Drug delivery spiral coil construct

Information

  • Patent Grant
  • 9561351
  • Patent Number
    9,561,351
  • Date Filed
    Wednesday, May 31, 2006
    18 years ago
  • Date Issued
    Tuesday, February 7, 2017
    7 years ago
Abstract
An implantable medical device is disclosed having a helical construct including a set of spiral coils for local in vivo application of a therapeutic substance in a biological lumen. The helical construct is configured to apply less than 0.75 Bar of pressure to the biological lumen wall. The helical construct can have at least two sets of spiral coils having opposing helical directions. The device can be used for the treatment of vascular disorders such as restenosis and vulnerable plaque.
Description
FIELD

This invention is directed to a local drug delivery implant. More specifically, the invention is related to a spiral or coil drug delivery construct.


BACKGROUND

Various devices and methods have been proposed for local application of a therapeutic agent or drug such as stents, vascular paving, and particle delivery. Stents are metallic or polymeric implantable structures that have been modified for local delivery of a drug. A polymer dissolved in a solvent including a drug can be applied to the stent. The solvent is removed, leaving behind a polymer coated stent capable of delivering a drug. A disadvantage of using a stent includes the trauma caused to the lumen, such as a blood vessel, during implantation of the stent. Radial pressure applied by the stent can lead to inflammation and tissue damage, which can cause the onset of restenosis or amplify the degree of vascular smooth muscle cell proliferation and migration. Hyper-proliferation and migration of vascular smooth muscle cells caused by the application of radial pressure by a stent can mitigate the effects of local therapeutic substance application.


For some applications such as vulnerable plaque, radial pressure applied by a stent can cause more sever damage than just inducement of restenosis. Unlike occlusive plaques that impede blood flow, vulnerable plaque develops within the arterial walls. Vulnerable plaque can exist without the symptomatic characteristic of a substantially narrow arterial lumen. The intrinsic histological features that may characterize a vulnerable plaque include increased lipid content, increased macrophage, foam cell and T lymphocyte content, and reduced collagen and smooth muscle cell content. This fibroatheroma type of vulnerable plaque is often referred to as “soft” collagen, whose reduced concentration combined with macrophage derived enzyme degradations cause the fibrous cap of these lesions to rupture under unpredictable circumstances. When ruptured, the lipid core contents, thought to include tissue factor, contact the arterial bloodstream, causing a blood clot to form that can completely block the artery resulting in acute coronary syndrome (ACS). This type of atherosclerosis is coined “vulnerable” because of unpredictable tendency of the plaque to rupture. It is thought that hemodynamic and cardiac forces, which yield to circumferential stress, shear stress, and flexation stress, may cause disruption of fibroatheroma type of vulnerable plaque. These forces may arise as the result of simple movements, such as getting out of bed in the morning, in vivo forces related to blood flow and the beating of the heart, as well as radial force applied by a stent. Accordingly, it is desirable to treat conditions such as vulnerable plaque with adequate source of drug delivery without the drawbacks associated with a stent.


Vascular paving can be performed by loading a monomer, pre-polymer or polymer in a balloon catheter, and then applying the composition directly to the inside of a tissue lumen within a zone occluded by the catheter balloon. The application can be through pores of the balloon, for example. The process is followed by curing or polymerizing the applied composition. The tissue surface may be an internal or external surface, and can include the interior of a tissue lumen or hollow space whether naturally occurring or occurring as a result of surgery, percutaneous techniques, trauma or disease. The polymeric material can be reconfigured to form a coating or “paving” layer in intimate and conforming contact with the surface. The resulting paving layer optionally can have a sealing function. The coating preferably has a thickness on the tissue surface on the order of 0.001-1.0 mm; however, coatings having a thickness outside that range may be used as well. By appropriate selection of the material employed and of the configuration of the paving material, the process can be tailored to satisfy a wide variety of biological or clinical situations. Drawbacks associated with vascular paving include the downstream flow and waste of the paving material prior to the curing of the composition and difficult and cumbersome procedural steps for the surgeon including the necessity to occlude the vessel in which the procedure is performed and the curing or polymerization of the polymer to achieve conformal coating about the location where its benefit is most desired. In sum, vascular paving has been considered a difficult procedure which can certainly out weight its benefits.


Particle drug delivery includes release of particles having a drug at the treatment site. If the particles are delivered so as to be embedded within the treatment site, they can cause sever trauma to the vessel, which would present the same issues as a stent as described above. If the particles are simply delivered without being embedded within the lumen, the therapeutic effect of the particles can depend on their size. Too small of particles can simply wash away with blood flow, resulting in negligible therapeutic treatment at the desired site. Moreover, other areas of the body not in need of treatment will be exposed to the drug, which in effect would be equivalent to systemic delivery of the drug. If the particles are too large, they form an embolus, causing cell damage or death.


It is desirable to address and treat vascular conditions, such as vulnerable plaque, a disease that is often seen in diabetics, with a use of a device that does not provide the above described drawbacks. It is also desirable to have a device which provides a sustained delivery of therapeutic agents to long or extended portions of coronary vessels or to a multitude of focal manifestations of a disease site. The use of the implantable device of the present invention, as can be appreciated by one having ordinary skill in the art, is certainly not limited to coronary vessels as it can have a multitude of applications in a variety of biological lumens and cavities.


SUMMARY

In accordance with one aspect of the present invention, an implantable medical device is provided for the treatment of various disorders including vascular disorders. The implant comprises a helical construct including a set of spiral coils for local in vivo application of a therapeutic substance in a biological lumen. The construct is intended to conform against the lumen or cavity wall but to apply minimum force or pressure against the wall. In some embodiments, minimum force is defined as less force as applied by any commonly used balloon expandable or self-expandable stent or a stent-graft. In some embodiments, the construct is not intended to maintain patency of the vessel, but only to provide a means for delivery of a drug. In some embodiment, the helical construct is configured to apply less than 0.75 Bar of pressure to the biological lumen. In some embodiments, the construct can have a coil pitch from about 0.5 mm to about 10 mm. The coil pitch can be constant or variable along the length of the device. In some embodiments, a proximal or distal segment of the helical construct can have a coil pitch that is different than a middle segment of the construct. In some embodiments, the helical construct has a coil contact angle of 0 to 80 degrees against the biological lumen. In some embodiments, it can be between 10 to 70 degrees.


In some embodiments, the helical construct includes a first set and a second set of spiral coils such that the first set of spiral coils has a counter helical configuration or direction to the second set of spiral coils (i.e., opposing “helicity”). The first set of spiral coils can be connected to the second set of spiral coils by a V-shaped or U-shaped connector. They can also be connected by a polymeric connector. The connector can be biodegradable.


The helical construct can be made from a polymeric material, a metallic material or a combination of polymers and/or metals. The helical construct can be biodegradable. The therapeutic substance can be mixed, embedded, or blended in the body of the construct or can be coated on the construct.


In accordance with another aspect, a method of treating a disorder, such as a vascular disorder, is provided. The method comprises inserting or implanting the helical construct at a target location within a patient such as a mammalian or human subject. The disorder can be vulnerable plaque or restenosis. The device can be used in any body cavity, lumen or blood vessel, including the urethra, peripheral blood vessels, lower or upper gastric intestinal structures and the like.





BRIEF DESCRIPTION


FIG. 1 illustrates a spiral or helical drug delivery construct according to one embodiment of the invention;



FIG. 2 is a schematic side elevation view of the construct of FIG. 1 depicting coil pitch and coil contact angle;



FIG. 3 illustrates a spiral or helical drug delivery construct according to another embodiment of the invention; and



FIGS. 4 and 5 illustrate various delivery techniques in accordance with embodiments of the invention.





