerais: “Preliminary Evaluation of a New Semi-Closed-Loop Insulin Therapy System over the prandial beriod in Adult Patients with type I diabetes: the WP6. 0 Diabeloop Study”, Journal of Diabetes Science and Technology Diabetes Technology Society Reprints and permissions, Jan. 1, 2014, pp. 1177-1184, Retrieved from the Internet: URL:http://journals.sagepub.com/doi/pdf/10.1177/1932296814545668 [retrieved on Jun. 6, 2022] chapter “Functioning of the Algorithm” chapter “Statistical Analysis” p. 1183, left-hand column, line 16-line 23. |
Anonymous: “Kernel density estimation”, Wikipedia, Nov. 13, 2020 (Nov. 13, 2020), pp. 1-12, XP055895569, Retrieved from the Internet: URL:https://en.wikipedia.org/w/index.php?title=Kernel_density_estimation&oldid=988508333 [retrieved on Jun. 6, 2022]. |
Anonymous: “openaps / oref0 /lib/determine-basal-js”, openaps repository, Nov. 9, 2019 (Nov. 9, 2019), pp. 1-17, XP055900283, Retrieved from the Internet: URL:https://github.com/openaps/oref0/blob/master/lib/determine-basal/determine-basal.js [retrieved on Jun. 6, 2022] line 116-line 118, line 439-line 446. |
Anonymous: “AndroidAPS screens”, AndroidAPS documentation, Oct. 4, 2020 (Oct. 4, 2020), pp. 1-12, XP055894824, Retrieved from the Internet: URL:https://github.com/openaps/AndroidAPSdocs/blob/25d8acf8b28262b411b34f416f173ac0814d7e14/docs/en/Getting-Started/Screenshots.md [retrieved on Jun. 6, 2022]. |
Kozak Milos et al: “Issue #2473 of AndroidAPS”, MilosKozak / AndroidAPS Public repository, Mar. 4, 2020 (Mar. 4, 2020), pp. 1-4, XP055900328, Retrieved from the Internet: URL:https://github.com/MilosKozak/AndroidAPS/issues/2473 [retrieved on Jun. 6, 2022]. |
Medication Bar Code System Implementation Planning Section I: A Bar Code Primer for Leaders, Aug. 2013. |
Medication Bar Code System Implementation Planning Section II: Building the Case for Automated Identification of Medications, Aug. 2013. |
Villareal et al. (2009) in: Distr. Comp. Art. Intell. Bioninf. Soft Comp. Amb. Ass. Living; Int. Work Conf. Art. Neural Networks (IWANN) 2009, Lect. Notes Comp. Sci. vol. 5518; S. Omatu et al. (Eds.), pp. 870-877. |
Fox, Ian G.; Machine Learning for Physiological Time Series: Representing and Controlling Blood Glucose for Diabetes Management; University of Michigan. ProQuest Dissertations Publishing, 2020. 28240142. (Year: 2020). |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2022/012896, mailed Apr. 22, 2022, 15 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/046607, mailed Jan. 31, 2022, 20 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/055745, mailed Feb. 14, 2022, 13 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/052372, mailed Jan. 26, 2022, 15 pages. |
International Preliminary Report on Patentability in PCT/US2021/052372 mailed on Apr. 13, 2023, 10 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2020/052125, mailed Aug. 12, 2020, 15 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2020/050332, mailed Sep. 12, 2020, 12 pages. |
European Patent Office, “Notification of Transmittal of the ISR and the Written Opinion of the International Searching Authority, or the Declaration,” in PCT Application No. PCT/GB2015/050248, Jun. 23, 2015, 12 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/012246, mailed Apr. 13, 2021, 15 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/013639, mailed Apr. 28, 2021, 14 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2020/063326, mailed May 3, 2021, 17 pages. |
European Search Report for the European Patent Application No. 21168591, mailed Oct. 13, 2021, 151 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/041954, mailed Oct. 25, 2021, 13 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/052855, mailed Dec. 22, 2021, 11 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/047771, mailed Dec. 22, 2021, 11 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021051027, mailed Jan. 7, 2022, 16 pages. |
Unger, Jeff, et al., “Glucose Control in the Hospitalized Patient,” Emerg. Med 36(9):12-18 (2004). |
