Drug delivery treatment device

Information

  • Patent Grant
  • 9084662
  • Patent Number
    9,084,662
  • Date Filed
    Wednesday, January 17, 2007
    17 years ago
  • Date Issued
    Tuesday, July 21, 2015
    9 years ago
Abstract
Disclosed are devices and methods for treatment of eye disease. The suprachoroidal space is used as a conduit within which to place a drug delivery device. One such drug delivery device may be a tube, wicking element, bioabsorbable polymer structure, or other configuration of drug delivery substrate. The delivery device may include a port on the proximal end to assist in repeat injection, and may include a reservoir to either collect flow from the aqueous to concentrate it along the length of the device, or act as a repository for injected agent.
Description
BACKGROUND

This disclosure relates generally to methods and devices for use in treating various ocular diseases. Glaucoma is caused by a number of different eye diseases which can produce increased intraocular pressure (IOP) in the eye. The increased pressure is often caused by a backup of aqueous humour within the eye. Over time, the increased pressure can cause damage to the optic nerve, which can lead to blindness.


One way to treat glaucoma is to implant a drainage device, or shunt, in the eye. The drainage device functions to drain aqueous humour from the anterior chamber and thereby reduce the intraocular pressure. The drainage device is typically implanted using to an invasive surgical procedure. Pursuant to one such procedure, a flap is surgically formed in the sclera. The flap is folded back to form a small cavity and a shunt is inserted into the eye through the flap. Such a procedure can be quite traumatic for the patient.


The following references describe various devices and procedures for treating glaucoma: U.S. Pat. No. 6,827,700 to Lynch, U.S. Pat. No. 6,666,841 to Bergheim, U.S. Pat. No. 6,508,779 to Suson, U.S. Pat. No. 6,544,208 to Ethier, U.S. Pat. No. 5,601,094 to Reiss, U.S. Pat. No. 6,102,045 to Nordquist, United States Patent Application 2002/0156413 to Williams, 2002/0143284 to Tu, 2003/0236483 to Ren, 2002/0193725 to Odrich, 2002/0165478 to Gharib, 2002/0133168 to Smedley, 2005/0107734, 2004/0260228 to Lynch, 2004/0102729 to Haffner, 2004/0015140 to Sheilds, 2004/0254521 to Simon, 2004/0225250 to Yablonski. The aforementioned references are all incorporated herein by reference in their entireties.


Current devices and procedures for treating glaucoma have disadvantages and in some cases only moderate success rates. The procedures are very traumatic to the eye and also require highly accurate surgical skills, such as to properly place the drainage device in a proper location. In addition, the devices that drain fluid from the anterior chamber to a subconjunctival bleb beneath a scleral flap, are prone to infection, and can occlude and cease working. This can require re-operation to remove the device and place another one, or can result in further surgeries. In addition, for agents delivered via direct injection, other complications result, and numerous office visits are required to keep a therapeutic dose resident in the eye. In view of the foregoing, there is a need for improved devices and methods for the treatment of a variety of ocular diseases.


SUMMARY

Disclosed are devices and methods for treatment of eye disease such as glaucoma. Using the devices and introduction and placement techniques of the present invention, it is possible to place a device using the suprachoroidal space as a conduit within which to place a drug delivery device. One such drug delivery device may be a tube, wicking element, bioabsorbable polymer structure, or other configuration of drug delivery substrate. The delivery device may include a port on the proximal end to assist in repeat injection, and may include a reservoir at some point along the device to either collect flow from the aqueous to concentrate it along the length of the device, or act as a repository for injected agent.


In addition, the devices of the present invention may be used to augment and assist delivery of drugs to the back of the eye either through injection into a port of the device, or by directing therapeutic agents placed by drops into the eye, but direction the flow of the aqueous containing the drop, into the suprachoroidal space and beyond, to various locations toward the back of the eye.


Placement of a suprachoroidal implant can also assist in delivering drugs to various locations within the eye, including to the back of the eye.


Injections to the back of the eye to treat a wide variety of systemic and ocular conditions such as inflammation, infection, cancerous growth, may be prevented or treated using the drug delivery devices of the present invention. More specifically, ocular conditions such as glaucoma, proliferative vitreoretinopathy, diabetic retinopathy, dry and wet AMD, uveitis, keratitis, cytomegalovirus retinitis, cystoid macular edema, herpes simplex viral and adenoviral infections can be treated or prevented. In many cases, multiple injections are required, leading to degradation of the injection site, and numerous office visits, resulting in increased cost to the healthcare system as well as issues of compliance with patients.