DETAILED DESCRIPTION


FIG. 1 illustrates a helical drug delivery construct 10 having a coil body 12 in a spiral configuration. The construct 10 can include a drug or therapeutic substance, terms which can be used interchangeably, in the body of the construct itself or on a coating (not illustrated) deposited on a surface of the construct 10. The construct 10 is intended to conform against a lumen or cavity wall but to apply minimum force or pressure against the wall. In some embodiments, minimum force is defined as less force as applied by a balloon expandable or self-expandable stent or a stent-graft used in the U.S. or European market. In some embodiments, the construct 10 is not intended to maintain patency of the vessel, but only to provide a means for drug delivery. In one embodiment, the force or pressure applied to the lumen wall during and post deployment is less than 0.75 Bar (10.88 psi or about 11 psi) as measured by the application of pressure by the total surface area of contact. In one preferred embodiment, the pressure applied by spiral or helical construct 10 is less than 0.5 Bar (7.25 psi). In some embodiments, the applied pressure can be less than: 0.25 Bar (3.62 psi), 0.2 Bar (2.9 psi), 0.1 Bar (1.45 psi), 0.05 Bar (0.725 psi), 0.01 Bar (0.145 psi), 0.001 Bar (0.014 psi), or 0.0001 Bar (0.00145 psi). In some embodiments, it has to be at least slightly above 0 Bar so that the spiral or helical coil structure is at least maintained in the exact vicinity or general vicinity of implantation such that there is little to no post-movement of the construct 10 subsequent to the retraction of the catheter which delivers the construct 10. Accordingly, spiral or helical construct 10 does not inflict trauma on the lumen wall which may cause inflammation and hyper-proliferation and migration of vascular smooth muscle cells. Moreover, for vulnerable plaque application, spiral or helical construct 10 provides for a drug delivery means while minimizing the risk of causing plaque rupture. In some embodiments application of an inwardly radial pressure of over 0.75 Bar can cause inward compression or collapse of the construct 10. In some embodiments, the radial pressure of greater than 0.5 Bar can cause radial collapse of the construct 10. Yet in some embodiments the radial pressure of great than 0.25, 0.2, 0.1, 0.05, 0.01, 0.001, or 0.0001 Bar can cause the collapse or inward compression of the construct 10. As indicative of these forces, construct 10 is soft, pliable, easily collapsible and compressible. The overall length of the construct 10 can be from 10 mm to 300 mm. In some embodiments, it must be at least 40 mm. In some embodiments the length should not exceed 200 mm or alternatively 100 mm. This extended length provides an elongated source of drug delivery with a flexible and conformal platform that allows for navigation through tortuous vascular structure which otherwise would be unachievable with the use of common stents. The inner diameter of the spiral or helical construct 10 can range from 1 mm to 50 mm—as measured in its natural state. The cross-section of the coil 12 can be circular, oval, or in a “ribbon” form. The coil pitch P, as illustrated in FIG. 2, or the distance between individual coils 12 or helical turns of the coil 12 can be consistent throughout the body or variable, such as along a segment of the body. The coil pitch P is measured at the construct's natural or “undisturbed” state, with no application of pressure or force so as to vary the length of the construct 10. Variability in the coil pitch can allow for areas where a greater amount or concentration of drug is released. In some embodiments, coil pitch P can be from 0.15 mm to 10 mm. In some embodiment, it can be from 1 mm to 5 mm. In some embodiments helical construct 10 can have pitches P1, P2 and P3 at the proximal, middle and distal segments thereof such that: P1=P3; P1>P2; P1>P3; P3>P1; and/or P3>P2. In some embodiments, pitch variation can be P2>P1 and/or P2>P3. It should be noted that proximal and distal segments include at least two coils, the remaining coils defining the middle segment.


Individual coils 12 can have a coil contact angle Φ with a lumen wall in a range from 0 degrees (coils being perpendicular to the lumen wall) to 80 degrees (coils being almost parallel to the lumen wall). In some embodiments, the contact angle can be 10 degrees to 70 degrees; 20 degrees to 60 degrees; and 30 degrees to 50 degrees. It should be noted that axis x is normal to the issue wall and axis y is along the coil, as best illustrated by FIG. 2.


In one embodiment, as illustrated by FIG. 3, helical construct 10 can include at least two coil segments 12a and 12b having opposing helical configuration. The two coil segments 12a and 12b can be joined by any means including a V- or U-shaped connector 14, a polymeric coupler or the like. The coils and connector 14 can be made from a single, uniform piece or the connector can be a separate segment, joint to the coils by an adhesive or the like. The connector can be biodegradable. The coil segments 12a and 12b can have the same general shape including pitch and contact angle. In some embodiments, the pitch and contact angle of one segment 12a and be different that the other segment 12b. Moreover, each segment 12a and 12b can have its own individual pitch and contact angle pattern, such as a variable pitch pattern along a designated segment thereof. Coil segments 12a and 12b can be made from the same material or different materials and can include the same drug or different drugs. In some embodiments, each can include a different amount of the same drug. Upon deployment, compressed coil segments 12a and 12b can “uncoil” inopposite directions in the lumen or cavity of the patient. The “right-handed” and “left-handed” corkscrew configuration is advantageous in that each spiral coil segment 12a and 12b acts to counter-balance the rotation of the coil of the other. Less rotational motion can lead to reduction in trauma or injury to the vessel wall during deployment and a more controlled delivery of the implantable medical device. It should also be appreciated that the construct of the present invention can include three coil segments such that the middle coil segment has a different helical configuration or opposing rotation than the end coil segments. The lengths of the end coils segments can be less than the middle coil segment and provide for counter balance of the rotational expansion of the middle segment upon deployment.


The helical construct 10 can be made from a biodegradable polymer, biostable polymer, a metallic material or a combination of such material. Biostable refers to polymers that are not biodegradable. The terms biodegradable, bioabsorbable, and bioerodable are used interchangeably and refer to materials that are capable of being completely degraded and/or eroded when exposed to bodily fluids such as blood and can be gradually resorbed, absorbed and/or eliminated by the body. The processes of breaking down and absorption of the polymer can be caused by, for example, hydrolysis and metabolic processes. The construct 10 can also be made from biodegradable metals (e.g., magnesium, iron, tungsten, or ferrous oxide), alone or in combination with other metals and polymers. In one embodiment, the construct 10 can be a combination of biodegradable metal(s) with biodegradable polymer(s). The metal can form the core with a polymer shell enclosing the core. The metal and the polymer can be blended or layered as well. The metal can be distributed in particle form in the polymer.


The construct 10 can be made from a soft, flexible filament including monofilaments or braided string filaments. The construct 10 can be a continuous wire or a wire having connections. The construct 10 can be an extruded polymer tube. In some embodiment, the construct 10 can be fabricated as a polymer matrix loaded, embedded or blended with a drug or therapeutic agent. The construct 10 may have drug-loaded micro- or nano-particles embedded within the body of the construct 10 or coated on the construct 10. The particles may include metallic material such as alkaline earth metals (magnesium) or transition metals (gold) having a coating of the drug with or without a polymeric material. In some embodiments the particles may be fullerenes including a drug, with or without metallic or polymeric components. In some embodiments, the particles can be ceramic or bioglass. The particles can be micelles (e.g., polymer micelles), liposomes, polyliposomes, polymerosomes, or membrane vesicles with a membrane that includes a polymerosomes, as is well understood by one of ordinary skill in the art. In one embodiment, the micro- or nano-particles are spherical or quasi-spherical formed of a polymer encapsulating the drug. When the device is in contact with body fluids, the polymer can swell and/or hydrolyze, thus releasing the drug.


