Embodiments generally relate to medication delivery. More particularly, embodiments relate to force transfer elements used to actuate wearable drug delivery devices.
Many conventional drug delivery systems, such as handheld auto-injectors, are designed to rapidly delivery a drug to a patient. These conventional drug delivery systems are generally not suitable for delivering a drug to a user over relatively longer periods of time as may be required for many drugs.
As an alternative to conventional auto-injectors, many conventional drug delivery systems are designed to be wearable and to deliver a drug more slowly to the patient. However, these conventional wearable drug delivery systems often require a patient to transfer a drug or other medicine from a vial to a container within the drug delivery system. Transferring the drug can be a challenging task for many patients as it may require precise handling of the drug, a transfer mechanism (e.g., a syringe), and the drug delivery system. Some conventional wearable drug delivery systems use prefilled cartridges that contain the drug intended for the patient, obviating the need for such drug transfers. However, these conventional cartridge-based drug delivery systems are often bulky and cumbersome due to the included cartridge and can be uncomfortable when worn by the patient.
A need therefore exists for a more convenient and user-friendly wearable drug delivery device for providing a drug to a user.
The present invention in various embodiments includes drug delivery devices, systems, and methods with force transfer elements. Fluids may be driving through and/or out of devices with force transfer elements and/or drive mechanisms of this disclosure.
In one aspect of the present invention, a drug delivery device may include a drug container for storing a liquid drug. A first end of the drug container may be sealed by a plunger. A needle conduit may be coupled to the plunger. A needle insertion component may be coupled to the needle conduit. A drive mechanism may be coupled to the plunger. The drive mechanism may include a drive spring and a plurality of linked force transfer elements. The plurality of linked force transfer elements may include a plurality of spherical body links. The spherical body may link each comprise partial spherical sections that may be coupled to adjacent body links via a ball and recess connection. The spherical body links may each include spherical sections coupled to connector links via a disc and recess connection. The linked force transfer elements may include partial spherical sections that may each having at least one roller coupled thereto. The plurality of linked force transfer element may include a plurality of chain links. Each of the plurality of chain links may include a depending portion that may be configured to be received in a recess portion of an adjacent chain link to enable adjacent links to pivot with respect to each other.
In another aspect, a drug delivery device may include a drug container for storing a liquid drug. A first end of the drug container may be sealed by a plunger. A needle conduit may be coupled to the plunger. A needle insertion component may be coupled to the needle conduit. A drive mechanism may be coupled to the plunger. The drive mechanism may include a drive spring and may include a plurality of non-spherical force transfer elements. The plurality of non-spherical force transfer elements may include a plurality of dog bone shaped links. Each of the plurality of non-spherical force transfer elements may comprise first and second shells biased apart by an elastic element. Each of the plurality of non-spherical force transfer elements may comprise a flexible rod and first and second guide rollers. Each of the plurality of non-spherical force transfer elements may include first and second roller elements and may include a reduced diameter section disposed therebetween. A bushed connecting rod may be coupled between adjacent one of said non-spherical force transfer elements. The bushed connecting rod may be rotatably coupled to the reduced diameter section of the non-spherical force transfer elements.
In another aspect, a drug delivery device may include a drug container for storing a liquid drug. A first end of the drug container may be sealed by a plunger. A needle conduit may be coupled to the plunger. A needle insertion component may be coupled to the needle conduit. A drive mechanism may be coupled to the plunger. The drive mechanism may include a drive spring and may include a plurality of substantially cylindrical force transfer elements. Each of the plurality of cylindrical force transfer elements may include a cylindrical portion having a groove and a protrusion. The groove and protrusion may be configured to engage a corresponding protrusion and a corresponding groove of an adjacent one of the plurality of cylindrical force transfer elements. The groove and the protrusion may be disposed adjacent each other at an upper end of each of said plurality of cylindrical force transfer elements. The groove and protrusion may be configured to engage the corresponding protrusion and the corresponding groove of said adjacent one of said plurality of cylindrical force transfer elements. The plurality of cylindrical force transfer elements may include a rail-engaging groove in the cylindrical portion, and may include a track-engaging portion configured to engage a rail disposed on a sidewall of a track of said drug delivery device. A substantially U-shaped track may have a straight track portion with walls spaced apart from each other a first distance, and a curved track portion with walls spaced apart from each other a second distance that may be smaller than the first distance. Each of the plurality of substantially cylindrical force transfer elements may include an hourglass shape having upper and lower portions that may be coupled by a reduced diameter portion. Each of the upper and lower portions may include a cylindrical portion that tapers to the reduced diameter portion to form upper and lower angled transition portions. The upper and lower angled portions may be straight angled portions. The upper and lower angled portions may each comprise curved portions.
The present disclosure is not limited to the particular embodiments described. The terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. Unless otherwise defined, all technical terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the disclosure belongs.
Although embodiments of the present disclosure are described with specific reference to drug delivery, including insulin, it should be appreciated that such systems, methods, and devices may be used in a variety of configurations of fluid delivery, with a variety of instruments, a variety of fluids, and for a variety of organs and/or cavities, such as the vascular system, urogenital system, lymphatic system, neurological system, and the like.