In one aspect, there is disclosed a device for delivering an agent to the eye, comprising an elongate element adapted for at least partial placement in a suprachoroidal space of the eye, the elongate element having a proximal end and a distal end, wherein the proximal end is positioned at a first location of the eye and wherein the distal end extends to a location within a posterior segment of the eye, the elongate element adapted to deliver a drug into the eye.


In another aspect, there is disclosed a method of delivering drug into the eye, comprising: implanting an elongate element in the eye such that at least a portion of the elongate member is positioned within the suprachoroidal space of the eye, the elongate member adapted to deliver a drug into the eye; and inserting a drug into the elongate member such that the drug flows along the elongate member into the suprachoroidal space.


In another aspect, there is disclosed a method of delivering drug into the eye, comprising: forming an incision in the cornea of the eye; inserting an elongate member through the incision into the eye wherein the elongate member is adapted to transport a drug; passing the delivery device along a pathway through the scleral spur of the eye into the suprachoroidal space; and flowing drug along the delivery device into the suprachoroidal space.


In another aspect, there is disclosed a method of delivering drug into the eye, comprising: implanting an elongate element in the eye such that at least a portion of the elongate member is positioned within the suprachoroidal space of the eye, the elongate member adapted to deliver a drug into the eye; placing a drop of a treatment medium onto the surface of the eye; permitting the treatment medium to flow into the anterior chamber of the eye; and causing the treatment medium to flow into the elongate member such that the treatment medium flows along the elongate member into the suprachoroidal space.


Other features and advantages should be apparent from the following description of various embodiments, which illustrate, by way of example, the principles of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional, perspective view of a portion of the eye showing a drug delivery device positioned in the eye.



FIG. 2A shows an exemplary embodiment of the drug delivery device.



FIG. 2B shows another embodiment of the drug delivery device.



FIG. 2C shows another embodiment of the drug delivery device.



FIG. 2D shows another embodiment of the drug delivery device.



FIG. 2E shows another embodiment of the drug delivery device.



FIG. 2F shows another embodiment of the drug delivery device.



FIG. 3 shows the drug delivery device mounted on a delivery device during deployment of the device.



FIG. 4 shows various exemplary regions of the eye where a distal end of the drug delivery device can be located.



FIGS. 5A-5G show various exemplary regions of the eye where a proximal end of the drug delivery device can be located.





DETAILED DESCRIPTION


FIG. 1 is a cross-sectional, perspective view of a portion of the eye showing the anterior and posterior chambers of the eye. A drug delivery device is positioned inside the eye such that a distal end is located in a location of the eye to which one or more drugs are to be delivered. In an exemplary embodiment, the drug delivery device is positioned in the eye such that one or more drugs can be delivered to the suprachoroidal space. Embodiments of the drug delivery device with various structural configurations are described in detail below.


Using the devices and introduction and placement techniques of the present invention, it is possible to place a device that uses the suprachoroidal space as a conduit within which to place a drug delivery device such as the device described herein. One such drug delivery device may be a wicking element, bioabsorbable polymer structure, or other configuration of drug delivery substrate.



FIG. 1 shows an exemplary drug delivery device 2910 extending from a point of entry at the scleral spur, and extending to the back of the eye. At least a portion of the drug delivery device 2910 is positioned within and anchored within the suprachoroidal space and can have a profile that is configured to seal within the suprachoroidal space. Another portion of the drug delivery device 2910 is positioned in a different location of the eye.


One or more drug reservoir regions 2915 may be optionally formed within the suprachoroidal space for receipt of a drug. The drug reservoir region can be a space or volume within the suprachoroidal space into which a drug is inserted. A proximal end or proximal region 2918 of the drug delivery device 2910 can include a port that receives a drug for delivery into the suprachoroidal space, such as into the reservoir region 2915. With the body of the drug delivery device 2910 being anchored within the suprachoroidal space, the distal end and/or the proximal end of the device can be located at various locations relative to the eye to achieve a desired manner of drug delivery, as described below.


