DRUG DELIVERY SYSTEM FOR THE DELIVERY OF ANTIVIRAL AGENTS

Information

  • Patent Application
  • 20210186867
  • Publication Number
    20210186867
  • Date Filed
    March 05, 2021
    3 years ago
  • Date Published
    June 24, 2021
    3 years ago
Abstract
This invention relates to novel implant drug delivery systems for long-acting delivery of antiviral drugs. These compositions are useful for the treatment or prevention of human immunodeficiency virus (HIV) infection.
Description
BACKGROUND OF THE INVENTION

The development of highly active antiretroviral therapy (HAART) in the mid 1990's transformed the clinical care of human immunodeficiency virus (HIV) type infection. HAART regimens have proven to be highly effective treatments, significantly decreasing HIV viral load in HIV-infected patients, thereby slowing the evolution of the illness and reducing HIV-related morbidity and mortality. Yet, the treatment success of HAART is directly related to adherence to the regimen by the patient. Unless appropriate levels of the antiretroviral drug combinations are maintained in the blood, viral mutations will develop, leading to therapy resistance and cross-resistances to molecules of the same therapeutic class, thus placing the long-term efficacy of treatments at risk. Various clinical studies have shown a decline in treatment effectiveness with relatively small lapses in adherence. A study by Musiime found that 81% of patients with more than 95% adherence demonstrated viral suppression, while only 50% of patients who were 80-90% adherent were successful. See, Musiime, S., et al., Adherence to Highly Active Antiretroviral Treatment in HIV-Infected Rwandan Women. PLOS one 2011, 6, (11), 1-6. Remarkably, only 6% of patients that were less than 70% adherent showed improvements in viral markers. Thus, low adherence is a leading cause of therapeutic failure in treatment of HIV-1 infection.


Nonetheless, adherence rates to the HAART regimens continue to be far from optimal. Various characteristics of HAART make adherence particularly difficult. Therapeutic regimens are complex, requiring multiple drugs to be taken daily, often at different times of the day, and many with strict requirements on food intake. Many HAART medications also have unpleasant side effects, including nausea, diarrhea, headache, and peripheral neuropathy. Social and psychological factors can also negatively impact adherence. Patients report that forgetfulness, lifestyle factors, including fear of being identified as HIV-positive, and therapy fatigue over life-long duration of treatment all contribute to adherence lapses.


New HIV treatment interventions aim to improve adherence by reducing the complexity of treatments, the frequency of the dosages, and/or the side effects of the medications. Long-acting injectable (LAI) drug formulations that permit less frequent dosing, on the order of a month or longer, are an increasingly attractive option to address adherence challenges. However, the majority of approved and investigational antiretroviral agents are not well suited for reformulation as long-acting injectable products. In large part, this is due to suboptimal physicochemical properties limiting their formulation as conventional drug suspensions, as well as insufficient antiviral potency resulting in high monthly dosing requirements. Even for cabotegravir or rilpivirine, two drugs being studied as long-acting injectible formulations, large injection volumes and multiple injections are required to achieve pharmacokinetic profiles supportive of monthly dosing. See, e.g., Spreen, W. R., et al., Long-acting injectable antiretrovirals for HIV treatment and prevention. Current Opinion in Hiv and Aids 2013, 8, (6), 565-571; Rajoli, R. K. R., et al., Physiologically Based Pharmacokinetic Modelling to Inform Development of Intramuscular Long-Acting Nanoformulations for HIV. Clinical Pharmacokinetics 2015, 54, (6), 639-650; Baert, L., et al., Development of a long-acting injectable formulation with nanoparticles of rilpivirine (TMC278) for HIV treatment. European Journal of Pharmaceutics and Biopharmaceutics 2009, 72, (3), 502-508; Van't Klooster, G., et al., Pharmacokinetics and Disposition of Rilpivirine (TMC278) Nanosuspension as a Long-Acting Injectable Antiretroviral Formulation. Antimicrobial Agents and Chemotherapy 2010, 54, (5), 2042-2050. Thus, novel formulation approaches capable of delivering extended-duration pharmacokinetic characteristics for molecules of diverse physicochemical properties at practical injection volumes and with a limited number of injections are highly desirable.


SUMMARY OF THE INVENTION

This invention relates to novel implant drug delivery systems for long-acting delivery of antiviral drugs. These compositions are useful for the treatment or prevention of human immunodeficiency virus (HIV) infection.







DETAILED DESCRIPTION OF THE INVENTION

This invention relates to novel implant drug delivery systems for long-acting delivery of antiviral drugs. The novel implant drug delivery systems comprise a polymer and an antiviral agent. These implant drug delivery systems are useful for the treatment or prevention of human immunodeficiency virus (HIV) infection. The invention further relates to methods of treating and preventing HIV infection with the novel implant drug delivery systems described herein.


The novel implant delivery systems of the invention comprise a biocompatible bioerodible polymer to generate monolithic matrices with dispersed or dissolved drug. The chemical properties of the polymer matrices are tuned to achieve a range of drug release characteristics, offering the opportunity to extend duration of dosing. In an embodiment of the invention, the novel implant delivery systems are compatible with molecules having a broad spectrum of physicochemical properties, including those of high aqueous solubility or amorphous phases which are unsuitable to formulation as solid drug suspensions.


Specifically, this invention relates to novel implant drug delivery systems comprising a biocompatible bioerodible polymer and 4′-ethynyl-2-fluoro-2′-deoxyadenosine wherein said implant drug delivery system is implanted subdermally and 4′-ethynyl-2-fluoro-2′-deoxyadenosine is continually released in vivo at a rate resulting in a plasma concentration between 0.01 ng/mL and 3000.0 ng/mL. These implant delivery systems are desired and useful for prophylaxis and/or treatment of HIV infection from both compliance and convenience standpoints.