As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises” and/or “comprising,” or “includes” and/or “including” when used herein, specify the presence of stated features, regions, steps elements and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components and/or groups thereof. As used herein, the conjunction “and” includes each of the structures, components, features, or the like, which are so conjoined, unless the context clearly indicates otherwise, and the conjunction “or” includes one or the others of the structures, components, features, or the like, which are so conjoined, singly and in any combination and number, unless the context clearly indicates otherwise. The term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about”, in the context of numeric values, generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the term “about” may include numbers that are rounded to the nearest significant figure. Other uses of the term “about” (i.e., in a context other than numeric values) may be assumed to have their ordinary and customary definition(s), as understood from and consistent with the context of the specification, unless otherwise specified.
The recitation of numerical ranges by endpoints includes all numbers within that range, including the endpoints (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment(s) described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it would be within the knowledge of one skilled in the art to effect such feature, structure, or characteristic in connection with other embodiments, whether or not explicitly described, unless clearly stated to the contrary. That is, the various individual elements described below, even if not explicitly shown in a particular combination, are nevertheless contemplated as being combinable or arrangeable with each other to form other additional embodiments or to complement and/or enrich the described embodiment(s), as would be understood by one of ordinary skill in the art.
This disclosure presents various systems, components, and methods for delivering a liquid drug or medicine to a patient or user. Each of the systems, components, and methods disclosed herein provides one or more advantages over conventional systems, components, and methods.
Various embodiments include a wearable drug delivery device that can deliver a liquid drug stored in a container to a patient or user. The container can be a prefilled cartridge that can be loaded into the drug delivery device by the patient or that can be preloaded within the drug delivery device when provided to the patient. A sealed end of the container can be pierced to couple the stored liquid drug to a needle conduit. The needle conduit can be coupled to a needle insertion component that provides access to the patient. A drive system of the drug delivery device can expel the liquid drug from the container to the patient through the needle conduit. The drive system can include an energy storage component and one or more energy/force transfer components to enable the drug delivery device to maintain a small form factor. The result is enhanced patient's comfort when using the drug delivery device. Other embodiments are disclosed and described.
The drug delivery device 100 can be used to deliver a therapeutic agent (e.g., a drug) drug to a patient or user. In various embodiments, the drug delivery device 100 can include a container for retaining a liquid drug. The drug delivery device 100 can be used to deliver the liquid drug from the container to the patient. Any type of liquid drug can be stored by the drug delivery device 100 and delivered to a patient. In various embodiments, the container can contain any therapeutic agent such as, for example, a drug, a subcutaneous injectable, a medicine, or a biologic. A patient receiving a drug or other medicine (or any liquid) from the drug delivery device 100 can also be referred to as a user.
The drug delivery device 100 can operate as a bolus drug delivery device. In general, the drug delivery device 100 can provide any amount of the stored liquid drug to a patient over any period of time. In various embodiments, the drug delivery device 100 can provide the stored liquid drug to the patient in a single dose over a desired amount of time. In various embodiments, the drug delivery device 100 can provide the stored liquid drug to the patient over multiple doses.
As shown in
The drug delivery device 100 can be a wearable drug delivery device 100. As a wearable device, the drug delivery device 100 can be an on-body delivery system (OBDS). The drug delivery device 100 can be coupled to a patient in a number of ways. For example, the lower portion 104 of the drug delivery device 100 can include an adhesive for attaching to a patient. In various embodiments, the drug delivery device 100 can be attached to a secondary device attached or worn by the patient such that the drug delivery device 100 fits onto or can be coupled to the secondary device.
The liquid drug 210 is accessed through the second end 206 of the drug container 202. A drug container access mechanism or component 212 can be positioned at or near the second end 206 for accessing the liquid drug 210. As shown, the drug container access mechanism 212 can access the liquid drug 210 through the plunger 208. The drug container access mechanism 212 can include a needle or other component at an end of the needle conduit 214 to pierce the plunger 208 to access the liquid drug 210. The access mechanism 212 can include an access spring 213 disposed between a first plate 211 and a second plate 215. The first and second plates 211, 215 can include a wall configured to contain the access spring 213. One or more force transfer elements (e.g., force transmitting spheres 220) can be at least partially disposed within and/or adjacent the second plate 215. The access spring 213 can provide a force load against the force transmitting spheres 220 to keep them substantially stable within the device. The needle and/or the needle conduit 214 can extend over (but not in contact with) one or more force transmitting spheres 220, bend at about 90° through the second plate 215 (e.g., through a wall of the second plate 215), bend at about 90° such that the needle conduit extends substantially parallel through a central axis of the access spring 213, through a central aperture of the first plate 211, and at least partially through an end of the plunger 208. Prior to piercing through a second end of the plunger 208, the plunger 208 may have one or both ends remain unpierced and the liquid drug 210 inaccessible and sealed within the drug container 202. The drug container access mechanism 212 can remain in an idle state prior to being activated to access the liquid drug 210. After activation, the needle of the drug container access mechanism 212 can extend through the plunger 208.