The drug delivery device 2910 can have a variety of structures. For example, as shown in FIG. 2A, the drug delivery device 2910 can be an elongate member with an internal lumen for drug delivery. As shown in FIG. 2B, the drug delivery device 2910 can include one or more retention features, such as prongs 2925, that anchor the drug delivery device in a fixed position within the eye. In another embodiment, shown in FIG. 2C, the drug delivery device 2910 is an elongate member with an internal lumen 2927 and an anchor member, such as a flange 2930, located at the proximal end of the drug delivery device 2910. An injection port 2932 communicates with the internal lumen 2927 for injection of a drug.



FIG. 2D shows another embodiment of a drug delivery device 2910 that comprises a wicking member without an internal lumen. The wicking member can be formed of a single strand of material or can be formed of a plurality of strands that are interconnected, such as in a twisted, braided, or woven fashion, and through or along which fluid can flow. The wicking member can be a tube that includes an internal lumen that is used to deliver the drug or therapeutic agent directly to the location of the distal end of the delivery device 2910. The wick member(s) do not necessarily include internal lumens, as flow through the wick member can occur via capillary action. In the case of a solid polymer wick, certain surface detents can provide flow lumens between the central body member and the tissue of the suprachoroidal space. The embodiment of FIG. 2D includes a proximal anchor member, such as a flange 2930.


Any of the embodiments of the drug delivery device can include anchoring or retention members, such as fenestrations 2912 on the distal end of the device 2910 in FIG. 2D. The fenestrations 2912 can be located at any location along the length of the device. Moreover, any of the embodiments can include one or more valve members that regulate fluid flow. The valve element can cause fluid to collect in a region of the device and then release the collected fluid such as upon a certain pressure threshold. In this manner, the a concentrated amount of drug can be delivered into the eye.



FIG. 2E shows the drug delivery device 2910 as a wicking member without a flange. With reference to FIG. 2F, the drug delivery device 2910 can include a proximal flange 2930 having an injection port that communicates with a drug reservoir 2940. The reservoir can be filled with a drug or other therapeutic agent such that the drug wicks along the length of the drug delivery device. The reservoir can be re-filled with the drug as needed. The flange 2930 can be positioned at the scleral spur when the device is implanted. The reservoir 2940 is positioned adjacent a leaching body 2940 for drug delivery. A reservoir 2940 can also be located at or near the distal end of the device 2910.


In an embodiment, the drug delivery device 2910 is adapted to deliver drops placed on the surface of the eye to suprachoroidal space. This is described further detail below with reference to FIG. 5E. The drug may be delivered to the back regions of the eye, such as regions rearward of the eye equator. One or more drops of a drug or therapeutic agent are placed on the surface of the eye where the drug mixes with the tear film. The tear film directs the drug into an entry port of the drug delivery device 2910. The entry port may be positioned, for example, within the anterior chamber. The drug then flow via the drug delivery device 2910 into the suprachoroidal space and potentially to the back regions of the eye. The drug may mix with aqueous humor as it flows into and along the drug delivery device 2910. In this manner, the drug delivery device 2910 is used to direct drops placed on the eye surface to the back of the eye such as to treat any of a variety of eye diseases.


In another embodiment, a punctal plug is used to deliver a drug to the tear film and into the anterior chamber where the drug intermingles with the aqueous humor. The drug delivery device 29210 then delivers the drug into the suprachoroidal space and possibly to back regions of the eye. Pursuant to such an embodiment, one or more punctal plugs are placed in the eye, such as in the corners of the eye. The punctal plugs can be placed in various regions of the eye, such as in the lower two puncta and/or in the upper puncta. One or more drops of a drug or therapeutic agent are then placed onto the eye such that the drug flows into the anterior chamber via the punctal plugs. The drug then flows into an entry port in the drug delivery device 2910 and flows into the suprachoroidal space via the drug delivery device 2910. International Patent Publication WO 06/014434 to Lazar describes exemplary devices and methods for drug delivery through punctal plugs. That publication is incorporated herein by reference in its entirety.


A wide variety of systemic and ocular conditions such as inflammation, infection, cancerous growth, may be prevented or treated using the drug delivery devices of the present invention. More specifically, ocular conditions such as glaucoma, proliferative vitreoretinopathy, diabetic retinopathy, uveitis, keratitis, cytomegalovirus retinitis, cystoid macular edema, herpes simplex viral and adenoviral infections can be treated or prevented.