The construct 10 may include a coating on its surface of a pure drug, such a heparin, or a drug with a polymeric carrier.


Representative examples of polymers that may be used to fabricate the construct 10 include, but are not limited to, poly(hydroxyvalerate), poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polyorthoester, polyanhydride, poly(glycolic acid), poly(glycolide), poly(L-lactic acid), poly(L-lactide), poly(D,L-lactic acid), poly(L-lactide-co-glycolide); poly(D,L-lactide), poly(caprolactone), poly(trimethylene carbonate), polyethylene amide, polyethylene acrylate, poly(glycolic acid-co-trimethylene carbonate), co-poly(ether-esters) (e.g. PEO/PLA), polyphosphazenes, biomolecules (such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid), polyurethanes, silicones, polyesters, polyolefins, polyisobutylene and ethylene-alphaolefin copolymers, acrylic polymers and copolymers other than polyacrylates, vinyl halide polymers and copolymers (such as polyvinyl chloride), polyvinyl ethers (such as polyvinyl methyl ether), polyvinylidene halides (such as polyvinylidene chloride), polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics (such as polystyrene), polyvinyl esters (such as polyvinyl acetate), acrylonitrile-styrene copolymers, ABS resins, polyamides (such as Nylon 66 and polycaprolactam), polycarbonates, polyoxymethylenes, polyimides, polyethers, polyurethanes, rayon, rayon-triacetate, cellulose, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, and carboxymethyl cellulose.


The drug or therapeutic agent includes agents that have anti-proliferative or anti-inflammatory properties or can have other properties such as antineoplastic, antiplatelet, anti-coagulant, anti-fibrin, antithrombogenic, antimitotic, antibiotic, antiallergic, antifibrotic, and antioxidant. The agents can be cystostatic agents, agents that promote the healing of the endothelium such as NO releasing or generating agents, agents that attract endothelial progenitor cells, agents that promote the attachment, migration or proliferation of endothelial cells (e.g., natriuretic peptides such as CNP, ANP or BNP peptide or an RGD or cRGD peptide), while impeding smooth muscle cell proliferation. Examples of suitable therapeutic and prophylactic agents include synthetic inorganic and organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, and DNA and RNA nucleic acid sequences having therapeutic, prophylactic or diagnostic activities. Some other examples of the bioactive agent include antibodies, receptor ligands, enzymes, adhesion peptides, blood clotting factors, inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator, antigens for immunization, hormones and growth factors, oligonucleotides such as antisense oligonucleotides, small interfering RNA (siRNA), small hairpin RNA (shRNA), aptamers, ribozymes and retroviral vectors for use in gene therapy. Examples of anti-proliferative agents include rapamycin and its functional or structural derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), and its functional or structural derivatives, paclitaxel and its functional and structural derivatives. Examples of rapamycin derivatives include 40-epi-(N1-tetrazolyl)-rapamycin (ABT-578), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin. Examples of paclitaxel derivatives include docetaxel. Examples of antineoplastics and/or antimitotics include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g. Adriamycin® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g. Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, thrombin inhibitors such as Angiomax (Biogen, Inc., Cambridge, Mass.), calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), nitric oxide or nitric oxide donors, super oxide dismutases, super oxide dismutase mimetic, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), estradiol, anticancer agents, dietary supplements such as various vitamins, and a combination thereof. Examples of anti-inflammatory agents including steroidal and non-steroidal anti-inflammatory agents include tacrolimus, dexamethasone, clobetasol, mometasone, or combinations thereof. Examples of cytostatic substances include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.). An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate include alpha-interferon, pimecrolimus, imatinib mesylate, midostaurin, bioactive RGD, SIKVAV peptides, elevating agents such as cANP or cGMP peptides, and genetically engineered endothelial cells. The foregoing substances can also be used in the form of prodrugs or co-drugs thereof. The foregoing substances also include metabolites thereof and/or prodrugs of the metabolites. The foregoing substances are listed by way of example and are not meant to be limiting. Other active agents which are currently available or that may be developed in the future are equally applicable.


Construct 10 can further include or be made from a biobeneficial material. The biobeneficial material can be a polymeric material or non-polymeric material. The biobeneficial material is preferably non-toxic, non-antigenic and non-immunogenic. A biobeneficial material is one which enhances the biocompatibility of the device by being non-fouling, hemocompatible, actively non-thrombogenic, or anti-inflammatory, all without depending on the release of a pharmaceutically active agent. Representative biobeneficial materials include, but are not limited to, polyethers such as poly(ethylene glycol), copoly(ether-esters) (e.g. PEO/PLA), polyalkylene oxides such as poly(ethylene oxide), poly(propylene oxide), poly(ether ester), polyalkylene oxalates, polyphosphazenes, phosphoryl choline, choline, poly(aspirin), polymers and co-polymers of hydroxyl bearing monomers such as hydroxyethyl methacrylate (HEMA), hydroxypropyl methacrylate (HPMA), hydroxypropylmethacrylamide, poly(ethylene glycol) acrylate (PEGA), PEG methacrylate, 2-methacryloyloxyethylphosphorylcholine (MPC) and n-vinyl pyrrolidone (VP), carboxylic acid bearing monomers such as methacrylic acid (MA), acrylic acid (AA), alkoxymethacrylate, alkoxyacrylate, and 3-trimethylsilylpropyl methacrylate (TMSPMA), poly(styrene-isoprene-styrene)-PEG (SIS-PEG), polystyrene-PEG, polyisobutylene-PEG, polycaprolactone-PEG (PCL-PEG), PLA-PEG, poly(methyl methacrylate)-PEG (PMMA-PEG), polydimethylsiloxane-co-PEG (PDMS-PEG), poly(vinylidene fluoride)-PEG (PVDF-PEG), PLURONIC™ surfactants (polypropylene oxide-co-polyethylene glycol), poly(tetramethylene glycol), hydroxy functional poly(vinyl pyrrolidone), biomolecules such as fibrin, fibrinogen, cellulose, starch, collagen, dextran, dextrin, hyaluronic acid, fragments and derivatives of hyaluronic acid, heparin, fragments and derivatives of heparin, glycosamino glycan (GAG), GAG derivatives, polysaccharide, elastin, chitosan, alginate, silicones, PolyActive™, and combinations thereof.


In some embodiments, the construct 10 may be made from or to include shape memory polymers or metals. Most polymers exhibit some shape memory when deformed and stored at a temperature below Tg. The best shape memory polymers have light cross-linking or crystalline domains that serve to fix the locations of the polymeric chains. After a polymer is deformed and kept at a temperature below Tg, the polymer chains are in a non-equilibrium extended conformation. Upon heating above Tg, the polymer chains have sufficient mobility to return to their desired lower-energy “coiled” conformation. The cross-links or crystalline domains serve to prevent the migration of portions of the polymer chains, and thus the gross structure is forced to return to its original shape. Representative examples of a shape memory polymers include, but are not limited to, copolymers of poly(caprolactone) and poly(L-lactide-co-trimethylene carbonate). A representative example of a shape memory metal includes Nitinol.


The construct 10 may also include a binder or a plasticizer for changing the properties of the device. Plasticizers can be added, for example, to reduce crystallinity, lower the glass-transition temperature (Tg), or reduce the intermolecular forces between polymers. The mechanical properties that are modified include, but are not limited to, Young's modulus, impact resistance (toughness), tensile strength, and tear strength. Impact resistance, or “toughness,” is a measure of energy absorbed during fracture of a polymer sample of standard dimensions and geometry when subjected to very rapid impact loading.