As used herein, the term “biocompatible bioerodible polymer” refers to polymeric materials that include hydrolytically labile linkages which undergo cleavage at physiological conditions. The broken down-products are non-toxic and either excreted in the urine or incorporated into the Krebs cycle and used for energy. The polymer is generally hydrophobic so that it retains its integrity for a suitable period of time when placed in an aqueous environment, such as the body of a mammal, and is stable enough to be stored for an extended period before use. Bioerodible polymers remain intact in vivo for extended periods of time, typically weeks, months or years. Drug molecules encapsulated in the polymer are released over time via diffusion through channels and pores in a sustained manner. The release rate can be altered by modifying the identity of the polymer (monomeric units, molecular weight, end group, etc.) thereby modifying the degradation kinetics, percent drug loading, porosity of the polymer, structure of the implantable device, or hydrophobicity of the polymer, or by adding a hydrophobic coating to the exterior of the implantable device.


Accordingly, any polymer that can be readily cleared or eliminated by the body can be used to manufacture the implant drug delivery systems of the instant invention that comprise a biocompatible bioerodible polymer. The term “polymer” can also include copolymers. Biocompatible bioerodible polymers of the instant invention include, but are not limited to, poly(DL-lactide) (“PLA”), poly(caprolactone) (“PCL”), poly(lactide-co-glycolide), poly(lactide), poly(glycolide) (“PLG”), poly(ortho esters), poly(dioxanone), poly(alkylcyanoacrylates) and combinations thereof. In a class of the invention, the biocompatible bioerodible polymer is selected from the group consisting of poly(DL-lactide) and poly(caprolactone).


In a class of the invention, the biocompatible bioerodible polymer is selected from the group consisting of poly(DL-lactide), poly(L-lactide), and poly(caprolactone), all of which can have an acid or an ester end group. In a subclass of the invention, the biocompatible bioerodible polymer is poly(DL-lactide). In another subclass of the invention, the biocompatible bioerodible polymer is poly(caprolactone).


As used herein, the term “diffusional barrier” refers to a coating that is permeable to the drug and is placed over at least a portion of the device to further regulate the rate of release. For example, a coating of biocompatible bioerodible polymeric material, e.g., poly(DL-lactide), or a coating of a biocompatible bioerodible polymeric material with a lower drug loading than the remainder of the implant delivery system, may be used. The diffusional barrier may be formed, for example, by coextrusion with the device.


Suitable diffusional barriers of the instant invention include, but are not limited to, poly(DL-lactide) (“PLA”), poly(caprolactone) (“PCL”), poly(lactide-co-glycolide), poly(lactide), poly(glycolide), poly(ortho esters), poly(dioxanone), poly(alkylcyanoacrylates) and combinations thereof. In a class of the invention, the diffusional barrier is selected from the group consisting of poly(DL-lactide) and poly(caprolactone).


In an embodiment of the invention, the diffusion barrier contains an antiviral drug. In a class of the embodiment, the diffusion barrier comprises 4′-ethynyl-2-fluoro-2′-deoxyadenosine.


As used herein, the term “dispersed or dissolved in the biocompatible bioerodible polymer” refers to the drug and polymer being mixed and then hot-melt extruded.


As used herein, the term “continually released” refers to the drug being released from the biocompatible bioerodible polymer at continuous rates for extended periods of time. The implant drug delivery systems of the instant invention generally exhibit 1st order release kinetics for the drug in vivo, sometimes with an initial burst. Polymer degradation modifies the dissolution and diffusion of the drug from the polymer matrix. This typically results in an increased drug elution rate that may deviate from 1st order kinetics, and is a function of the polymer degradation rate.


Optionally, the novel implant delivery systems of the instant invention can further comprise a radiopaque component. The radiopaque component will cause the implant to be X-ray visible. The radiopaque component can be any such element known in the art, such as barium sulfate, titanium dioxide, bismuth oxide, tantalum, tungsten or platinum. In a specific embodiment, the radiopaque component is barium sulfate.


In one embodiment, the radiopaque material is about 1% to 30% by weight. In another embodiment, the radiopaque material is about 1% to 20% by weight. In another embodiment, the radiopaque material is about 4% to 25% by weight. In further embodiment, the radiopaque material is about 6% to 20% by weight. In another embodiment, the radiopaque material is about 4% to 15% by weight. In another embodiment, the radiopaque material is about 8% to 15% by weight.


The radiopaque material does not affect the release of 4′-ethynyl-2-fluoro-2′-deoxyadenosine from the implant.


The novel implant delivery systems of the invention comprise antiviral agents. Suitable antiviral agents include anti-HIV agents. In an embodiment of the invention, the antiviral agent is administered as a monotherapy. In another embodiment of the invention, two or more antiviral agents are administered in combination.