“Glucommander FAQ” downloaded from https://adaendo.com/GlucommanderFAQ.html on Mar. 16, 2009. |
Finfer, Simon & Heritier, Stephane. (2009). The NICE-SUGAR (Normoglycaemia in Intensive Care Evaluation and Survival Using Glucose Algorithm Regulation) Study: statistical analysis plan. Critical care and resuscitation : journal of the Australasian Academy of Critical Care Medicine. 11. 46-57. |
Letters to the Editor regarding “Glucose Control in Critically Ill Patients,” N Engl J Med 361: 1, Jul. 2, 2009. |
“Medtronic is Leading a Highly Attractive Growth Market,” Jun. 2, 2009. |
Davidson, Paul C., et al. “Glucommander: An Adaptive, Computer-Directed System for IV Insulin Shown to be Safe, Simple, and Effective in 120,618 Hours of Operation,” Atlanta Diabetes Associates presentation. |
Davidson, Paul C., et al. “Pumpmaster and Glucommander,” presented at the MiniMed Symposium, Atlanta GA, Dec. 13, 2003. |
Kanji S., et al. “Reliability of point-of-care testing for glucose measurement in critically ill adults,” Critical Care Med, vol. 33, No. 12, pp. 2778-2785, 2005. |
Krinsley James S., “Severe hypoglycemia in critically ill patients: Risk factors and outcomes,” Critical Care Med, vol. 35, No. 10, pp. 1-6, 2007. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/016283, mailed Jun. 2, 2021, 15 pages. |
Farkas et al. ““Single-Versus Triple-Lumen Central Catheter-Related Sepsis: A Prospective Randomized Study in a Critically Ill Population”” The American Journal of Medicine September 1992vol. 93 p. 277-282. |
Davidson, Paul C., et al., A computer-directed intravenous insulin system shown to be safe, simple, and effective in 120,618 h of operation, Diabetes Care, vol. 28, No. 10, Oct. 2005, pp. 2418-2423. |
R Anthony Shaw, et al., “Infrared Spectroscopy in Clinical and Dianostic Analysis,” Encyclopedia of Analytical Chemistry, ed. Robert A. Meyers, John Wiley & Sons, Ltd., pp. 1-20, 2006. |
Gorke, A ““Microbial Contamination Of Haemodialysis Catheter Connections”” Journal of Renal Care, European Dialysis & Transplant Nurses Association. |
Lovich et al. “Central venous catheter infusions: A laboratory model shows large differences in drug delivery dynamics related to catheter dead volume” Critical Care Med 2007 vol. 35, No. 12. |
Van Den Berghe, Greet, M.D., Ph.D., et al., Intensive Insulin Therapy in Critically Ill Patients, The New England Journal of Medicine, vol. 345, No. 19, Nov. 8, 2001, pp. 1359-1367. |
Schlegel et al, “Multilumen Central Venous Catheters Increase Risk for Catheter-Related Bloodstream Infection: Prospective Surveillance Study”. |
Wilson, George S., et al., Progress toward the Development of an Implantable Sensor for Glucose, Clin. Chem., vol. 38, No. 9, 1992, pp. 1613-1617. |
Yeung et al. “Infection Rate for Single Lumen v Triple Lumen Subclavian Catheters” Infection Control and Hospital Epidemiology, vol. 9, No. 4 (Apr. 1988) pp. 154-158 The University of Chicago Press. |
International Search Report and Written Opinion, International Application No. PCT/US2010/033794 mailed Jul. 16, 2010 (OPTIS.247VPC). |
International Search Report and Written Opinion in PCT/US2008/079641 (Optis.203VPC) dated Feb. 25, 2009. |
Berger, ““Measurement of Analytes in Human Serum and Whole Blood Samples by Near-Infrared Raman Spectroscopy,”” Ph.D. Thesis, Massachusetts Institute of Technology, Chapter 4, pp. 50-73, 1998. |
Berger, “An Enhanced Algorithm for Linear Multivariate Calibration,” Analytical Chemistry, vol. 70, No. 3, pp. 623-627, Feb. 1, 1998. |
Billman et al., “Clinical Performance of an In line Ex-Vivo Point of Care Monitor: A Multicenter Study,” Clinical Chemistry 48: 11, pp. 2030-2043, 2002. |
Widness et al., “Clinical Performance on an In-Line Point-of-Care Monitor in Neonates”; Pediatrics, vol. 106, No. 3, pp. 497-504, Sep. 2000. |
Finkielman et al., “Agreement Between Bedside Blood and Plasma Glucose Measurement in the ICU Setting”; retrieved from http://www.chestjournal.org; CHEST/127/5/May 2005. |