Depending on the dose required, and the delivery profile of the agent delivered, it may be advantageous for the drug delivery device to extend from the initial dissection plane at the point of the scleral spur, within the suprachoroidal space to the posterior segment of the eye, or any location therebetween. The geometry of the drug delivery device may assist in the ability to prolong or control various dosing regimes. For example, a longer delivery device may equate to a longer dosing potential, and similarly a larger diameter device may assist with this also. Because the drug delivery device of the present invention completely fills the suprachoroidal space, a “washout” effect may be minimized, thereby also assisting in the dosing. In addition, it may be advantageous to employ a sealant, to seal any communication between the anterior chamber and the newly dissected suprachoroidal space once the drug delivery device is placed. Products such as Tisseal® (Baxter Healthcare, Irvine, Calif.), fibrin glues, or small amounts of cyanoacrylate may be used for this purpose.


Alternatively, if delivery of a therapeutic agent of the present invention is desired in the anterior chamber, or within the sclera, tribecular meshwork, choroid or other structures in proximity to the suprachoroidal space, the entry point at which the delivery device accesses the suprachoroidal space may be varied, such that the distal end of the drug delivery device may be placed in the suprachoroidal space as a means for anchoring the device, and the proximal end (end nearest the outside of the eye) may be placed at the desired delivery location.


With reference to FIG. 3, the drug delivery device 2910 can be mounted on an elongate delivery member 525 and can enter the suprachoroidal space at or near the scleral spur. In general, the drug delivery device is implanted using a delivery system by accessing the scleral spur to create a low profile dissection in the tissue plane between the choroid and the sclera. An incision can be formed in the cornea and the drug delivery device is inserted through the incision. The drug delivery device can pass along a pathway through the scleral spur of the eye into the suprachoroidal space. The drug delivery device is then secured in the eye so that it provides communication between a drug delivery inlet and the suprachoroidal space.


The drug delivery device 2910 can be positioned within the suprachoroidal space or can have a length such that the distal end of the drug delivery device is positioned at any of a variety of points along the length of the suprachoroidal space, such as any point from the scleral spur to the back regions of the eye. FIG. 4 shows various regions, D1-D6 where the distal end of the drug delivery device can be located. It should be appreciated that the regions are for purpose of example and do not limit where the distal end can be positioned.


The proximal end of the drug delivery device 2910 can be positioned at various locations relative to the eye, as shown in FIGS. 5A-5F. In FIG. 5A, the proximal end of the drug delivery device 2910 is positioned at a location P1, which is within the cornea C. In FIG. 5B, the proximal end is positioned at a location P2, which is within the sclera S. In FIG. 5C, the proximal end is positioned at a location P3, which is within the conjunctiva C. In FIG. 5D, the proximal end is positioned at a location P4, which is within posterior chamber PC. In FIG. 5E, the proximal end is positioned at a location P5, which is within the anterior chamber AC. In FIG. 5F, the proximal end is positioned at a location P6, which is outside of the eye. Other locations for the proximal end of the drug delivery device are also possible. Moreover, the locations P1-P4 are merely exemplary and are intended to represent regions of the eye rather than exact locations. The drug delivery device can be removed from the eye after drug delivery is complete. The drug delivery device can also be bioabsorbable so that it does not need to be removed.


With reference to FIG. 5G, a container, such as a drop bottle 2970, is adapted to deliver one or more drops 2972 of a drug or therapeutic agent onto the surface of the eye. The tear film directs the drug into the anterior chamber, as represented schematically by the arrows 2976 in FIG. 5G. The drug then flows into the entry port 2960 of the drug delivery device 2910, which guides the drug into the suprachoroidal space.


With respect to any of the embodiments of FIG. 5A-5G, the proximal end of the drug delivery device 2910 can include a port 2960 that is adapted to receive a drug. The port 2960 can have various structural configurations and shapes. For example, the port 2960 can be funnel-shaped, flanged, or widened to facilitate entry of the drug into the delivery device. The port 2960 can also be made of a material that is adapted to absorb or otherwise attract the drug.