Examples of plasticizing agents include, but are not limited to, low molecular weight polymers (such as single-block polymers, multi-block copolymers, and other copolymers such as graft copolymers), oligomers (such as ethyl-terminated oligomers of lactic acid), small organic molecules, hydrogen bond forming organic compounds with and without hydroxyl groups, polyols (such as low molecular weight polyols having aliphatic hydroxyls), alkanols (such as butanols, pentanols and hexanols), sugar alcohols and anhydrides of sugar alcohols, polyethers (such as poly(alkylene glycols)), esters (such as citrates, phthalates, sebacates and adipates), polyesters, aliphatic acids, proteins (such as animal proteins and vegetable proteins), oils (such as, for example, the vegetable oils and animal oils), silicones, acetylated monoglycerides, amides, acetamides, sulfoxides, sulfones, pyrrolidones oxa acids, diglycolic acids, and any analogs, derivatives, copolymers and combinations of the foregoing.



FIG. 4 depicts spiral construct 10 supported on a catheter assembly 16. A retractable sheath 18 is being drawn back allowing the spiral construct 10 to self-expand for implantation (i.e., the construct is a self-expandable construct). In some embodiment, spiral construct 10 can be balloon expandable such that application of radial pressure causes the radial expansion of the coils 12. FIG. 5 is similar to FIG. 4 but depicts two spiral constructs 10 being delivered in tandem. Thus, many diseased areas can be treated with one procedure rather than many separate procedures. Navigation of such catheter systems, including use of guidewires, is well known in the art. The spiral construct 10 may be crimped in a manner that segments of the coil 12 may overlap, particularly for the “ribbon” shaped coils so as to reduce the length of the delivered construct 10. However, reduction of the length of the construct 10 for delivery may counterbalance flexibility that is required to navigate the device through tortuous paths.


The construct 10 of the present invention may be delivered with a viscous solution containing a biologically benign matrix and therapeutics for regional therapy of the target vessel. Examples include, but are not limited to, hyaluronic acid or carboxymethyl cellulose, or PVP, suspended with PEA nano-particles containing everolimus. This type of solution may act as a lubricant for smooth delivery of the device and may also start biological therapy at the start of deployment. The viscous solution may be placed on the devices, generally within the sheath or on the outside of the sheath. The solution can also be applied or injected by the catheter. Application of compositions with catheters is well known in the art.


In some embodiments, the viscous solution, as mentioned above, may contain an ampiphilic, surface active molecule to plasticize the device for both mechanical properties and therapeutic release modulation. Examples include PLURONIC and 2-methacryloyloxyethyl phosphorylcholine-co-lauryl methacrylate (MPC-co-LMA). The plasticizer can suppress the Tg to make the polymer or polymeric matrix pliable and flexible. The viscous solution of this embodiment may be applied to devices made from shape memory polymers discussed previously. The addition of the viscous solution to the delivery system may allow for increased conformation of the device to the vessel wall and an increase in biological therapy associated with the treatment needed at the site of deployment. In some embodiment, the viscous solution should have a viscosity of not less than 5 centipoise at room temperature. In some embodiments, the viscosity is not less than 10 centipoise at room temperature.


The construct 10 of the present invention can be preferably used for the treatment of vascular conditions such as restenosis and vulnerable plaque. In some embodiment, the construct 12 is used for regional therapy which requires sustained delivery of drug or therapeutic agents to long portions of coronary vessels, or alternatively to a multitude of focal manifestations of a diseased condition.


Constructs or scaffoldings having other geometrical shapes can also be included within the scope of the present invention. For example, the construct can be made from a series of joined V or U shaped struts or elements that are rolled into a cylindrical configuration around the axis orthogonal to the plane of the Vs or Us. Tightly wound in this configuration, the construct can be delivered to the target site where it is deployed through unwinding. Additionally, THE scaffolding or construct can be made including hollow bodies such that a hydrogel and/or drug can be included in the hollow body.


While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. For example, absorptive material such as dyes can be doped into the construct 10 for allowing heat or UV modification of the mechanical properties of the construct 10. Accordingly, the claims are to encompass all such changes and modifications.