An “anti-HIV agent” is any agent which is directly or indirectly effective in the inhibition of HIV reverse transcriptase or another enzyme required for HIV replication or infection, or prophylaxis of HIV infection, and/or the treatment, prophylaxis or delay in the onset or progression of AIDS. It is understood that an anti-HIV agent is effective in treating, preventing, or delaying the onset or progression of HIV infection or AIDS and/or diseases or conditions arising therefrom or associated therewith. Suitable anti-viral agents for use in implant drug delivery systems described herein include, for example, those listed in Table A as follows:









TABLE A







Antiviral Agents for Preventing HIV infection or AIDS








Name
Type





abacavir, ABC, Ziagen ®
nRTI


abacavir + lamivudine, Epzicom ®
nRTI


abacavir + lamivudine + zidovudine, Trizivir ®
nRTI


amprenavir, Agenerase ®
PI


atazanavir, Reyataz ®
PI


AZT, zidovudine, azidothymidine, Retrovir ®
nRTI


Capravirine
nnRTI


darunavir, Prezista ®
PI


ddC, zalcitabine, dideoxycytidine, Hivid ®
nRTI


ddI, didanosine, dideoxyinosine, Videx ®
nRTI


ddI (enteric coated), Videx EC ®
nRTI


delavirdine, DLV, Rescriptor ®
nnRTI


doravirine
nnRTI


efavirenz, EFV, Sustiva ®, Stocrin ®
nnRTI


efavirenz + emtricitabine + tenofovir DF, Atripla ®
nnRTI + nRTI


EFdA (4′-ethynyl-2-fluoro-2′-deoxyadenosine)
nRTI


emtricitabine, FTC, Emtriva ®
nRTI


emtricitabine + tenofovir DF, Truvada ®
nRTI


emvirine, Coactinon ®
nnRTI


enfuvirtide, Fuzeon ®
FI


enteric coated didanosine, Videx EC ®
nRTI


etravirine, TMC-125
nnRTI


fosamprenavir calcium, Lexiva ®
PI


indinavir, Crixivan ®
PI


lamivudine, 3TC, Epivir ®
nRTI


lamivudine + zidovudine, Combivir ®
nRTI


Lopinavir
PI


lopinavir + ritonavir, Kaletra ®
PI


maraviroc, Selzentry ®
EI


nelfinavir, Viracept ®
PI


nevirapine, NVP, Viramune ®
nnRTI


PPL-100 (also known as PL-462) (Ambrilia)
PI


raltegravir, Isentress ™
InI


(S)-2-(3-chloro-4-fluorobenzyl)-8-ethyl-10-hydroxy-
InI


N,6-dimethyl-1,9-dioxo-1,2,6,7,8,9-



hexahydropyrazino[1′,2′:1,5]pyrrolo[2,3-d]pyridazine-



4-carboxamide (MK-2048)



ritonavir, Norvir ®
PI


saquinavir, Invirase ®, Fortovase ®
PI


stavudine, d4T, didehydrodeoxythymidine, Zerit ®
nRTI


tenofovir DF (DF = disoproxil fumarate), TDF,
nRTI


Viread ®



Tenofovir, hexadecyloxypropyl (CMX-157)
nRTI


tipranavir, Aptivus ®
PI


Vicriviroc
EI





EI = entry inhibitor;


FI = fusion inhibitor;


InI = integrase inhibitor;


PI = protease inhibitor;


nRTI = nucleoside reverse transcriptase inhibitor;


nnRTI = non-nucleoside reverse transcriptase inhibitor.






Some of the drugs listed in the table can be used in a salt form; e.g., abacavir sulfate, delavirdine mesylate, indinavir sulfate, atazanavir sulfate, nelfinavir mesylate, saquinavir mesylate.


In certain embodiments the antiviral agents in the implant drug delivery systems described herein are employed in their conventional dosage ranges and regimens as reported in the art, including, for example, the dosages described in editions of the Physicians' Desk Reference, such as the 70th edition (2016) and earlier editions. In other embodiments, the antiviral agents in the implant drug delivery systems described herein are employed in lower than their conventional dosage ranges.


In an embodiment of the invention, the antiviral agent can be an entry inhibitor; fusion inhibitor; integrase inhibitor; protease inhibitor; nucleoside reverse transcriptase inhibitor; or non-nucleoside reverse transcriptase inhibitor. In a class of the invention, the antiviral agent is a nucleoside reverse transcription inhibitor.


In an embodiment of the invention, the antiviral agent is a nucleoside reverse transciptase inhibitor (NRTI). In a class of the invention, the NRTI is 4′-ethynyl-2-fluoro-2′-deoxyadenosine.


4′-ethynyl-2-fluoro-2′-deoxyadenosine is also known as EFdA, and has the following chemical structure:




embedded image


Production of and the ability of 4′-ethynyl-2-fluoro-2′-deoxyadenosine to inhibit HIV reverse transcriptase are described in PCT International Application WO2005090349, published on Sep. 29, 2005, and US Patent Application Publication No. 2005/0215512, published on Sep. 29, 2005, both to Yamasa Corporation which are hereby incorporated by reference in their entirety.