The following classes of drugs could be delivered using the devices of the present invention: anesthetics, analgesics, cell transport/mobility impending agents such as colchicine, vincristine, cytochalasin B and related compounds; antiglaucoma drugs including beta-blockers such as timolol, betaxolol, atenolol, and prostaglandin analogues such as bimatoprost, travoprost, latanoprost etc; carbonic anhydrase inhibitors such as acetazolamide, methazolamide, dichlorphenamide, diamox; and neuroprotectants such as nimodipine and related compounds. Additional examples include antibiotics such as tetracycline, chlortetracycline, bacitracin, neomycin, polymyxin, gramicidin, oxytetracycline, chloramphenicol, gentamycin, and erythromycin; antibacterials such as sulfonamides, sulfacetamide, sulfamethizole and sulfisoxazole; anti-fungal agents such as fluconazole, nitrofurazone, amphotericine B, ketoconazole, and related compounds; anti-viral agents such as trifluorothymidine, acyclovir, ganciclovir, DDI, AZT, foscamet, vidarabine, trifluorouridine, idoxuridine, ribavirin, protease inhibitors and anti-cytomegalovirus agents; antiallergenics such as methapyriline; chlorpheniramine, pyrilamine and prophenpyridamine; anti-inflammatories such as hydrocortisone, dexamethasone, fluocinolone, prednisone, prednisolone, methylprednisolone, fluorometholone, betamethasone and triamcinolone; decongestants such as phenylephrine, naphazoline, and tetrahydrazoline; miotics and anti-cholinesterases such as pilocarpine, carbachol, di-isopropyl fluorophosphate, phospholine iodine, and demecarium bromide; mydriatics such as atropine sulfate, cyclopentolate, homatropine, scopolamine, tropicamide, eucatropine; sympathomimetics such as epinephrine and vasoconstrictors and vasodilators; Ranibizumab, Bevacizamab, and Triamcinolone.


Non-steroidal anti-inflammatories (NSAIDs) may also be delivered, such as cyclooxygenase-1 (COX-1) inhibitors (e.g., acetylsalicylic acid, for example ASPIRIN® from Bayer AG, Leverkusen, Germany; ibuprofen, for example ADVIL® from Wyeth, Collegeville, Pa.; indomethacin; mefenamic acid), COX-2 inhibitors (CELEBREX® from Pharmacia Corp., Peapack, N.J.; COX-1 inhibitors), including a prodrug Nepafenac®; immunosuppressive agents, for example Sirolimus (RAPAMUNE®, from Wyeth, Collegeville, Pa.), or matrix metalloproteinase (MMP) inhibitors (e.g., tetracycline and tetracycline derivatives) that act early within the pathways of an inflammatory response. Anticlotting agents such as heparin, antifibrinogen, fibrinolysin, anti clotting activase, etc., can also be delivered.


Antidiabetic agents that may be delivered using the present devices include acetohexamide, chlorpropamide, glipizide, glyburide, tolazamide, tolbutamide, insulin, aldose reductase inhibitors, etc. Some examples of anti-cancer agents include 5-fluorouracil, adriamycin, asparaginase, azacitidine, azathioprine, bleomycin, busulfan, carboplatin, carmustine, chlorambucil, cisplatin, cyclophosphamide, cyclosporine, cytarabine, dacarbazine, dactinomycin, daunorubicin, doxorubicin, estramustine, etoposide, etretinate, filgrastin, floxuridine, fludarabine, fluorouracil, fluoxymesterone, flutamide, goserelin, hydroxyurea, ifosfamide, leuprolide, levamisole, lomustine, nitrogen mustard, melphalan, mercaptopurine, methotrexate, mitomycin, mitotane, pentostatin, pipobroman, plicamycin, procarbazine, sargramostin, streptozocin, tamoxifen, taxol, teniposide, thioguanine, uracil mustard, vinblastine, vincristine and vindesine.