Claims
  • 1. An implantable medical device, comprising: a helical construct including a spiral coil and a therapeutic substance for local in vivo application of the therapeutic substance in a biological lumen, wherein the helical construct is configured to apply less than 0.75 Bar of pressure to a wall of the biological lumen when the helical construct is deployed in the biological lumen and after the helical construct is deployed and implanted in the biological lumen, wherein the helical construct is in an expanded configuration, from a reduced configuration, and configured to be in contact with the wall of the biological lumen post deployment and when implanted in the biological lumen, and wherein the helical construct includes a proximal free end and a distal free end, both ends which are configured to be positioned in the biological lumen when the helical construct is expanded and implanted.
  • 2. The implantable medical device of claim 1 wherein the pressure is less than 0.5 Bar.
  • 3. The implantable medical device of claim 1 wherein the pressure is less than 0.25 Bar.
  • 4. The implantable medical device of claim 1 wherein the pressure is less than 0.2 Bar.
  • 5. The implantable medical device of claim 1 wherein the pressure is less than 0.1 Bar.
  • 6. The implantable medical device of claim 1 wherein a coil pitch of the helical construct is from about 0.15 mm to about 10 mm.
  • 7. The implantable medical device of claim 1 wherein the helical construct has a variable coil pitch.
  • 8. The implantable medical device of claim 1 wherein the helical construct comprises a proximal segment, a distal segment, and a middle segment there between, and wherein a coil pitch of the proximal segment is different than a coil pitch of the middle segment and/or a coil pitch of the distal segment is different than a coil pitch of the middle segment.
  • 9. The implantable medical device of claim 8 wherein the coil pitch of the proximal segment or distal segment is greater than the coil pitch of the middle segment.
  • 10. The implantable medical device of claim 1 wherein the helical construct is shaped to have a coil contact angle of 0 to 80 degrees.
  • 11. The implantable medical device of claim 1 wherein the helical construct is shaped to have a coil contact angle of 10 to 70 degrees.
  • 12. The implantable medical device of claim 1 wherein the helical construct includes a first set and a second set of spiral coils such that the first set of spiral coils has a counter helical configuration than the second set of spiral coils.
  • 13. The implantable medical device of claim 12 wherein the first set of spiral coils is connected to the second set of spiral coils by a V-shaped or U-shaped connector.
  • 14. The implantable medical device of claim 12 wherein the first set of spiral coils is connected to the second set of spiral coils with a polymeric connector.
  • 15. The implantable medical device of claim 12 wherein the first set of spiral coils is connected to the second set of spiral coils with a biodegradable connector.
  • 16. The implantable medical device of claim 12 wherein the device includes two different therapeutic substances such that the first set of spiral coils carries a first therapeutic substance and the second set of spiral coils carries a second therapeutic substance.
  • 17. The implantable medical device of claim 12 wherein the first set of spiral coils is made of a different material than the second set of spiral coils.
  • 18. The implantable medical device of claim 12 wherein the first set of spiral coils carries a different amount of the therapeutic substance than the second set of spiral coils.
  • 19. The implantable medical device of claim 1 wherein the helical construct is made from a polymeric material.
  • 20. The implantable medical device of claim 1 wherein the helical construct is made from a biodegradable polymeric material.
  • 21. The implantable medical device of claim 1 wherein the helical construct is made from a biodegradable polymeric material and a bioerodable metallic material.
  • 22. The implantable medical device of claim 1 wherein the therapeutic substance is embedded within or coated on the helical construct.
  • 23. The implantable medical device of claim 1 wherein the length of the helical construct is at least 40 mm.
  • 24. The implantable medical device of claim 1 wherein the helical construct is self-expandable.
  • 25. The implantable medical device of claim 1 wherein the helical construct comprises a first end segment, a second end segment and a middle segment there between, such that the first end segment has a coil pitch that is greater than the second end segment.
  • 26. The implantable medical device of claim 1 wherein the helical construct is shaped to have a coil angle of 20 to 60 degrees.
  • 27. The implantable medical device of claim 1 wherein the helical construct comprises a proximal coil segment, a distal coil segment, and a middle coil segment there between, and wherein the middle coil segment has a counter helical configuration than both the proximal and distal coil segments.
  • 28. The implantable medical device of claim 27 wherein the length of each of the proximal and distal coil segments is less than the length of the middle coil segment.
  • 29. The implantable medical device of claim 1 wherein the helical construct is made of a metallic material.
  • 30. The implantable medical device of claim 1 wherein the helical construct is made of a biodegradable metallic material.
  • 31. The implantable medical device of claim 1 wherein the helical construct includes a metallic core with a polymer shell enclosing the core.
  • 32. The implantable medical device of claim 1 wherein the helical construct comprises a polymer having metallic particles.
  • 33. The implantable medical device of claim 1 further comprising micro- or nano-particles, embedded within the helical construct or coated on the helical construct, the micro- or nano-particles carrying the therapeutic substance for in vivo delivery.
  • 34. The implantable medical device of claim 1 wherein the therapeutic substance is rapamycin, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), 40-epi-(N1-tetrazolyl)-rapamycin, 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, 40-O-tetrazole-rapamycin, paclitaxel or docetaxel.
  • 35. The implantable medical device of claim 1 wherein the helical construct comprises a shape memory material.
  • 36. The implantable medical device of claim 1 additionally including a delivery catheter on which the helical construct is crimped such that segments of the coil overlap one another when the construct is in a crimped configuration on the catheter.
  • 37. A method of treating a vascular disorder comprising implanting the device of claim 1 in a human patient, such that the device of claim 1 applies less than 0.75 Bar of pressure on to the wall of the biological lumen when implanted in the expanded configuration and in contact with the wall of the biological lumen, wherein implanting is by a delivery device such that the device of claim 1 is left behind in the biological lumen after withdrawal of the delivery device.