The drug container access mechanism 212 can couple the liquid drug 210 to a needle conduit 214. The needle conduit 214 can include tubing (e.g., plastic tubing or metal tubing) and can provide a path for a portion of the liquid drug 210 that is expelled from the primary drug container 202. The needle conduit 214 can route the liquid drug 210 from the primary drug container 202 to a needle insertion mechanism or component 216. The needle insertion mechanism 216 can provide an entry point to a patient. The needle insertion mechanism 216 can include a hard needle and/or a soft needle or cannula that provides access to the patient such that the liquid drug 210 can be delivered to the patient.
As further shown in
The drive spring 218 and the force transmitting spheres 220 can be used to expel the liquid drug 210 from the primary drug container 202. In particular, the drive spring 218 can apply a force that can be applied to the spheres 220. The force transmitting spheres 220 can be arranged to transfer the force from the drive spring 218 to the plunger 208. When the force from the drive spring 218 is applied to the plunger 208, the plunger 208 can advance into the drug container 202 (toward the first end 204). As the plunger 208 advances into the drug container 202, the liquid drug 210 within the drug container 202 can be forced into the needle conduit 214 and on to the needle insertion mechanism 216 for delivery to the patient.
In the illustrated embodiment, the drive spring 218 is a coil spring, though it will be appreciated that it could be any appropriate type of spring, and may consist of multiple springs. A dead bolt 222 or other fixed element can be positioned at one end of the drive spring 218 to provide a stable reference for the drive spring 218 (e.g., a push off point). The dead bolt 222 can be coupled to the inner top surface of the lower portion 104.
The bottom portion 104 of the drug delivery device 100 can include a track 224 for guiding the force transmitting spheres 220 as they are pushed by the drive spring 218 toward the plunger 208. The track 224 can completely surround or cover the force transmitting spheres 220, and can form any shape and can be arranged to take on any shape to guide the force transmitting spheres 220 from the drive spring 218 to the drug container 202.
Prior to activation, the drive spring 218 can be in an idle state. While in an idle state, the drive spring 218 can be compressed (e.g., as shown in
Once the plunger 208 is pierced, the primary drug container 202 can be drained of its contents and delivered to a patient. The drive spring 218 and the force transmitting spheres 220 can be sized and adjusted to help regulate a flow of the liquid drug 210 from the primary drug container 202 to the needle insertion mechanism 216 based on a variety factors including the viscosity of the liquid drug 210 and the diameter of the needle conduit 214.
As shown in
As shown in
Although the embodiment of
Referring to
A first end 301a of the drive mechanism 301 is configured to engage a drive spring (e.g., the spring 218 of
A first end 401a of the drive mechanism 401 is configured to engage a drive spring 218 (
Similar to other embodiments, a plurality of rolling ball links 520 can be coupled together to form a drive mechanism, which is configured to engage a drive spring 218 (
The nesting arrangement also means that the partial spherical rollers 620 can be shorter than comparably sized spheres, thus allowing for more links in the curved section 625 of the track. Such an arrangement can be a benefit because it allows for greater articulation of the drive mechanism 601 in the curved section 625 of the track 624.
In some embodiments, a plurality of bearings 621 can be disposed between the associated nested partial spherical rollers 620 to reduce friction between the recess 620a of one partial spherical roller and the spherical portion 620b of an adjacent roller.
A first end 601a of the drive mechanism 601 is configured to engage a drive spring 218 (
Similar to other embodiments, a plurality of roller bearing links 720 can be coupled together to form a drive mechanism that is configured to engage a drive spring 218 (
A first end 801a of the drive mechanism 801 is configured to engage a drive spring 218 (
A first end 901a of the drive mechanism 901 is configured to engage a drive spring 218 (
A first end 1001a of the drive mechanism 1001 is configured to engage a drive spring 218 (
A first end 1101a of the drive mechanism 1101 is configured to engage a drive spring 218 (
Similar to other embodiments, the drive mechanism 1201 can be disposed within an appropriate track 224 (
The flexible guide rod 1326 can be sufficiently flexible to move through the curved section 1325 of the track 1324 while still maintaining a desired column strength to move the plunger 208 (
Similar to other embodiments, a plurality of chain links 1420 can be coupled together to form a drive mechanism 1401 that is configured to engage a drive spring 218 (
Similar to other embodiments, a plurality of cylindrical force transfer elements 1620 can be coupled together to form a drive mechanism that is configured to engage a drive spring 218 (
The projection 1722 may be loosely received within the recess 1721 to enable the force transfer elements 1720a, 1720b to rotate about their respective longitudinal axes A-A, B-B and to rotate with respect to each other about axes parallel to their longitudinal axes. This will enable the force transfer elements 1720a, 1720b to traverse the curved portion 225 of the track 224 of the drug delivery device 100. The interaction of the projection 1722 and recess 1721 may, however, prevent rotation of the force transfer elements 1720a, 1720b about other axes. Thus, the cylindrical force transfer elements 1720a, 1720b of this embodiment will not randomly “fan-out” or twist within the track 224 of the drug delivery device 100. Rather, they will be rotationally constrained from the cylinders that remain in the track.