Hormones, peptides, nucleic acids, saccharides, lipids, glycolipids, glycoproteins, and other macromolecules can be delivered using the present devices. Examples include: endocrine hormones such as pituitary, insulin, insulin-related growth factor, thyroid, growth hormones; heat shock proteins; immunological response modifiers such as muramyl dipeptide, cyclosporins, interferons (including α, β, and γ interferons), interleukin-2, cytokines, FK506 (an epoxy-pyrido-oxaazcyclotricosine-tetrone, also known as Tacrolimus), tumor necrosis factor, pentostatin, thymopentin, transforming factor beta2, erythropoetin; antineogenesis proteins (e.g., anit VEGF, Interfurons), among others and anticlotting agents including anticlotting activase. Further examples of macromolecules that can be delivered include monoclonal antibodies, brain nerve growth factor (BNGF), celiary nerve growth factor (CNGF), vascular endothelial growth factor (VEGF), and monoclonal antibodies directed against such growth factors. Additional examples of immunomodulators include tumor necrosis factor inhibitors such as thalidomide.


In addition, nucleic acids can also be delivered wherein the nucleic acid may be expressed to produce a protein that may have a variety of pharmacological, physiological or immunological activities. Thus, the above list of drugs is not meant to be exhaustive. A wide variety of drugs or agents may be used in the present invention, without restriction on molecular weight, etc.


Additional examples of beneficial drugs that may be employed in the present invention and the specific conditions to be treated or prevented are disclosed in Remington, supra; The Pharmacological Basis of Therapeutics, by Goodman and Gilman, 19th edition, published by the MacMillan Company, London; and The Merck Index, 13th Edition, 1998, published by Merck & Co., Rahway, N.J., and U.S. Pat. No. 6,331,313 to Wong, which is previously expressly incorporated herein by reference, including the above text.


Although embodiments of various methods and devices are described herein in detail with reference to certain versions, it should be appreciated that other versions, embodiments, methods of use, and combinations thereof are also possible. Therefore the spirit and scope of the appended claims should not be limited to the description of the embodiments contained herein.

Claims
  • 1. A method of delivering drug into the eye, comprising: implanting an elongate member in an eye by inserting the elongate member through the cornea and through the anterior chamber, wherein the elongate member comprises a elongate member having a tubular first end, a second end, and an internal lumen with a first opening at the first end and a second opening adjacent the second end, and wherein the elongate member is implanted in the eye such that the first end is in the anterior chamber, the second end is positioned in communication with a suprachoroidal space of the eye, and at least a portion of the elongate member between the first end and the second end is positioned between the sclera and a ciliary body of the eye, the elongate member adapted to deliver a drug into the eye;placing a treatment medium onto an outer surface of the eye;permitting the treatment medium to flow into an anterior chamber of the eye; andcausing the treatment medium to flow into the internal lumen of the elongate member such that the treatment medium flows along the internal lumen of the elongate member into the suprachoroidal space.
  • 2. A method as in claim 1, wherein the treatment medium flows into the anterior chamber via tear film.
  • 3. A method as in claim 1, wherein the treatment medium flows into the anterior chamber via a punctal plug.
  • 4. A method as in claim 1, wherein the treatment medium mixes with aqueous humor as the treatment medium flows into the anterior chamber.
  • 5. A method as in claim 1, wherein the elongate member is implanted in the eye such that the second end is positioned in an anterior portion of the eye.
  • 6. A method as in claim 1, wherein the elongate member is implanted in the eye such that the second end is positioned between a sclera and a choroid of the eye.
  • 7. A method as in claim 1, wherein the elongate member is implanted in the eye such that the second end is positioned between a sclera and a ciliary body of the eye.
  • 8. A method as in claim 1, wherein placing a treatment medium onto an outer surface of the eye comprises placing a drop of treatment medium onto an outer surface of the eye.
  • 9. A method as in claim 1, wherein the elongate member is implanted in the eye such that the elongate member does not traverse the retina.
  • 10. A method as in claim 1, wherein the elongate member is implanted in the eye such that the elongate member is positioned adjacent a scleral spur of the eye.
  • 11. A method as in claim 1, wherein the elongate member is implanted in the eye such that no portion of the elongate member between the first end and the second end is positioned inside the sclera.
RELATED APPLICATIONS

Benefit of priority under 35 U.S.C. §119(e) is claimed to U.S. Provisional Application Ser. No. 60/759,835, filed Jan. 17, 2006, entitled “GLAUCOMA TREATMENT DEVICE;” to U.S. Provisional Application Ser. No. 60/783,632, filed Mar. 17, 2006, entitled “GLAUCOMA TREATMENT DEVICE”; and to U.S. Provisional Application Ser. No. 60/824,552, filed Sep. 5, 2006, entitled “GLAUCOMA TREATMENT DEVICE.” The subject matter of each of the above-noted provisional applications and international applications is incorporated by reference in its entirety by reference thereto.