In an embodiment of the implant drug delivery system described herein, the antiviral agent is present in the biocompatible bioerodible polymer at about 0.10%-80% by weight of drug loading. In other embodiments, the antiviral agent is present in the biocompatible bioerodible polymer at about 20%-60% by weight, at about 30%-65% by weight, at about 40%-60% by weight or at about 40%-45% by weight of drug loading. In a class of the embodiment of the implant drug delivery system described herein, 4′-ethynyl-2-fluoro-2′-deoxyadenosine is present in the biocompatible bioerodible polymer at about 0.10%-80% by weight of drug loading. In a subclass of the embodiment of the implant drug delivery system described herein, 4′-ethynyl-2-fluoro-2′-deoxyadenosine is present in the biocompatible bioerodible polymer at about 20%-60% by weight of drug loading. In a further subclass of the embodiment of the implant drug delivery system described herein, 4′-ethynyl-2-fluoro-2′-deoxyadenosine is present in the biocompatible bioerodible polymer at about 30%-65% by weight of drug loading. In a further subclass of the embodiment of the implant drug delivery system described herein, 4′-ethynyl-2-fluoro-2′-deoxyadenosine is present in the biocompatible bioerodible polymer at about 40%-60% by weight of drug loading. In a further subclass of the embodiment of the implant drug delivery system described herein, 4′-ethynyl-2-fluoro-2′-deoxyadenosine is present in the biocompatible bioerodible polymer at about 40%-45% by weight of drug loading. In an example of the embodiment of the implant drug delivery system described herein, 4′-ethynyl-2-fluoro-2′-deoxyadenosine is present in the biocompatible bioerodible polymer at 40% by weight of drug loading. In another example of the embodiment of the implant drug delivery system described herein, 4′-ethynyl-2-fluoro-2′-deoxyadenosine is present in the biocompatible bioerodible polymer at 45% by weight of drug loading. In another example of the embodiment of the implant drug delivery system described herein, 4′-ethynyl-2-fluoro-2′-deoxyadenosine is present in the biocompatible bioerodible polymer at 50% by weight of drug loading. In another example of the embodiment of the implant drug delivery system described herein, 4′-ethynyl-2-fluoro-2′-deoxyadenosine is present in the biocompatible bioerodible polymer at 60% by weight of drug loading. In another example of the embodiment of the implant drug delivery system described herein, 4′-ethynyl-2-fluoro-2′-deoxyadenosine is present in the biocompatible bioerodible polymer at 80% by weight of drug loading.


The implant drug delivery systems of the instant invention may be produced using an extrusion process, wherein ground biocompatible, bioerodible polymer is blended with the antiviral agent, melted and extruded into rod-shaped structures. Rods are cut into individual implantable devices of the desired length, packaged and sterilized prior to use. Other methods for encapsulating therapeutic compounds in implantable polymeric, bioerodible matrices are known to those of skill in the art. Such methods include solvent casting (see U.S. Pat. Nos. 4,883,666, 5,114,719 and 5,601835). One of skill in the art would be able to readily determine an appropriate method of preparing such an implant drug delivery system, depending on the shape, size, drug loading, and release kinetics desired for a particular type of patient or clinical application.


The size and shape of the implant drug delivery systems may be modified to achieve a desired overall dosage. The implant drug delivery systems of the instant invention are often about 0.5 cm to about 10 cm in length. In an embodiment of the invention, the implant drug delivery systems are about 1.5 cm to about 5 cm in length. In a class of the embodiment, the implant drug delivery systems are about 2 cm to about 5 cm in length. In a subclass of the embodiment, the implant drug delivery systems are about 2 cm to about 4 cm in length. The implant drug delivery systems of the instant invention are often about 0.5 mm to about 7 mm in diameter. In an embodiment of the invention, the implant drug delivery systems are about 1.5 mm to about 5 mm in diameter. In a class of the embodiment, the implant drug delivery systems are about 2 mm to about 5 mm in diameter. In a subclass of the embodiment, the implant drug delivery systems are about 2 mm to about 4 mm in diameter.


The implant drug delivery systems described herein are capable of releasing 4′-ethynyl-2-fluoro-2′-deoxyadenosine over a period of 21 days, 28 days, 31 days, 4 weeks, 6 weeks, 8 weeks, 12 weeks, one month, two months, three months, four months, five months, six months, seven months, eight months, nine months, ten months, eleven months, twelve months, eighteen months, twenty-four months or thirty-six months at an average rate of between 0.01-5 mg per day. In an embodiment of the invention, the 4′-ethynyl-2-fluoro-2′-deoxyadenosine is released at therapeutic concentrations for a duration from between three months and thirty-six months. In a class of the embodiment, the 4′-ethynyl-2-fluoro-2′-deoxyadenosine is released at therapeutic concentrations for a duration from between six months and twelve months.


One or more implants can be used to achieve the desired therapeutic dose. In an embodiment of the invention, one or more implants can be used to achieve the therapeutic dose for durations of up to 1 year. In another embodiment of the invention, one or more implants can be used to achieve the therapeutic dose for durations of up to 2 years.


The implant drug delivery systems described herein are capable of releasing 4′-ethynyl-2-fluoro-2′-deoxyadenosine resulting in a plasma concentration of between 0.02-300 ng/mL per day. In an embodiment of the invention, the implant drug delivery systems described herein are capable of releasing 4′-ethynyl-2-fluoro-2′-deoxyadenosine resulting in a plasma concentration of between 0.02-30.0 ng/mL per day. In a class of the embodiment, the implant drug delivery systems described herein are capable of releasing 4′-ethynyl-2-fluoro-2′-deoxyadenosine resulting in a plasma concentration of between 0.02-15 ng/mL per day. In a class of the embodiment, the implant drug delivery systems described herein are capable of releasing 4′-ethynyl-2-fluoro-2′-deoxyadenosine resulting in a plasma concentration of between 0.02-8 ng/mL per day. In a subclass of the embodiment, the implant drug delivery systems described herein are capable of releasing 4′-ethynyl-2-fluoro-2′-deoxyadenosine resulting in a plasma concentration of between 0.1-1.0 ng/mL per day.


The following examples are given for the purpose of illustrating the present invention and shall not be construed as being limitations on the scope of the invention.