Each of the plurality of cylindrical force transfer elements 1820 may also include one or more grooves 1820d disposed in the cylindrical body portion 1820a. These grooves 1820d may be oriented so that they are parallel to the bottom 104 of the drug delivery device. 100. The grooves 1820d may be sized and shaped to interface with guide rails 1826 disposed on one or more surfaces of the track 1824. In the illustrated embodiment, the guide rails 1826 are disposed in a straight portion of the track 1824 adjacent to the drive spring 1818. In other embodiments, the rails may be disposed in the curved portion of the track in addition to the straight portion.
A first end 1801a of the drive mechanism 1801 is configured to engage a drive spring 1818, while the second end 1801b of the drive mechanism is configured to engage a plunger 1808. Activation and operation of the drug delivery device 100 including the drive mechanism 1801 of this embodiment may be substantially the same as described in relation to the embodiment of
In order to transition from the known straight configuration to the known curved section 2025 there must be a transition where the radius of the force transfer rollers 1920 changes with angular distance travelled until the rollers reach the curved section of the track. Entering the curved section 2025 may cause the force transfer rollers 1920 to slip instead of roll if the geometry between rollers changes. As can be seen, the angle between rollers is smaller when they are travelling in the straight portion than when they are in the curved portion. The transition curve may need both the inner and outer stacks to have different, changing radii at the same time to maintain 100% rolling. In some embodiments, the angled transition portion 1920f (
With the embodiment of
Certain embodiments of the present invention were described above. It is, however, expressly noted that the present invention is not limited to those embodiments, but rather the intention is that additions and modifications to what was expressly described herein are also included within the scope of the invention. Moreover, it is to be understood that the features of the various embodiments described herein were not mutually exclusive and can exist in various combinations and permutations, even if such combinations or permutations were not made express herein, without departing from the spirit and scope of the invention. In fact, variations, modifications, and other implementations of what was described herein will occur to those of ordinary skill in the art without departing from the spirit and the scope of the invention. As such, the invention is not to be defined only by the preceding illustrative description.
This application claims the benefit of priority under 35 USC § 119 to U.S. Provisional Application Ser. No. 62/562,802, filed Sep. 25, 2017, which is incorporated by reference in its entirety and for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1441508 | Marius et al. | Jan 1923 | A |
2198666 | Gruskin | Apr 1940 | A |
2752918 | Uytenbogaart et al. | Jul 1956 | A |
3176712 | Ramsden | Apr 1965 | A |
3297260 | Barlow | Jan 1967 | A |
3464359 | King | Sep 1969 | A |
3885662 | Schaefer | May 1975 | A |
3946732 | Hurscham | Mar 1976 | A |
3947692 | Payne | Mar 1976 | A |
3993061 | OLeary | Nov 1976 | A |
4108177 | Pistor | Aug 1978 | A |
4152098 | Moody et al. | May 1979 | A |
4210173 | Choksi et al. | Jul 1980 | A |
4221219 | Tucker | Sep 1980 | A |
4257324 | Stefansson et al. | Mar 1981 | A |
4268150 | Chen | May 1981 | A |
4277226 | Archibald | Jul 1981 | A |
4313439 | Babb et al. | Feb 1982 | A |
4371790 | Manning et al. | Feb 1983 | A |
4417889 | Choi | Nov 1983 | A |
4424720 | Bucchianeri | Jan 1984 | A |
4435173 | Siposs et al. | Mar 1984 | A |
4475905 | Himmelstrup | Oct 1984 | A |
4498843 | Schneider et al. | Feb 1985 | A |
4507115 | Kambara et al. | Mar 1985 | A |
4551134 | Slavik et al. | Nov 1985 | A |
4562751 | Nason et al. | Jan 1986 | A |