US Referenced Citations (295)
Number Name Date Kind
3767759 Wichterle Oct 1973 A
3788327 Donowitz et al. Jan 1974 A
3915172 Wichterle et al. Oct 1975 A
4037604 Newkirk Jul 1977 A
4402681 Haas et al. Sep 1983 A
4457757 Molteno Jul 1984 A
4521210 Wong Jun 1985 A
4554918 White Nov 1985 A
4604087 Joseph Aug 1986 A
4634418 Binder Jan 1987 A
4722724 Schocket Feb 1988 A
4750901 Molteno Jun 1988 A
4782820 Woods Nov 1988 A
4787885 Binder Nov 1988 A
4826478 Schocket May 1989 A
4846172 Berlin Jul 1989 A
4863457 Lee Sep 1989 A
4886488 White Dec 1989 A
4900300 Lee Feb 1990 A
4932966 Christie et al. Jun 1990 A
4946436 Smith Aug 1990 A
4957505 McDonald Sep 1990 A
4968296 Ritch et al. Nov 1990 A
5041081 Odrich Aug 1991 A
5071408 Ahmed Dec 1991 A
5073163 Lippman Dec 1991 A
5092837 Ritch et al. Mar 1992 A
5127901 Odrich Jul 1992 A
5171213 Price, Jr. Dec 1992 A
5178604 Baerveldt et al. Jan 1993 A
5180362 Worst Jan 1993 A
5300020 L'Esperance, Jr. Apr 1994 A
5338291 Speckman et al. Aug 1994 A
5342370 Simon et al. Aug 1994 A
5346464 Camras Sep 1994 A
5370607 Memmen Dec 1994 A
5372577 Ungerleider Dec 1994 A
5397300 Baerveldt et al. Mar 1995 A
5433701 Rubinstein Jul 1995 A
5443505 Wong et al. Aug 1995 A
5454746 Guegan et al. Oct 1995 A
5476445 Baerveldt et al. Dec 1995 A
5558629 Baerveldt et al. Sep 1996 A
5558630 Fisher Sep 1996 A
5569197 Helmus et al. Oct 1996 A
5601094 Reiss Feb 1997 A
5626558 Suson May 1997 A
5626559 Solomon May 1997 A
5651782 Simon et al. Jul 1997 A
5676944 Alvarado et al. Oct 1997 A
5702414 Richter et al. Dec 1997 A
5704907 Nordquist et al. Jan 1998 A
5713844 Peyman Feb 1998 A
5741292 Mendius Apr 1998 A
5743868 Brown et al. Apr 1998 A
5752928 de Roulhac et al. May 1998 A
5807302 Wandel Sep 1998 A
5868697 Richter et al. Feb 1999 A
5882327 Jacob Mar 1999 A
5893837 Eagles et al. Apr 1999 A
5968058 Richter et al. Oct 1999 A
6007510 Nigam Dec 1999 A
6007511 Prywes Dec 1999 A
6019786 Thompson Feb 2000 A
6050970 Baerveldt Apr 2000 A
6077299 Adelberg et al. Jun 2000 A
6102045 Nordquist et al. Aug 2000 A
6142969 Nigam Nov 2000 A
6186974 Allan et al. Feb 2001 B1
6203513 Yaron et al. Mar 2001 B1
6221078 Bylsma Apr 2001 B1
6251090 Avery et al. Jun 2001 B1
6261256 Ahmed Jul 2001 B1
6264668 Prywes Jul 2001 B1
6331313 Wong et al. Dec 2001 B1
6375642 Grieshaber et al. Apr 2002 B1
6383219 Telandro et al. May 2002 B1
6443985 Woods Sep 2002 B1
6450984 Lynch et al. Sep 2002 B1
6464724 Lynch et al. Oct 2002 B1
6468283 Richter et al. Oct 2002 B1
6471666 Odrich Oct 2002 B1
6471777 Kobayashi et al. Oct 2002 B1
6508779 Suson Jan 2003 B1
6510600 Yaron et al. Jan 2003 B2
6524275 Lynch et al. Feb 2003 B1
6533768 Hill Mar 2003 B1
6537568 Olejnik et al. Mar 2003 B2
6544208 Ethier et al. Apr 2003 B2