Example 1
Preparation and In Vitro Release of Implant Drug Delivery Systems Containing 40-80 Wt % 4′-Ethynyl-2-Fluoro-2′-Deoxyadenosine

Implantable devices were prepared using an extrusion process. The first step involved mixing the dry, micronized powders of the active compound (4′-ethynyl-2-fluoro-2′-deoxyadenosine) and the cryomilled PCL (Evonik RESOMER® Select 100 CL 7.5E) or PLA (Evonik RESOMER® Select 100 DL 8A) using a Turbula T2F mixer. Drug and polymer blends were prepared at 40-80 wt % drug load. The drug and polymer blends were hot-melt extruded using a twin screw extruder through a 3 mm diameter die and pulled to a diameter of approximately 1.9-2.3 mm. The screws contained predominately conveying elements with a single 90° mixing section. The 1St zone where the drug-polymer blends were introduced was water-cooled and maintained at room temperature. The temperature for zones 2-4 was 100° C. for PLA and 75° C. for PCL. Extruded fibers with diameters between 1.9-2.3 mm were cut to a length of approximately 40 mm.


The in vitro release rate of 4′-ethynyl-2-fluoro-2′-deoxyadenosine was determined by incubating the implants segments, approximately 1 cm in length, in a glass vial containing phosphate buffered saline (PBS) at 37° C., and 50 rpm shaking in an Innova 42 incubator. The volume of PBS was sufficient to maintain sink conditions. Sink conditions are defined as the drug concentration maintained at or below ⅓ of the maximum solubility (drug concentration <0.45 mg/mL in PBS at 37° C.). Samples were removed (0.5 mL) at selected time points, and centrifuged at 20,800×g for 8 min. The supernatant was removed (0.4 mL), diluted 4-fold, and vortexed. Samples were assayed by HPLC (Agilent 1100 series). Analysis of a 6 μL volume was performed at 240 nm with a Supelco Ascentis® Express C18 column (100×4.6 mm, 2.7 μm). The mobile phase was 0.1% H3PO4 and 50:50 ACN:MeOH (83:17 v/v) at a flow rate of 1.5 mL/min (40° C.).


To determine degradation of 4′-ethynyl-2-fluoro-2′-deoxyadenosine by HPLC, a 6 μL volume was injected onto an Agilent Zorbax SB-Aq column (150×4.6 mm, 3.5 μm). The mobile phase was 0.1% H3PO4 and 50:50 ACN:MeOH with a flow rate of 1.0 mL/min (40° C.). The mobile phase gradient is shown in the table below.









TABLE 1







4′-ethynyl-2-fluoro-2′-deoxyadenosine chemical stability


HPLC method details










Time (min)
0.1% H3PO4













0.0
98



10.0
95



12.0
90



14.0
10



14.1
98



20.0
98









All samples were calibrated to 0.5 mg/mL standard solutions of 4′-ethynyl-2-fluoro-2′-deoxyadenosine in 50:50 MeOH:H2O.









TABLE 2







4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) in vitro release from 40 wt %, 50 wt %,


60 wt %, and 80 wt % 4′-ethynyl-2-fluoro-2′-deoxyadenosine in poly(DL-lactide)


(PLA) implants at sink conditions; reported as a % release from total


[avg = average and std dev = standard deviation]












40 wt % EFdA +
50 wt % EFdA +
60 wt % EFdA +
80 wt % EFdA +



60 wt % PLA
50 wt % PLA
40 wt % PLA
20 wt % PLA















Time

Std.

Std.

Std.

Std.


(days)
Avg (%)
Dev.
Avg (%)
Dev.
Avg (%)
Dev.
Avg (%)
Dev.


















3
4
1
12
2
24
4
39
3


7
9
2
26
3
48
2
69
13


14
16
4
42
2
68.7
0.5
91
3


21
23
6
56
2
85
2
105
3


27
27
6
63
2
89
1




35
33
7
72
2
92
1




42
37
8
78
1
91
1




49
42
8
83
1
90
1




63
54
9
94.8
0.3
95
1




101
80
10








122
86
8








136
92
8
















TABLE 3







4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) in vitro


release from 40 wt % and 60 wt % 4′-ethynyl-2-fluoro-


2′-deoxyadenosine in poly(caprolactone) (PCL) implants


at sink conditions; reported as a % release from total


[avg = average and std dev = standard deviation]










40 wt % EFdA +
60 wt % EFdA +



60 wt % PCL
40 wt % PCL











Time
Avg
Std.
Avg
Std.


(days)
(%)
Dev.
(%)
Dev.














3
10
1
26
3


7
15
1
45
5


14


58
2


15
21
2




21


69
2


23
26
2




27


75
3


35
31
2
82
3


42


86
3


49


89
2


63


99
1


67
47
9




73
48
4




86
52
5




101
55
6




157
74
7




178
74
7




192
75
12




219
81
7




231
82
7









Example 2
Implant Drug Delivery Systems with Durations of Action of 1 Week to 3 Years

Implantable devices were prepared using an extrusion process. The first step involved mixing the dry, micronized powders of the active compound (4′-ethynyl-2-fluoro-2′-deoxyadenosine) and the cryomilled PCL (Evonik RESOMER® Select 100 CL 7.5E) or PLA (Evonik RESOMER® Select 100 DL 8A) using a Turbula T2F mixer. Drug and polymer blends were prepared at 40-80 wt % drug load. The drug and polymer blends were hot-melt extruded using a twin screw extruder through a 3 mm diameter die and pulled to a diameter of approximately 1.9-2.3 mm. The screws contained predominately conveying elements with a single 90° mixing section. The 1st zone where the drug-polymer blends were introduced was water-cooled and maintained at room temperature. The temperature for zones 2-4 was 100° C. for PLA and 75° C. for PCL. Extruded fibers with diameters between 1.9-2.3 mm were cut to the appropriate length to achieve the desired amount of drug per implant for in vivo studies.