  • 38. The method of claim 37 wherein the disorder is vulnerable plaque.
  • 39. The method of claim 37 wherein the disorder is restenosis.
  • 40. The method of claim 37 wherein the device does not maintain patency of a vessel in which the device is implanted.
  • 41. The method of claim 37 wherein post implantation, the device is maintained in an exact vicinity or a general vicinity of a site of implantation with little to no post implantation movement of the device for a selected duration of time for the application of a quantity of the therapeutic substance.
  • 42. The method of claim 37 wherein the device does not inflict trauma on a lumen wall at a site of implantation.
  • 43. The method of claim 37 wherein the device does not cause hyper-proliferation and migration of vascular smooth muscle cells at a site of implantation.
  • 44. The method of claim 37 additionally comprising delivering a viscous solution containing a biologically benign matrix and a therapeutic agent to a site of implantation.
  • 45. The method of claim 44 wherein the viscous solution acts as a lubricant for smooth delivery of the helical construct and provides for biological therapy to the site of implantation of the helical construct.
  • 46. The method of claim 37 additionally comprising delivering a solution including an amphiphilic, surface active molecule to a site of implantation to change a mechanical property of a material from which the helical construct is made.
  • 47. The method of claim 37 additionally comprising delivering a solution to a site of implantation for increasing conformation of the helical construct to a vessel wall in contact with the helical construct.
  • 48. The method of claim 37 additionally comprising delivering a solution to a site of implantation for changing a property of a material from which the helical construct is made or changing a release profile of the therapeutic substance, wherein the solution has a viscosity not less than 5 centipoise.
  • 49. The method of claim 48 wherein the viscosity is not less than 10 centipoise.
US Referenced Citations (353)
Number Name Date Kind
2072303 Herrmann et al. Mar 1937 A
2386454 Frosch et al. Oct 1945 A
3773737 Goodman et al. Nov 1973 A
3849514 Gray, Jr. et al. Nov 1974 A
3892238 Banford et al. Jul 1975 A
4226243 Shalaby et al. Oct 1980 A
4329383 Joh May 1982 A
4343931 Barrows Aug 1982 A
4529792 Barrows Jul 1985 A
4611051 Hayes et al. Sep 1986 A
4649922 Wiktor Mar 1987 A
4656242 Swan et al. Apr 1987 A
4733665 Palmaz Mar 1988 A
4800882 Gianturco Jan 1989 A
4882168 Casey et al. Nov 1989 A
4886062 Wiktor Dec 1989 A
4931287 Bae et al. Jun 1990 A
4941870 Okada et al. Jul 1990 A
4977901 Ofstead Dec 1990 A
5019096 Fox, Jr. et al. May 1991 A
5100992 Cohn et al. Mar 1992 A
5112457 Marchant May 1992 A
5133742 Pinchuk Jul 1992 A
5163952 Froix Nov 1992 A
5165919 Sasaki et al. Nov 1992 A
5219980 Swidler Jun 1993 A
5258020 Froix Nov 1993 A
5272012 Opolski Dec 1993 A
5292516 Viegas et al. Mar 1994 A
5298260 Viegas et al. Mar 1994 A
5300295 Viegas et al. Apr 1994 A
5306501 Viegas et al. Apr 1994 A
5306786 Moens et al. Apr 1994 A
5328471 Slepian Jul 1994 A
5330768 Park et al. Jul 1994 A
5380299 Fearnot et al. Jan 1995 A
5417981 Endo et al. May 1995 A
5447724 Helmus et al. Sep 1995 A
5455040 Marchant Oct 1995 A
5462990 Hubbell et al. Oct 1995 A
5464650 Berg et al. Nov 1995 A
5485496 Lee et al. Jan 1996 A
5516881 Lee et al. May 1996 A
5554114 Wallace et al. Sep 1996 A
5569463 Helmus et al. Oct 1996 A
5578073 Haimovich et al. Nov 1996 A
5584877 Miyake et al. Dec 1996 A
5605696 Eury et al. Feb 1997 A
5607467 Froix Mar 1997 A
5609629 Fearnot et al. Mar 1997 A
5610241 Lee et al. Mar 1997 A
5616338 Fox, Jr. et al. Apr 1997 A
5624411 Tuch Apr 1997 A
5628730 Shapland et al. May 1997 A
5644020 Timmermann et al. Jul 1997 A
5649977 Campbell Jul 1997 A
5658995 Kohn et al. Aug 1997 A
5667767 Greff et al. Sep 1997 A
5670558 Onishi et al. Sep 1997 A
5674242 Phan et al. Oct 1997 A
5679400 Tuch Oct 1997 A
5700286 Tartaglia et al. Dec 1997 A
5702754 Zhong Dec 1997 A
5711958 Cohn et al. Jan 1998 A
5716981 Hunter et al. Feb 1998 A
5721131 Rudolph et al. Feb 1998 A
5723219 Kolluri et al. Mar 1998 A
5735897 Buirge Apr 1998 A
5746998 Torchilin et al. May 1998 A
5749919 Blanc May 1998 A
5759205 Valentini Jun 1998 A
5776184 Tuch Jul 1998 A
5783657 Pavlin et al. Jul 1998 A
5788979 Alt et al. Aug 1998 A
5800392 Racchini Sep 1998 A
5820917 Tuch Oct 1998 A
5824048 Tuch Oct 1998 A
5824049 Ragheb et al. Oct 1998 A
5830178 Jones et al. Nov 1998 A
5837008 Berg et al. Nov 1998 A
5837313 Ding et al. Nov 1998 A
5849859 Acemoglu Dec 1998 A
5851508 Greff et al. Dec 1998 A
5854376 Higashi Dec 1998 A
5857998 Barry Jan 1999 A
5858746 Hubbell et al. Jan 1999 A
5865814 Tuch Feb 1999 A
5869127 Zhong Feb 1999 A
5873904 Ragheb et al. Feb 1999 A
5876433 Lunn Mar 1999 A
5877224 Brocchini et al. Mar 1999 A
5879713 Roth et al. Mar 1999 A
5902875 Roby et al. May 1999 A
5905168 Dos Santos et al. May 1999 A
5910564 Gruning et al. Jun 1999 A
5914387 Roby et al. Jun 1999 A
5919893 Roby et al. Jul 1999 A
5925720 Kataoka et al. Jul 1999 A
5932299 Katoot Aug 1999 A
5955509 Webber et al. Sep 1999 A
5958385 Tondeur et al. Sep 1999 A
5962138 Kolluri et al. Oct 1999 A
5971954 Conway et al. Oct 1999 A
5980928 Terry Nov 1999 A
5980972 Ding Nov 1999 A
5997517 Whitbourne Dec 1999 A
6010530 Goicoechea Jan 2000 A
6011125 Lohmeijer et al. Jan 2000 A
6015541 Greff et al. Jan 2000 A
6033582 Lee et al. Mar 2000 A
6034204 Mohr et al. Mar 2000 A
6042875 Ding et al. Mar 2000 A
6051576 Ashton et al. Apr 2000 A
6051648 Rhee et al. Apr 2000 A
6054553 Groth et al. Apr 2000 A
6056993 Leidner et al. May 2000 A
6060451 DiMaio et al. May 2000 A
6060518 Kabanov et al. May 2000 A
6063111 Hieshima et al. May 2000 A
6080488 Hostettler et al. Jun 2000 A
6096070 Ragheb et al. Aug 2000 A
6099562 Ding et al. Aug 2000 A
6110188 Narciso, Jr. Aug 2000 A
6110483 Whitbourne et al. Aug 2000 A
6113629 Ken Sep 2000 A
6120491 Kohn et al. Sep 2000 A
6120536 Ding et al. Sep 2000 A
6120788 Barrows Sep 2000 A
6120904 Hostettler et al. Sep 2000 A
6121027 Clapper et al. Sep 2000 A
6129761 Hubbell Oct 2000 A
6136333 Cohn et al. Oct 2000 A
6143354 Koulik et al. Nov 2000 A
6146417 Ischinger Nov 2000 A
6153252 Hossainy et al. Nov 2000 A
6159978 Myers et al. Dec 2000 A
6165212 Dereume et al. Dec 2000 A
6172167 Stapert et al. Jan 2001 B1
6177523 Reich et al. Jan 2001 B1
6180632 Myers et al. Jan 2001 B1
6203551 Wu Mar 2001 B1
6211249 Cohn et al. Apr 2001 B1
6214901 Chudzik et al. Apr 2001 B1
6231600 Zhong May 2001 B1
6240616 Yan Jun 2001 B1
6245753 Byun et al. Jun 2001 B1
6245760 He et al. Jun 2001 B1
6248129 Froix Jun 2001 B1
6251136 Guruwaiya et al. Jun 2001 B1
6254632 Wu et al. Jul 2001 B1
6258121 Yang et al. Jul 2001 B1