Glucon Critical Care Blood Glucose Monitor; Glucon; retrieved from http://www.glucon.com. |
Fogt, et al., “Development and Evaluation of a Glucose Analyzer for a Glucose-Controlled Insulin Infusion System (Biostator)”; Clinical Chemistry, vol. 24, No. 8, pp. 1366-1372, 1978. |
Vonach et al., “Application of Mid-Infrared Transmission Spectrometry to the Direct Determination of Glucose in Whole Blood,” Applied Spectroscopy, vol. 52, No. 6, 1998, pp. 820-822. |
Muniyappa et al., “Current Approaches for assessing insulin sensitivity and resistance in vivo: advantages, imitations, and appropriate usage,” AJP-Endocrinol Metab, vol. 294, E15-E26, first published Oct. 23, 2007. |
International Preliminary Report on Patentability for the International Patent Application No. PCT/US2019/053603, mailed Apr. 8, 2021, 9 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2019/053603, mailed Jan. 7, 2020, 16 pages. |
Dassau et al., “Detection of a meal using continuous glucose monitoring: Implications for an artificial [beta]-cell.” Diabetes Care, American Diabetes Association, Alexandria, VA, US, 31(2):295-300 (2008). |
Cameron et al., “Probabilistic Evolving Meal Detection and Estimation of Meal Total Glucose Appearance Author Affiliations”, J Diabetes Sci and Tech,vol. Diabetes Technology Society ;(5):1022-1030 (2009). |
Lee et al., “A closed-loop artificial pancreas based on model predictive control: Human-friendly identification and automatic meal disturbance rejection”, Biomedical Signal Processing and Control, Elsevier, Amsterdam, NL, 4 (4):1746-8094 (2009). |
Anonymous: “Fuzzy control system”, Wikipedia, Jan. 10, 2020. URL: https://en.wikipedia.org/w/index.php?title=Fuzzy_control_system&oldid=935091190. |
An Emilia Fushimi: “Artificial Pancreas: Evaluating the ARG Algorithm Without Meal Annoucement”, Journal of Diabetes Science and Technology Diabetes Technology Society, Mar. 22, 2019, pp. 1025-1043. |
International Search Report and Written Opinion for the InternationalPatent Application No. PCT/US2021/017441, mailed May 25, 2021, 12 pages. |
Mirko Messori et al: “Individualized model predictive control for the artificial pancreas: In silico evaluation of closed-loop glucose control”, IEEE Control Systems, vol. 38, No. 1, Feb. 1, 2018, pp. 86-104. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/017662, mailed May 26, 2021, 14 pages. |
Anonymous: “Reservoir Best Practice and Top Tips”Feb. 7, 2016, URL: https://www.medtronic-diabetes.co.uk/blog/reservoir-best-practice-and-top-tips, p. 1. |
Gildon Bradford: “InPen Smart Insulin Pen System: Product Review and User Experience” Diabetes Spectrum, vol. 31, No. 4, Nov. 15, 2018, pp. 354-358. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/016050, mailed May 27, 2021, 16 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2020/065226, mailed May 31, 2021, 18 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/017659, mailed May 31, 2021, 13 pages. |
Montaser Eslam et al., “Seasonal Local Models for Glucose Prediction in Type 1 Diabetes”, IEE Journal of Biomedical and Health Informatics, IEEE, Piscataway, NJ, USA, vol. 24, No. 7, Nov. 29, 2019, pp. 2064-2072. |
Samadi Sediqeh et al., “Automatic Detection and Estimation of Unannouced Meals for Multivariable Artificial Pancreas System”, Diabetis Technology & Therapeutics, vol. 20m No. 3, Mar. 1, 2018, pp. 235-246. |
Samadi Sediqeh et al., “Meal Detection and Carbohydrate Estimation Using Continuous Glucose Sensor Data” IEEE Journal of Biomedical and Health Informatics, IEEE, Piscataway, NJ, USA, vol. 21, No. 3, May 1, 2017, pp. 619-627. |
Khodaei et al., “Physiological Closed-Loop Contol (PCLC) Systems: Review of a Modern Frontier in Automation”, IEEE Access, IEEE, USA, vol. 8, Jan. 20, 2020, pp. 23965-24005. |
E. Atlas et al., “MD-Logic Artificial Pancreas System: A pilot study in adults with type 1 diabetes”, Diabetes Care, vol. 33, No. 5, Feb. 11, 2010, pp. 1071-1076. |
Number | Date | Country | |
---|---|---|---|
20220096749 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
63085853 | Sep 2020 | US |