All animal studies were conducted following protocols in accordance with the Institutional Animal Care and Use Committee (IACUC) at NIRC and Merck & Co., Inc., Kenilworth, N.J., U.S.A. which adhere to the regulations outlined in the USDA Animal Welfare Act. For each implantation, a Wistar Han rat was anesthetized using isoflurane to effect prior to subcutaneous dose administrations. Using a trocar needle, the solid formulation (˜2 mm in diameter and of varying lengths based on the body weight of the individual animal to achieve the dose appropriate for each group) was placed in the scapular region. Four animals (2 males and 2 females) were used for each formulation. Animals were monitored until recovered. At indicated time points, samples of blood were obtained from anesthetized animals (using isoflurane) and processed to plasma for determination of 4′-ethynyl-2-fluoro-2′-deoxyadenosine levels.









TABLE 4







4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) concentration in blood plasma from 40 wt %, 50 wt %,


60 wt % and 80 wt % 4′-ethynyl-2-fluoro-2′-deoxyadenosine in poly(DL-lactide) (PLA) implants


(n/a = not applicable, insufficient data for statistical analysis).












40 wt % EFdA +
50 wt % EFdA +
60 wt % EFdA +
80 wt % EFdA +



60 wt % PLA
50 wt % PLA
40 wt % PLA
20 wt % PLA

















Std.

Std.

Std.

Std.


Time
Average
Dev.
Average
Dev.
Average
Dev.
Average
Dev.


(days)
(nM)
(nM)
(nM)
(nM)
(nM)
(nM)
(nM)
(nM)


















0.04
323
15
614
175
1552
694
5055
459


0.08
189
9
552
171
1458
631
5978
988


0.17
73
3
372
124
1099
381
5243
1028


0.29
46
2








1
25
5
224
80
742
253
2095
601


2
17
2
251
90
802
191
1750
317


3
17
2
227
80
698
167
1478
190


4
19
3
230
77
671
133
1403
275


7
19
2
228
81
588
113
1398
196


10
21
1
192
58
491
87
874
207


14
22
2
188
62
445
23
353
109


17
22
2
192
59
403
55
216
54


21
19
2








22


177
49
363
60
75
48


24
19
2








25


157
35
309
63
52
15


28
20
2
155
39
229
60
56
n/a


31
17
2
152
42
148
91
48
n/a


35
16
2
150
41
92
47
19
n/a


38


113
33
49





39
18
2








42


115
25






44
17
4








45


123
16






51
15
2








53


108
16






58
13
2








60


70
9






64


62
42






65
14
1








72
13
2








74


53
44






78


48
31






79
13
2








85


67
n/a






86
11
1








92


56
n/a






93
13
3








100
11
2








106


30
n/a






107
10
1








113


7
n/a






114
9
2








121
7
2








128
7
2








135
7
2








142
4
3








156
5
2








163
4
1








170
3
1








177
4
n/a








184
2
1








191
3
n/a








212
23
19








219
83
77








232
6
n/a








239
4
n/a








246
3
n/a
















TABLE 5







4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) in vivo release rates and fraction aborbed from 40 wt %,


50 wt %, 60 wt % and 80 wt % 4′-ethynyl-2-fluoro-2′-deoxyadenosine in poly(DL-actide) (PLA) implants


(normalized to a 40 mm long and 2 mm diameter implant)
















Release
Fraction
Release
Fraction
Release
Fraction
Release
Fraction



Rate at
absorbed
Rate at
absorbed
Rate at
absorbed
Rate at
absorbed



day 3
at day 3
day 30
at day 30
day 60
at day 60
day 127
at day 127


Sample
(mg/day)
(%)
(mg/day)
(%)
(mg/day)
(%)
(mg/day)
(%)


















40 wt % EFdA +
0.15
1.3
0.16
8.6
0.12
15.0
0.06
25.0


60 wt % PLA










50 wt % EFdA +
0.92
3.5
0.62
26.5
0.28
42.4
n/a
42.4


50 wt % PLA










60 wt % EFdA +
2.74
9.4
0.69
53
n/a
53
n/a
53


40 wt % PLA










80 wt % EFdA +
6.12
21.7
0.21
60.7
n/a
60.7
n/a
60.7


20 wt % PLA


(day 25)





















TABLE 6







4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) concentration


in blood plasma from 40 wt % and 60 wt % 4′-ethynyl-2-fluoro-


2′-deoxyadenosine in poly(caprolactone) (PCL) implants


(n/a = not applicable, insufficient data for statistical analysis).










40 wt % EFdA +
60 wt % EFdA +



60 wt % PCL
40 wt % PCL











Time
Average
Std. Dev.
Average
Std. Dev.