4567549 | Lemme | Jan 1986 | A |
4585439 | Michel | Apr 1986 | A |
4601707 | Albisser et al. | Jul 1986 | A |
4634427 | Hannula et al. | Jan 1987 | A |
4671429 | Spaanderman et al. | Jun 1987 | A |
4678408 | Nason et al. | Jul 1987 | A |
4684368 | Kenyon | Aug 1987 | A |
4685903 | Cable et al. | Aug 1987 | A |
4755169 | Sarnoff et al. | Jul 1988 | A |
4766889 | Trick et al. | Aug 1988 | A |
4808161 | Kamen | Feb 1989 | A |
4846797 | Howson et al. | Jul 1989 | A |
4858619 | Toth | Aug 1989 | A |
4898579 | Groshong et al. | Feb 1990 | A |
4908017 | Howson et al. | Mar 1990 | A |
4908022 | Haber | Mar 1990 | A |
4944659 | Labbe et al. | Jul 1990 | A |
4969874 | Michel et al. | Nov 1990 | A |
4991743 | Walker | Feb 1991 | A |
5007458 | Marcus et al. | Apr 1991 | A |
5020325 | Henault | Jun 1991 | A |
5062841 | Siegel | Nov 1991 | A |
5147311 | Pickhard | Sep 1992 | A |
5178609 | Ishikawa | Jan 1993 | A |
5205819 | Ross et al. | Apr 1993 | A |
5213483 | Flaherty et al. | May 1993 | A |
5222362 | Maus et al. | Jun 1993 | A |
5236416 | McDaniel et al. | Aug 1993 | A |
5261882 | Sealfon | Nov 1993 | A |
5261884 | Stern et al. | Nov 1993 | A |
5277338 | Divall | Jan 1994 | A |
5281202 | Weber et al. | Jan 1994 | A |
5346476 | Elson | Sep 1994 | A |
5364342 | Beuchat et al. | Nov 1994 | A |
5388615 | Edlund et al. | Feb 1995 | A |
5433710 | VanAntwerp et al. | Jul 1995 | A |
5503628 | Fetters et al. | Apr 1996 | A |
5520661 | Lal et al. | May 1996 | A |
5533389 | Kamen et al. | Jul 1996 | A |
5582593 | Hultman | Dec 1996 | A |
5618269 | Jacobsen et al. | Apr 1997 | A |
5628309 | Brown | May 1997 | A |
5637095 | Nason et al. | Jun 1997 | A |
5665070 | McPhee | Sep 1997 | A |
5713875 | Tanner, II | Feb 1998 | A |
5747350 | Sattler | May 1998 | A |
5748827 | Holl et al. | May 1998 | A |
5776103 | Kriesel et al. | Jul 1998 | A |
5779676 | Kriesel et al. | Jul 1998 | A |
5785688 | Joshi et al. | Jul 1998 | A |
5797881 | Gadot | Aug 1998 | A |
5800397 | Wilson et al. | Sep 1998 | A |
5807075 | Jacobsen et al. | Sep 1998 | A |
5839467 | Saaski et al. | Nov 1998 | A |
5891097 | Saito et al. | Apr 1999 | A |
5897530 | Jackson | Apr 1999 | A |
5906597 | McPhee | May 1999 | A |
5911716 | Rake et al. | Jun 1999 | A |
5919167 | Mulhauser et al. | Jul 1999 | A |
5957890 | Mann et al. | Sep 1999 | A |
5961492 | Kriesel et al. | Oct 1999 | A |
5971963 | Choi | Oct 1999 | A |
6019747 | McPhee | Feb 2000 | A |
6050457 | Arnold et al. | Apr 2000 | A |
6068615 | Brown et al. | May 2000 | A |
6086615 | Wood et al. | Jul 2000 | A |
6159188 | Laibovitz et al. | Dec 2000 | A |
6174300 | Kriesel et al. | Jan 2001 | B1 |
6190359 | Heruth | Feb 2001 | B1 |
6200293 | Kriesel et al. | Mar 2001 | B1 |
6352522 | Kim et al. | Mar 2002 | B1 |
6363609 | Pickren | Apr 2002 | B1 |
6375638 | Nason et al. | Apr 2002 | B2 |
6474219 | Klitmose et al. | Nov 2002 | B2 |
6485461 | Mason et al. | Nov 2002 | B1 |
6485462 | Kriesel | Nov 2002 | B1 |
6488652 | Weijand et al. | Dec 2002 | B1 |
6520936 | Mann | Feb 2003 | B1 |
6527744 | Kriesel et al. | Mar 2003 | B1 |
6537249 | Kriesel et al. | Mar 2003 | B2 |
6539286 | Jiang | Mar 2003 | B1 |
6569115 | Barker et al. | May 2003 | B1 |
6595956 | Gross et al. | Jul 2003 | B1 |
6656158 | Mahoney et al. | Dec 2003 | B2 |
6699218 | Flaherty et al. | Mar 2004 | B2 |
6723072 | Flaherty et al. | Apr 2004 | B2 |
6749407 | Xie et al. | Jun 2004 | B2 |
6851260 | Mernoe | Feb 2005 | B2 |
6883778 | Newton et al. | Apr 2005 | B1 |
7018360 | Flaherty et al. | Mar 2006 | B2 |
7104275 | Dille | Sep 2006 | B2 |
7128727 | Flaherty et al. | Oct 2006 | B2 |
7144384 | Gorman et al. | Dec 2006 | B2 |
7160272 | Eyal et al. | Jan 2007 | B1 |
7410478 | Yang | Aug 2008 | B2 |
7771392 | De Polo et al. | Aug 2010 | B2 |
7914499 | Gonnelli et al. | Mar 2011 | B2 |
7951114 | Rush et al. | May 2011 | B2 |
8267921 | Yodfat et al. | Sep 2012 | B2 |
8382703 | Abdelaal | Feb 2013 | B1 |
8499913 | Gunter | Aug 2013 | B2 |
8905995 | Mernoe | Dec 2014 | B2 |