6258371 Koulik et al. Jul 2001 B1
6262034 Mathiowitz et al. Jul 2001 B1
6270788 Koulik et al. Aug 2001 B1
6277449 Kolluri et al. Aug 2001 B1
6283947 Mirzaee Sep 2001 B1
6283949 Roorda Sep 2001 B1
6284305 Ding et al. Sep 2001 B1
6287628 Hossainy et al. Sep 2001 B1
6299604 Ragheb et al. Oct 2001 B1
6306176 Whitbourne Oct 2001 B1
6331313 Wong et al. Dec 2001 B1
6335029 Kamath et al. Jan 2002 B1
6344035 Chudzik et al. Feb 2002 B1
6346110 Wu Feb 2002 B2
6358556 Ding et al. Mar 2002 B1
6379381 Hossainy et al. Apr 2002 B1
6387379 Goldberg et al. May 2002 B1
6395326 Castro et al. May 2002 B1
6419692 Yang et al. Jul 2002 B1
6423092 Datta et al. Jul 2002 B2
6451373 Hossainy et al. Sep 2002 B1
6458092 Gambale et al. Oct 2002 B1
6475779 Mathiowitz et al. Nov 2002 B2
6482834 Spada et al. Nov 2002 B2
6494862 Ray et al. Dec 2002 B1
6503538 Chu et al. Jan 2003 B1
6503556 Harish et al. Jan 2003 B2
6503954 Bhat et al. Jan 2003 B1
6506437 Harish et al. Jan 2003 B1
6524347 Myers et al. Feb 2003 B1
6527801 Dutta Mar 2003 B1
6527863 Pacetti et al. Mar 2003 B1
6528526 Myers et al. Mar 2003 B1
6530950 Alvarado et al. Mar 2003 B1
6530951 Bates et al. Mar 2003 B1
6540776 Sanders Millare et al. Apr 2003 B2
6544223 Kokish Apr 2003 B1
6544543 Mandrusov et al. Apr 2003 B1
6544582 Yoe Apr 2003 B1
6555157 Hossainy Apr 2003 B1
6558733 Hossainy et al. May 2003 B1
6565659 Pacetti et al. May 2003 B1
6572644 Moein Jun 2003 B1
6585755 Jackson et al. Jul 2003 B2
6585765 Hossainy et al. Jul 2003 B1
6585926 Mirzaee Jul 2003 B1
6605154 Villareal Aug 2003 B1
6610086 Kock et al. Aug 2003 B1
6613432 Zamora et al. Sep 2003 B2
6616765 Hossanony et al. Sep 2003 B1
6620617 Mathiowitz et al. Sep 2003 B2
6623448 Slater Sep 2003 B2
6625486 Lundkvist et al. Sep 2003 B2
6641611 Jayaraman Nov 2003 B2
6645135 Bhat Nov 2003 B1
6645195 Bhat et al. Nov 2003 B1
6645237 Klumb et al. Nov 2003 B2
6656216 Hossainy et al. Dec 2003 B1
6656506 Wu et al. Dec 2003 B1
6660034 Mandrusov et al. Dec 2003 B1
6663662 Pacetti et al. Dec 2003 B2
6663880 Roorda et al. Dec 2003 B1
6666880 Chiu et al. Dec 2003 B1
6673154 Pacetti et al. Jan 2004 B1
6673385 Ding et al. Jan 2004 B1
6689099 Mirzaee Feb 2004 B2
6689350 Uhrich Feb 2004 B2
6695920 Pacetti et al. Feb 2004 B1
6706013 Bhat et al. Mar 2004 B1
6709514 Hossainy Mar 2004 B1
6712845 Hossainy Mar 2004 B2
6713119 Hossainy et al. Mar 2004 B2
6716444 Castro et al. Apr 2004 B1
6723120 Yan Apr 2004 B2
6730064 Ragheb et al. May 2004 B2
6733536 Gellman May 2004 B1
6733768 Hossainy et al. May 2004 B2
6740040 Mandrusov et al. May 2004 B1
6743462 Pacetti Jun 2004 B1
6746773 Llanos et al. Jun 2004 B2
6749626 Bhat et al. Jun 2004 B1
6753071 Pacetti et al. Jun 2004 B1
6758859 Dang et al. Jul 2004 B1
6759054 Chen et al. Jul 2004 B2
6764505 Hossainy et al. Jul 2004 B1
6776796 Falotico et al. Aug 2004 B2
6780424 Claude Aug 2004 B2
6783793 Hossainy et al. Aug 2004 B1
6790228 Hossainy et al. Sep 2004 B2
6808533 Goodwin et al. Oct 2004 B1
6824559 Michal Nov 2004 B2
6861088 Weber et al. Mar 2005 B2
6865810 Stinson Mar 2005 B2
6869443 Buscemi et al. Mar 2005 B2
6878160 Gilligan et al. Apr 2005 B2
6887270 Miller et al. May 2005 B2
6887485 Fitzhugh et al. May 2005 B2
6890546 Mollison et al. May 2005 B2
6890583 Chudzik et al. May 2005 B2
6899731 Li et al. May 2005 B2
6939374 Banik et al. Sep 2005 B2
6974473 Barclay et al. Dec 2005 B2
7008667 Chudzik et al. Mar 2006 B2
7229471 Gale et al. Jun 2007 B2
7255710 White et al. Aug 2007 B2
20010007083 Roorda Jul 2001 A1
20010029351 Falotico et al. Oct 2001 A1
20010037145 Guruwaiya et al. Nov 2001 A1
20020005206 Falotico et al. Jan 2002 A1
20020007213 Falotico et al. Jan 2002 A1
20020007214 Falotico Jan 2002 A1
20020007215 Falotico et al. Jan 2002 A1
20020051730 Bodnar et al. May 2002 A1
20020077693 Barclay et al. Jun 2002 A1
20020082679 Sirhan et al. Jun 2002 A1
20020087123 Hossainy et al. Jul 2002 A1
20020091433 Ding et al. Jul 2002 A1
20020111590 Davila et al. Aug 2002 A1
20020165608 Llanos et al. Nov 2002 A1
20020176849 Slepian Nov 2002 A1
20020183581 Yoe et al. Dec 2002 A1
20020188037 Chudzik et al. Dec 2002 A1
20020188277 Roorda et al. Dec 2002 A1
20030004141 Brown Jan 2003 A1
20030028243 Bates et al. Feb 2003 A1
20030028244 Bates et al. Feb 2003 A1
20030028245 Barclay et al. Feb 2003 A1
20030032767 Tada et al. Feb 2003 A1
20030033007 Sirhan et al. Feb 2003 A1
20030036794 Ragheb et al. Feb 2003 A1
20030039689 Chen et al. Feb 2003 A1
20030040790 Furst Feb 2003 A1
20030059520 Chen et al. Mar 2003 A1
20030060877 Falotico et al. Mar 2003 A1
20030065377 Davila et al. Apr 2003 A1
20030072868 Harish et al. Apr 2003 A1
20030073961 Happ Apr 2003 A1
20030083646 Sirhan et al. May 2003 A1
20030083739 Cafferata May 2003 A1
20030097088 Pacetti May 2003 A1
20030097173 Dutta May 2003 A1
20030099712 Jayaraman May 2003 A1
20030105518 Dutta Jun 2003 A1
20030113439 Pacetti et al. Jun 2003 A1
20030125800 Shulze et al. Jul 2003 A1
20030135255 Sundar Jul 2003 A1
20030150380 Yoe Aug 2003 A1
20030157241 Hossainy et al. Aug 2003 A1
20030158517 Kokish Aug 2003 A1
20030190406 Hossainy et al. Oct 2003 A1
20030207020 Villareal Nov 2003 A1
20030211230 Pacetti et al. Nov 2003 A1
20040018296 Castro et al. Jan 2004 A1
20040029952 Chen et al. Feb 2004 A1
20040034405 Dickson Feb 2004 A1
20040047978 Hossainy et al. Mar 2004 A1
20040047980 Pacetti et al. Mar 2004 A1
20040052858 Wu et al. Mar 2004 A1
20040052859 Wu et al. Mar 2004 A1
20040054104 Pacetti Mar 2004 A1
20040060508 Pacetti et al. Apr 2004 A1
20040062853 Pacetti et al. Apr 2004 A1
20040063805 Pacetti et al. Apr 2004 A1
20040071861 Mandrusov et al. Apr 2004 A1
20040072922 Hossainy et al. Apr 2004 A1
20040073298 Hossainy Apr 2004 A1
20040086542 Hossainy et al. May 2004 A1
20040086550 Roorda et al. May 2004 A1
20040096504 Michal May 2004 A1
20040098117 Hossainy et al. May 2004 A1
20040117006 Lewis et al. Jun 2004 A1
20040215336 Udipi et al. Oct 2004 A1
20040236410 Herweck et al. Nov 2004 A1
20050037052 Udipi et al. Feb 2005 A1
20050038134 Loomis et al. Feb 2005 A1
20050038497 Neuendorf et al. Feb 2005 A1
20050043755 Wilson et al. Feb 2005 A1
20050043786 Chu et al. Feb 2005 A1
20050049693 Walker Mar 2005 A1
20050049694 Neary Mar 2005 A1
20050054774 Kangas Mar 2005 A1
20050055044 Kangas Mar 2005 A1
20050055078 Campbell Mar 2005 A1
20050060020 Jenson Mar 2005 A1
20050064088 Fredrickson Mar 2005 A1
20050065501 Wallace Mar 2005 A1
20050065545 Wallace Mar 2005 A1
20050065593 Chu et al. Mar 2005 A1
20050074406 Couvillon, Jr. et al. Apr 2005 A1
20050074545 Thomas Apr 2005 A1
20050075714 Cheng et al. Apr 2005 A1
20050079274 Palasis et al. Apr 2005 A1
20050084515 Udipi et al. Apr 2005 A1
20050106210 Ding et al. May 2005 A1
20050113903 Rosenthal et al. May 2005 A1
20050171596 Furst et al. Aug 2005 A1
20050209680 Gale et al. Sep 2005 A1
20050228473 Brown Oct 2005 A1
20050234538 Litvack et al. Oct 2005 A1
20060058868 Gale et al. Mar 2006 A1
20060079955 Brown Apr 2006 A1
20060224237 Furst et al. Oct 2006 A1
Foreign Referenced Citations (74)
Number Date Country