(days)
(nM)
(nM)
(nM)
(nM)














0.04
158
57
5353
911


0.08
130
30
5635
899


0.17
85
26
4230
996


0.29
55
14




1
33
7
931
299


2
27
4
664
273


3
21
2
455
146


4
20
3
359
90


7
14
1
205
37


10
12
2
127
21


14
11
2
81
4


17
10
2
74
5


21
10
1




22


63
8


24
9
1




25


53
6


28
9
2
49
4


31
8
1
47
4


35
8
2
45
3


38


34
3


39
6
1




42


34
6


44
6
0




45


32
2


51
5
0




53


34
2


58
4
1




60


22
3


64


26
4


65
4
0




72
4
0




74


24
3


78


19
4


79
4
1




85


17
3


86
3
0




92


18
3


93
3
1




100
3
1




106


13
2


107
2
1




113


11
2


114
2
0




120


14
3


121
2
0




127


13
1


128
2
0




134


11
1


135
2
0




141


10
1


142
2
0




148


11
2


155


9
1


156
1
1




162


8
1


163
1
1




169


9
2


170
2
1




176


9
2


177
1
0




183


7
1


184
1
0




190


7
2


191
1
1




197


7
1


204


7
2


211


7
1


212
1
0




218


7
1


219
1
0




225


7
2


232
1
0
7
1


239
1
0
5.8
0.2


246
1
1
7
1


253
1
0
7
2


260


7
1


267
1
1




269


7
2


276


6
1


274
1
0




281
1
1




283


6
1


288
1
0




290


6
1


295
2
n/a




297


6
1


302
1
n/a




304


7
1


309
1
n/a




311


7
1


316
1
n/a




318


8
2


323
1
n/a




325


9
1


330
1
n/a




332


6
1


337
1
n/a




339


7
1


344
1
n/a




346


7
1


351
1
n/a




353


7
1


360


7
1


367


8
1


374


7
2


381


7
1


388


7
1


395


7
1


402


7
1


409


6
1


416


5.2
0.3


423


5
1


429


5
1


437


4
1


444


5
1


451


5
1


458


5
1


465


4
1


472


4
1


479


4
1


486


3.3
0.4


493


3.6
0.4


500


4
1


507


3.6
0.3


514


3.2
0.5


521


3
1


528


4
2


535


3
1
















TABLE 7







4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) in vivo release rates and fraction absorbed from


40% and 60% 4′-ethynyl-2-fluoro-2′-deoxyadenosine in poly(caprolactone) (PCL) implants


(normalized to a 40 mm long and 2 mm diameter implant)
















Release
Fraction
Release
Fraction
Release
Fraction
Release
Fraction



Rate at
absorbed
Rate at
absorbed
Rate at
absorbed
Rate at
absorbed



day 3
at day 3
day 30
at day 30
day 60
at day 60
day 127
at day 127


Sample
(mg/day)
(%)
(mg/day)
(%)
(mg/day)
(%)
(mg/day)
(%)


















40 wt %
0.58
5.3
0.23
20.1
0.12
28.9
0.05
38.6


EFdA +










60 wt %










PCL










60 wt %
1.69
15.6
0.19
26.9
0.09
30.8
0.05
35.1


EFdA +










40 wt %










PCL









Example 3
Preparation and In Vivo Studies of Implant Drug Delivery Systems Containing 45 Wt % 4′-Ethynyl-2-Fluoro-2′-Deoxyadenosine

Implantable devices were prepared using an extrusion process. The first step involved mixing the dry, micronized powders of the active compound (4′-ethynyl-2-fluoro-2′-deoxyadenosine) and the cryomilled PCL (Evonik RESOMER® Select 100 CL 7.5E) or PLA (Evonik RESOMER® Select 100 DL 8A) using a Turbula T2F mixer. Drug and polymer blends were prepared at 40-80 wt % drug load. The drug and polymer blends were hot-melt extruded using a twin screw extruder through a 3 mm diameter die and pulled to a diameter of approximately 1.9-2.3 mm. The screws contained predominately conveying elements with a single 90° mixing section. The 1st zone where the drug-polymer blends were introduced was water-cooled and maintained at room temperature. The temperature for zones 2-4 was 100° C. for PLA and 75° C. for PCL. Extruded fibers with diameters between 1.9-2.3 mm were cut to the appropriate length to achieve the desired amount of drug per implant for in vivo studies.


All animal studies were conducted following protocols in accordance with the Institutional Animal Care and Use Committee (IACUC) at NIRC and Merck, which adhere to the regulations outlined in the USDA Animal Welfare Act. For each implantation, a Rhesus monkey was sedated with Ketamine HCl (100 mg/mL) prior to subcutaneous implant administrations. Using an injector device, the implant was placed subcutaneously in the interscapular region. Either two or three animals were used per group (n=2 for 40 wt % EFdA+60 wt % PLA, n=3 for 50 wt % EFdA+50 wt % PLA, n=2 for 50 wt % EFdA+50 wt % PCL). Animals were monitored until recovered. At indicated time points, samples of blood were obtained and processed to plasma for determination of 4′-ethynyl-2-fluoro-2′-deoxyadenosine levels.









TABLE 8







4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) concentration


in blood plasma from 40 wt % 4′-ethynyl-2-fluoro-2′-


deoxyadenosine in poly(DL-lactide) (PLA) implants and 50 wt %


4′-ethynyl-2-fluoro-2′-deoxyadenosine in PLA implants










40 wt % EFdA +
50 wt % EFdA +



60 wt % PLA
50 wt % EVA











Time
Avg
std. dev.
Avg
std. dev.


(days)
(nM)
(nM)
(nM)
(nM)














0.0833
98
2
67
34


0.1667
69
5
55
26


0.25
56
5
51
21


1
53.6
0.4
62
23


2
42
4
44
15


9
26
5
37
13


16
22
6
35
8


30
16
1
25
5


44
7
4
17
4


58
5
4
11
3


72
5
3
7
2


86
4
3
4
1


100
4
3
1.2
0.2


114
3
3
n/a
n/a
















TABLE 9







4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) in vivo


release rates from 40 wt % and 50 wt % 4′-ethynyl-2-fluoro-


2′-deoxyadenosine in poly(DL-lactide) (PLA) implants











Release rate
Release rate
Release rate



at day30
at day 60
at day 114


Sample
(mg/day)
(mg/day)
(mg/day)





40 wt % EFdA +
0.40-0.74
0.14-0.26
0.07-0.18


60 wt % PLA





50 wt % EFdA +
0.69-1.29
0.30-0.55
n/a


50 wt % PLA
















TABLE 10







4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) concentration


in blood plasma from 50 wt % 4′-ethynyl-2-fluoro-2′-


deoxyadenosine in poly(caprolactone) (PCL) implants









50 wt % EFdA +



50 wt % PCL









Time
Avg
std. dev.