8920376 | Caffey et al. | Dec 2014 | B2 |
8939935 | O'Connor et al. | Jan 2015 | B2 |
9180244 | Anderson et al. | Nov 2015 | B2 |
9192716 | Jugl et al. | Nov 2015 | B2 |
9402950 | Dilanni et al. | Aug 2016 | B2 |
9539596 | Ikushima | Jan 2017 | B2 |
10441723 | Nazzaro | Oct 2019 | B2 |
10695485 | Nazzaro | Jun 2020 | B2 |
20010016710 | Nason et al. | Aug 2001 | A1 |
20010056258 | Evans | Dec 2001 | A1 |
20020029018 | Jeffrey | Mar 2002 | A1 |
20020032374 | Holker et al. | Mar 2002 | A1 |
20020037221 | Mastrangelo et al. | Mar 2002 | A1 |
20020173769 | Gray et al. | Nov 2002 | A1 |
20020173830 | Starkweather et al. | Nov 2002 | A1 |
20030040715 | D'Antonio et al. | Feb 2003 | A1 |
20030055380 | Flaherty | Mar 2003 | A1 |
20030097092 | Flaherty | May 2003 | A1 |
20030109827 | Lavi et al. | Jun 2003 | A1 |
20030163097 | Fleury et al. | Aug 2003 | A1 |
20030198558 | Nason et al. | Oct 2003 | A1 |
20030199825 | Flaherty | Oct 2003 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040064088 | Gorman et al. | Apr 2004 | A1 |
20040068224 | Couvillon et al. | Apr 2004 | A1 |
20040069044 | Lavi et al. | Apr 2004 | A1 |
20040092865 | Flaherty et al. | May 2004 | A1 |
20040094733 | Hower et al. | May 2004 | A1 |
20040153032 | Garribotto et al. | Aug 2004 | A1 |
20050020980 | Inoue et al. | Jan 2005 | A1 |
20050165363 | Judson et al. | Jul 2005 | A1 |
20050203461 | Flaherty et al. | Sep 2005 | A1 |
20050238507 | Dilanni et al. | Oct 2005 | A1 |
20050273059 | Mernoe et al. | Dec 2005 | A1 |
20050277882 | Kriesel | Dec 2005 | A1 |
20060041229 | Garibotto et al. | Feb 2006 | A1 |
20060079765 | Neer et al. | Apr 2006 | A1 |
20060155210 | Beckman et al. | Jul 2006 | A1 |
20060173439 | Thorne et al. | Aug 2006 | A1 |
20060178633 | Garibotto et al. | Aug 2006 | A1 |
20060253085 | Geismar et al. | Nov 2006 | A1 |
20060282290 | Flaherty et al. | Dec 2006 | A1 |
20070005018 | Tekbuchava | Jan 2007 | A1 |
20070073236 | Mernoe | Mar 2007 | A1 |
20070088271 | Richards | Apr 2007 | A1 |
20070118405 | Campbell et al. | May 2007 | A1 |
20070282269 | Carter et al. | Dec 2007 | A1 |
20080004515 | Jennewine | Jan 2008 | A1 |
20080051738 | Griffin | Feb 2008 | A1 |
20080114304 | Nalesso et al. | May 2008 | A1 |
20080172028 | Blomquist | Jul 2008 | A1 |
20080243211 | Cartwright et al. | Oct 2008 | A1 |
20080294040 | Mohiuddin et al. | Nov 2008 | A1 |
20090024083 | Kriesel et al. | Jan 2009 | A1 |
20090062767 | Van Antwerp et al. | Mar 2009 | A1 |
20090198215 | Chong et al. | Aug 2009 | A1 |
20090278875 | Holm et al. | Nov 2009 | A1 |
20090326472 | Carter et al. | Dec 2009 | A1 |
20100036326 | Matusch | Feb 2010 | A1 |
20100152658 | Hanson et al. | Jun 2010 | A1 |
20100241066 | Hansen et al. | Sep 2010 | A1 |
20110054399 | Chong et al. | Mar 2011 | A1 |
20110073620 | Verrilli | Mar 2011 | A1 |
20110144586 | Michaud et al. | Jun 2011 | A1 |
20110180480 | Kloeffel et al. | Jul 2011 | A1 |
20110230833 | Landman et al. | Sep 2011 | A1 |
20120078161 | Masterson et al. | Mar 2012 | A1 |
20120172817 | Bruggemann | Jul 2012 | A1 |
20120209207 | Gray et al. | Aug 2012 | A1 |
20130006213 | Arnitz et al. | Jan 2013 | A1 |
20130017099 | Genoud et al. | Jan 2013 | A1 |
20130064701 | Konishi | Mar 2013 | A1 |
20130177455 | Kamen et al. | Jul 2013 | A1 |
20130178803 | Raab | Jul 2013 | A1 |
20130245545 | Amold et al. | Sep 2013 | A1 |
20130267932 | Franke et al. | Oct 2013 | A1 |
20130296792 | Cabiri | Nov 2013 | A1 |
20140018730 | Muller-Pathle | Jan 2014 | A1 |
20140127048 | Dilanni et al. | May 2014 | A1 |
20140128839 | Dilanni et al. | May 2014 | A1 |
20140142508 | Dilanni et al. | May 2014 | A1 |
20140148784 | Anderson et al. | May 2014 | A1 |
20140171901 | Langsdorf et al. | Jun 2014 | A1 |
20150041498 | Kakiuchi et al. | Feb 2015 | A1 |
20150051487 | Uber et al. | Feb 2015 | A1 |
20150057613 | Clemente et al. | Feb 2015 | A1 |
20150064036 | Eberhard | Mar 2015 | A1 |
20150137017 | Ambrosina et al. | May 2015 | A1 |
20150202386 | Brady et al. | Jul 2015 | A1 |