42 24 401 Jan 1994 DE
2001-190687 Jul 2001 DE
0 301 856 Feb 1989 EP
0 388 234 Sep 1990 EP
0 396 429 Nov 1990 EP
0 514 406 Nov 1992 EP
0 604 022 Jun 1994 EP
0 623 354 Nov 1994 EP
0 665 023 Aug 1995 EP
0 701 802 Mar 1996 EP
0 716 836 Jun 1996 EP
0 809 999 Dec 1997 EP
0 832 655 Apr 1998 EP
0 850 651 Jul 1998 EP
0 879 595 Nov 1998 EP
0 910 584 Apr 1999 EP
0 923 953 Jun 1999 EP
0 953 320 Nov 1999 EP
0 970 711 Jan 2000 EP
0 982 041 Mar 2000 EP
1 023 879 Aug 2000 EP
1 192 957 Apr 2002 EP
1 273 314 Jan 2003 EP
872531 Oct 1981 SU
876663 Oct 1981 SU
905228 Feb 1982 SU
790725 Feb 1983 SU
1016314 May 1983 SU
811750 Sep 1983 SU
1293518 Feb 1987 SU
WO 9112846 Sep 1991 WO
WO 9409760 May 1994 WO
WO 9510989 Apr 1995 WO
WO 9524929 Sep 1995 WO
WO 9640174 Dec 1996 WO
WO 9710011 Mar 1997 WO
WO 9745105 Dec 1997 WO
WO 9746590 Dec 1997 WO
WO 9808463 Mar 1998 WO
WO 9817331 Apr 1998 WO
WO 9832398 Jul 1998 WO
WO 9836784 Aug 1998 WO
WO 9901118 Jan 1999 WO
WO 9938546 Aug 1999 WO
WO 9963981 Dec 1999 WO
WO 0002599 Jan 2000 WO
WO 0012147 Mar 2000 WO
WO 0018331 Apr 2000 WO
WO 0018446 Apr 2000 WO
WO 0064506 Nov 2000 WO
WO 0101890 Jan 2001 WO
WO 0115751 Mar 2001 WO
WO 0117577 Mar 2001 WO
WO 0145763 Jun 2001 WO
WO 0149338 Jul 2001 WO
WO 0151027 Jul 2001 WO
WO 0174414 Oct 2001 WO
WO 0203890 Jan 2002 WO
WO 0226162 Apr 2002 WO
WO 0234311 May 2002 WO
WO 0249544 Jun 2002 WO
WO 02056790 Jul 2002 WO
WO 02058753 Aug 2002 WO
WO 02102283 Dec 2002 WO
WO 03000308 Jan 2003 WO
WO 03022323 Mar 2003 WO
WO 03028780 Apr 2003 WO
WO 03037223 May 2003 WO
WO 03039612 May 2003 WO
WO 03080147 Oct 2003 WO
WO 03082368 Oct 2003 WO
WO 2004000383 Dec 2003 WO
WO 2004009145 Jan 2004 WO
WO 2005079387 Sep 2005 WO
Non-Patent Literature Citations (35)
Entry
Anonymous, Cardiologists Draw—Up the Dream Stent, Clinica 710:15 (Jun. 17, 1996), http://www.dialociweb.com/cgi/document?req=1061848202959, printed Aug. 25, 2003 (2 pages).
Anonymous, Heparin-coated stents cut complications by 30%, Clinica 732:17 (Nov. 18, 1996), htto://www dialogweb.com/cgi/document?req=1061847871753, printed Aug. 25, 2003 (2 pages).
Anonymous, Rolling Therapeutic Agent Loading Device for Therapeutic Agent Delivery or Coated Stent (Abstract 434009), Res. Disclos. pp. 974-975 (Jun. 2000).
Anonymous, Stenting continues to dominate cardiology, Clinica 720:22 (Sep. 2, 1996), http://www.dialogweb.com/cgi/document?req=1061848017752, printed Aug. 25, 2003 (2 pages).
Aoyagi et al., Preparation of cross-linked aliphatic polyester and application to thermo-responsive material, Journal of Controlled Release 32:87-96 (1994).
Barath et al., Low Dose of Antitumor Agents Prevents Smooth Muscle Cell Proliferation After Endothelial Injury, JACC 13(2): 252A (Abstract) (Feb. 1989).
Barbucci et al., Coating of commercially available materials with a new heparinizable material, J. Biomed. Mater. Res. 25:1259-1274 (Oct. 1991).
Chung et al., Inner core segment design for drug delivery control of thermo-responsive polymeric micelles, Journal of Controlled Release 65:93-103 (2000).
Dev et al., Kinetics of Drug Delivery to the Arterial Wall Via Polyurethane-Coated Removable Nitinol Stent: Comparative Study of Two Drugs, Catheterization and Cardiovascular Diagnosis 34:272-278 (1995).
Dichek et al., Seeding of Intravascular Stents with Genetically Engineered Endothelial Cells, Circ. 80(5):1347-1353 (Nov. 1989).
Eigler et al., Local Arterial Wall Drug Delivery from a Polymer Coated Removable Metallic Stent: Kinetics, Distribution, and Bioactivity of Forskolin, JACC, 4A (701-1), Abstract (Feb. 1994).
Helmus, Overview of Biomedical Materials, MRS Bulletin, pp. 33-38 (Sep. 1991).
Herdeg et al., Antiproliferative Stent Coatings: Taxol and Related Compounds, Semin. Intervent. Cardiol. 3:197-199 (1998).
Huang et al., Biodegradable Polymers Derived from Aminoacids, Macromol. Symp. 144, 7-32 (1999).
Inoue et al., An AB block copolymer of oligo(methyl methacrylate) and poly(acrylic acid) for micellar delivery of hydrophobic drugs, Journal of Controlled Release 51:221-229 (1998).
Kataoka et al., Block copolymer micelles as vehicles for drug delivery, Journal of Controlled Release 24:119-132 (1993).
Katsarava et al., Amino Acid-Based Bioanalogous Polymers. Synthesis and Study of Regular Poly(ester amide)s Based on Bis(α-amino acid)α,ω-Alkylene Diesters, and Aliphatic Dicarbolic Acids, Journal of Polymer Science, Part A: Polymer Chemistry, 37(4), 391-407 (1999).
Levy et al., Strategies for Treating Arterial Restenosis Using Polymeric Controlled Release Implants, Biotechnol. Bioact. Polym. [Proc. Am. Chem. Soc. Symp.], pp. 259-268 (1994).
Liu et al., Drug release characteristics of unimolecular polymeric micelles, Journal of Controlled Release 68:167-174 (2000).
Marconi et al., Covalent bonding of heparin to a vinyl copolymer for biomedical applications, Biomaterials 18(12):885-890 (1997).
Markou et al., Boundary layer drug delivery using a helical catheter, J. of Controlled Release 53 281-288 (1998).
Matsumaru et al., Embolic Materials for Endovascular Treatment of Cerebral Lesions, J. Biomater. Sci. Polymer Edn 8(7):555-569 (1997).
Miyazaki et al., Antitumor Effect of Implanted Ethylene-Vinyl Alcohol Copolymer Matrices Containing Anticancer Agents on Ehrlich Ascites Carcinoma and P388 Leukemia in Mice, Chem. Pharm. Bull. 33(6) 2490-2498 (1985).
Miyazawa et al., Effects of Pemirolast and Tranilast on Intimal Thickening After Arterial Injury in the Rat, J. Cardiovasc. Pharmacol., pp. 157-162 (1997).
Nordrehaug et al., A novel biocompatible coating applied to coronary stents, EPO Heart Journal 14, p. 321 (P1694), Abstr. Suppl. (1993).
Ohsawa et al., Preventive Effects of an Antiallergic Drug, Pemirolast Potassium, on Restenosis After Percutaneous Transluminal Coronary Angioplasty, American Heart Journal 136(6):1081-1087 (Dec. 1998).
Ozaki et al., New Stent Technologies, Progress in Cardiovascular Diseases, vol. XXXIX(2):129-140 (Sep./Oct. 1996).
Pechar et al., Poly(ethylene glycol) Multiblock Copolymer as a Carrier of Anti-Cancer Drug Doxorubicin, Bioconjucate Chemistry 11(2):131-139 (Mar./Apr. 2000).
Peng et al., Role of polymers in improving the results of stenting in coronary arteries, Biomaterials 17:685-694 (1996).
Saotome, et al., Novel Enzymatically Degradable Polymers Comprising α-Amino Acid, 1,2-Ethanediol, and Adipic Acid, Chemistry Letters, pp. 21-24, (1991).
Shigeno, Prevention of Cerebrovascular Spasm by Bosentan, Novel Endothelin Receptor, Chemical Abstract 125:212307 (1996).
va Beusekom et al., Coronary stent coatings, Coronary Artery Disease 5(7):590-596 (Jul. 1994).
Wilensky et al., Methods and Devices for Local Drug Delivery in Coronary and Peripheral Arteries, Trends Cardiovasc. Med. 3(5):163-170 (1993).
Yokoyama et al., Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor, Journal of Controlled Release 50:79-92 (1998).
International Search Report for PCT/US2007/012889 filed May 31, 2007 mailed Nov. 30, 2007, 15 pgs.
Related Publications (1)
Number Date Country
20070282425 A1 Dec 2007 US