(days)
(nM)
(nM)












0.0833
37
2


0.1667
33
7


0.25
27
2


1
37
11


2
21
4


9
12
3


16
9
1


30
6
1


44
5
2


58
5
1


72
4
1


86
3.1
0.3


100
2.6
0.1


114
2.5
0.1


128
2.2
0.2


142
1.7
0.0


156
1.5
0.2


170
1.4
0.2


184
1.4
0.2
















TABLE 11







4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) in vivo


release rates from 50 wt % 4′-ethynyl-2-fluoro-2′-


deoxyadenosine in poly(caprolactone) (PCL) implants











Release rate
Release rate
Release rate



at day 30
at day 60
at day 114


Sample
(mg/day)
(mg/day)
(mg/day)





50 wt % EFdA +
0.22-0.47
0.18-0.38
0.09-0.19


50 wt % PCL








Claims
  • 1. An implant drug delivery system comprising a biocompatible bioerodible polymer and 4′-ethynyl-2-fluoro-2′-deoxyadenosine wherein said implant drug delivery system is implanted subdermally and 4′-ethynyl-2-fluoro-2′-deoxyadenosine is continually released in vivo at a rate resulting in a plasma concentration between 0.02 ng/mL and 300.0 ng/mL.
  • 2. The implant drug delivery system of claim 1 wherein the 4′-ethynyl-2-fluoro-2′-deoxyadenosine plasma concentration is between 0.02 ng/mL and 30.0 ng/mL.
  • 3. The implant drug delivery system of claim 2 wherein the 4′-ethynyl-2-fluoro-2′-deoxyadenosine plasma concentration is between 0.02 ng/mL and 8.0 ng/mL.
  • 4. The implant drug delivery system of claim 1 wherein the biocompatible bioerodible polymer is selected from the group consisting of poly(DL-lactide), poly(caprolactone), poly(lactide-co-glycolide), poly(lactide), poly(glycolide), poly(ortho esters), poly(dioxanone), poly(alkylcyanoacrylates) and combinations thereof.
  • 5. The implant drug delivery system of claim 4 wherein the biocompatible bioerodible polymer is poly(DL-lactide).
  • 6. The implant drug delivery system of claim 4 wherein the biocompatible bioerodible polymer is poly(caprolactone).
  • 7. The implant drug delivery system of claim 1, further comprising a diffusional barrier.
  • 8. The implant drug delivery system of claim 7, wherein the diffusional barrier is selected from the group consisting of poly(lactide-co-glycolide), poly(lactide), poly(glycolide), poly(caprolactone), poly(ortho esters), poly(dioxanone), poly(alkylcyanoacrylates) and combinations thereof.
  • 9. The implant drug delivery system of claim 8, wherein the diffusional barrier comprises 4′-ethynyl-2-fluoro-2′-deoxyadenosine.
  • 10. The implant drug delivery system of claim 1 wherein the 4′-ethynyl-2-fluoro-2′-deoxyadenosine is dispersed or dissolved in the biocompatible bioerodible polymer.
  • 11. The implant drug delivery system of claim 1 wherein 4′-ethynyl-2-fluoro-2′-deoxyadenosine is present in the biocompatible bioerodible polymer at about 0.10% and 80% by weight of drug loading.
  • 12. The implant drug delivery system of claim 11 wherein 4′-ethynyl-2-fluoro-2′-deoxyadenosine is present in the biocompatible bioerodible polymer at 30% and 65% by weight of drug loading.
  • 13. The implant drug delivery system of claim 11 wherein 4′-ethynyl-2-fluoro-2′-deoxyadenosine is present in the biocompatible bioerodible polymer at 40% and 45% by weight of drug loading.
  • 14. The implant drug delivery system of claim 1 comprising between 1% and 20% by weight of a radiopaque material.
  • 15. The implant drug delivery system of claim 1 wherein the 4′-ethynyl-2-fluoro-2′-deoxyadenosine is released at therapeutic concentrations for a duration from between three months and thirty-six months.
  • 16. The implant drug delivery system of claim 1 wherein the 4′-ethynyl-2-fluoro-2′-deoxyadenosine is released at prophylactic concentrations for a duration from between three months and thirty-six months.
  • 17. A method of treating or preventing HIV infection with an implant drug delivery system according to claim 1.
  • 18. The implant drug delivery system of claim 1 wherein one or more implants can be used to achieve the desired therapeutic dose for durations up to 1 year.
  • 19. The implant drug delivery system of claim 1 wherein one or more implants can be used to achieve the desired therapeutic dose for durations up to 2 years.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of application Ser. No. 16/310,511, filed Dec. 17, 2018, which a U.S. National Phase application under 35 U.S.C. § 371 of PCT Application No. PCT/US2017/037583 filed Jun. 15, 2017, which claims priority from U.S. Ser. No. 62/352,208 filed Jun. 20, 2016.

Provisional Applications (1)
Number Date Country
62352208 Jun 2016 US
Continuations (1)
Number Date Country
Parent 16310511 Dec 2018 US
Child 17193493 US