20150290389 | Nessel | Oct 2015 | A1 |
20150297825 | Focht et al. | Oct 2015 | A1 |
20160008549 | Plumptre et al. | Jan 2016 | A1 |
20160025544 | Kamen et al. | Jan 2016 | A1 |
20160055842 | DeFranks et al. | Feb 2016 | A1 |
20160082242 | Burton et al. | Mar 2016 | A1 |
20160129190 | Haitsuka | May 2016 | A1 |
20160193423 | Bilton | Jul 2016 | A1 |
20160213851 | Weibel et al. | Jul 2016 | A1 |
20170021096 | Cole et al. | Jan 2017 | A1 |
20170021137 | Cole | Jan 2017 | A1 |
20170100541 | Constantineau et al. | Apr 2017 | A1 |
20170216516 | Dale et al. | Aug 2017 | A1 |
20170239415 | Hwang et al. | Aug 2017 | A1 |
20170290975 | Barmaimon et al. | Oct 2017 | A1 |
20180021521 | Sanchez | Jan 2018 | A1 |
20180185579 | Joseph et al. | Jul 2018 | A1 |
20180313346 | Oakes et al. | Nov 2018 | A1 |
20190192782 | Pedersen et al. | Jun 2019 | A1 |
20190365993 | Staub et al. | Dec 2019 | A1 |
20200009315 | Brouet et al. | Jan 2020 | A1 |
20200345931 | Gray et al. | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
606281 | Oct 1960 | CA |
1375338 | Oct 2002 | CN |
102498292 | Jul 2015 | CN |
204972511 | Jan 2016 | CN |
105764543 | Jul 2016 | CN |
206175149 | May 2017 | CN |
107096091 | Aug 2017 | CN |
108472441 | Aug 2018 | CN |
4200595 | Jul 1993 | DE |
19723648 | Aug 1998 | DE |
102005040344 | Mar 2007 | DE |
0454331 | Oct 1991 | EP |
0789146 | Aug 1997 | EP |
0867196 | Sep 1998 | EP |
1065378 | Jan 2001 | EP |
1177802 | Feb 2002 | EP |
1403519 | Mar 2004 | EP |
2397181 | Dec 2011 | EP |
2468338 | Jun 2012 | EP |
2703024 | Mar 2014 | EP |
1874390 | Oct 2014 | EP |
2830499 | Feb 2015 | EP |
2096275 | Feb 1972 | FR |
2455269 | Nov 1980 | FR |
2507637 | Dec 1982 | FR |
2731475 | Sep 1996 | FR |
357139 | Sep 1931 | GB |
810488 | Mar 1959 | GB |
875034 | Aug 1961 | GB |
1204836 | Sep 1970 | GB |
2008806 | Jun 1979 | GB |
2077367 | Dec 1981 | GB |
2456681 | Jul 2009 | GB |
2549750 | Nov 2017 | GB |
46017 | Nov 1977 | IL |
06063133 | Mar 1994 | JP |
H06296690 | Oct 1994 | JP |
H08238324 | Sep 1996 | JP |
2004247271 | Sep 2004 | JP |
2004274719 | Sep 2004 | JP |
2005188355 | Jul 2005 | JP |
2006159228 | Jun 2006 | JP |
2006249130 | Sep 2006 | JP |
2009514580 | Apr 2009 | JP |
6098988 | Apr 2014 | JP |
2017513577 | Jun 2017 | JP |
1019126 | Apr 2003 | NL |
8101658 | Jun 1981 | WO |
8606796 | Nov 1986 | WO |
9320864 | Oct 1993 | WO |
9415660 | Jul 1994 | WO |
9855073 | Dec 1998 | WO |
9856293 | Dec 1998 | WO |
9910040 | Mar 1999 | WO |
9910049 | Mar 1999 | WO |
9962576 | Dec 1999 | WO |
0029047 | May 2000 | WO |
0178812 | Oct 2001 | WO |
0220073 | Mar 2002 | WO |
2002026282 | Apr 2002 | WO |
02068823 | Sep 2002 | WO |
2002076535 | Oct 2002 | WO |
2003097133 | Nov 2003 | WO |
2004032994 | Apr 2004 | WO |
2004056412 | Jul 2004 | WO |
2004110526 | Dec 2004 | WO |
2007066152 | Jun 2007 | WO |
2008133702 | Nov 2008 | WO |
2009039203 | Mar 2009 | WO |
2009141005 | Nov 2009 | WO |
2010022069 | Feb 2010 | WO |
2010077279 | Jul 2010 | WO |
2010139793 | Dec 2010 | WO |
2011010198 | Jan 2011 | WO |
2011031458 | Mar 2011 | WO |
2011069935 | Jun 2011 | WO |
2011075042 | Jun 2011 | WO |
2011133823 | Oct 2011 | WO |
2012073032 | Jun 2012 | WO |
2013050535 | Apr 2013 | WO |
2013137893 | Sep 2013 | WO |
2013149186 | Oct 2013 | WO |
2014029416 | Feb 2014 | WO |
2014149357 | Sep 2014 | WO |
2014179774 | Nov 2014 | WO |
2015032772 | Mar 2015 | WO |
2015048791 | Apr 2015 | WO |
2015081337 | Jun 2015 | WO |
2015117854 | Aug 2015 | WO |
2015167201 | Nov 2015 | WO |
2015177082 | Nov 2015 | WO |
WO-2017089253 | Jun 2017 | WO |
2017148855 | Sep 2017 | WO |
2017187177 | Nov 2017 | WO |
2021016452 | Jan 2021 | WO |
Entry |
---|
Lind, et al.,“Linear Motion Miniature Actuators.” Paper presented at the 2nd Tampere International Conference on Machine Automation, Tampere, Finland (Sep. 1998), 2 pages. |
Author unknown, “The Animas R-1000 Insulin Pump—Animas Corporation intends to exit the insulin pump business and discontinue the manufacturing and sale of Animas® Vibe® and One Touch Ping® insulin pumps.” [online], Dec. 1999 [retrieved on Jan. 8, 2019]. Retrieved from the Internet URL: http://www.animaspatientsupport.com/, 2 pages. |
Author unknown, CeramTec “Discover the Electro Ceramic Products CeramTec acquired from Morgan Advanced Materials” [online], Mar. 1, 2001 [retrieved on Jan. 8, 2019. Retrieved from the Internet URL: http://www.morgantechnicalceramics.com/, 2 pages. |
Vaughan, M.E., “The Design, Fabrication, and Modeling of a Piezoelectric Linear Motor.” Master's thesis, Virginia Polytechnic Institute and State University, VA. (2001), 93 pages. |
Galante, et al., “Design, Modeling, and Performance of a High Force Piezoelectric Inchworm Motor,” Journal of Intelligent Material Systems and Structures, vol. 10, 962-972 (1999), 11 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2018/014351, dated Jun. 4, 2018, 9 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2017/055054, dated Jan. 25, 2018, 13 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2018/045155, dated Oct. 15, 2018, 15 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2017/034811, dated Oct. 18, 2017, 17 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2017/046508, dated Jan. 17, 2018, 14 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2017/034814, dated Oct. 11, 2017, 18 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2017/046777, dated Dec. 13, 2017, 14 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2017/046737, dated Dec. 14, 2017, 11 pages. |
International Search Report and Written Opinion for Application No. PCT/US2019/059854, dated Aug. 26, 2020, 15 pages. |
European Search Report and Written Opinion for the European Patent Application No. EP20174878, dated Sep. 29, 2020, 8 pages. |
European Search Report and Written Opinion for the European Patent Application No. EP19177571, dated Oct. 30, 2019, 8 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2019/035756, dated Jul. 31, 2019, 11 pages. |
International Preliminary Report on Patentability for the International Patent Application No. PCT/US18/14351, dated Aug. 1, 2019, 7 pages. |
International Preliminary Report on Patentability for the International Patent Application No. PCT/US2017/046777, dated Feb. 19, 2019, 8 pages. |
International Preliminary Report on Patentability for the International Patent Application No. PCT/US2017/046737, dated Feb. 19, 2019, 8 pages. |
International Preliminary Report on Patentability for the International Patent Application No. PCT/US2017/055054, dated Apr. 9, 2019, 8 pages. |
EPO Search Report dated Nov. 11, 2015, received in corresponding Application No. 13768938.6, 7 pages. |
PCT International Search Report and Written Opinion dated Aug. 6, 2013, received in corresponding PCT Application No. PCT/US13/34674, pp. 1-19. |
International Search Report and Written Opinion for International application No. PCT/GB2007/004073, dated Jan. 31, 2008, 8 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2019/063615, dated May 3, 2020, 16 pages. |
International Preliminary Report on Patentability for the International Patent Application No. PCT/US2018/045155, dated Feb. 13, 2020, 10 pages. |
International Preliminary Report on Patentability for the International Patent Application No. PCT/US2017/046508 dated Feb. 12, 2019, 10 pages. |
International Preliminary Report on Patentability for the International Patent Application No. PCT/US2017/034811, dated Nov. 27, 2018, 10 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/055581, dated Feb. 8, 2022, 19 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2022/011356, dated Apr. 29, 2022, 19 pages. |
International Search Report and Written Opinion, Application No. PCT/US2022/016713, dated Aug. 5, 2022, 19 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2022/029012, dated Aug. 19, 2022, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20190091416 A1 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
62562802 | Sep 2017 | US |