6544249 Yu et al. Apr 2003 B1
6558342 Yaron et al. May 2003 B1
6589203 Mitrev Jul 2003 B1
6592621 Domino Jul 2003 B1
6595945 Brown Jul 2003 B2
6626858 Lynch et al. Sep 2003 B2
6638239 Bergheim et al. Oct 2003 B1
6638305 Laguette Oct 2003 B2
6648283 Chase et al. Nov 2003 B2
6666841 Gharib et al. Dec 2003 B2
6676607 de Juan, Jr. et al. Jan 2004 B2
6699210 Williams et al. Mar 2004 B2
6699211 Savage Mar 2004 B2
6719750 Varner et al. Apr 2004 B2
6726664 Yaron et al. Apr 2004 B2
6730056 Ghaem et al. May 2004 B1
6736791 Tu et al. May 2004 B1
6741666 Henry et al. May 2004 B1
6780164 Bergheim et al. Aug 2004 B2
6783544 Lynch et al. Aug 2004 B2
6827699 Lynch Dec 2004 B2
6827700 Lynch et al. Dec 2004 B2
6881197 Nigam Apr 2005 B1
6881198 Brown Apr 2005 B2
6939298 Brown et al. Sep 2005 B2
6955656 Bergheim et al. Oct 2005 B2
6962573 Wilcox Nov 2005 B1
6966888 Cullen et al. Nov 2005 B2
6969384 de Juan, Jr. et al. Nov 2005 B2
6981958 Gharib et al. Jan 2006 B1
6989007 Shadduck Jan 2006 B2
7041077 Shields May 2006 B2
7090681 Weber et al. Aug 2006 B2
7094225 Tu et al. Aug 2006 B2
7097660 Portney Aug 2006 B2
7135009 Tu et al. Nov 2006 B2
7160264 Lisk, Jr. et al. Jan 2007 B2
7163543 Smedley et al. Jan 2007 B2
7186232 Smedley et al. Mar 2007 B1
7192412 Zhou et al. Mar 2007 B1
7195774 Carvalho et al. Mar 2007 B2
7207965 Simon Apr 2007 B2
7220238 Lynch et al. May 2007 B2
7273475 Tu et al. Sep 2007 B2
7291125 Coroneo Nov 2007 B2
7293873 Dai et al. Nov 2007 B2
7297130 Bergheim et al. Nov 2007 B2
7331984 Tu et al. Feb 2008 B2
7341599 Peyman Mar 2008 B1
7381221 Lang et al. Jun 2008 B2
7431710 Tu et al. Oct 2008 B2
7488303 Haffner et al. Feb 2009 B1
7563241 Tu et al. Jul 2009 B2
7708711 Tu et al. May 2010 B2
7857782 Tu et al. Dec 2010 B2
7867186 Haffner et al. Jan 2011 B2
7867205 Bergheim et al. Jan 2011 B2
20010025150 de Juan, Jr. et al. Sep 2001 A1
20020013546 Grieshaber et al. Jan 2002 A1
20020013572 Berlin Jan 2002 A1
20020072673 Yamamoto et al. Jun 2002 A1
20020111608 Baerveldt et al. Aug 2002 A1
20020128613 Nakayama Sep 2002 A1
20020133168 Smedley et al. Sep 2002 A1
20020143284 Tu et al. Oct 2002 A1
20020156413 Williams et al. Oct 2002 A1
20020165478 Gharib et al. Nov 2002 A1
20020177856 Richter et al. Nov 2002 A1
20020193725 Odrich Dec 2002 A1
20030028225 Chow et al. Feb 2003 A1
20030028228 Sand Feb 2003 A1
20030060752 Bergheim et al. Mar 2003 A1
20030097151 Smedley et al. May 2003 A1
20030097171 Elliott May 2003 A1
20030135149 Cullen et al. Jul 2003 A1
20030181848 Bergheim et al. Sep 2003 A1
20030187384 Bergheim et al. Oct 2003 A1
20030208163 Yaron et al. Nov 2003 A1
20030229303 Haffner et al. Dec 2003 A1
20030236483 Ren Dec 2003 A1
20030236484 Lynch et al. Dec 2003 A1
20040015140 Shields Jan 2004 A1
20040024345 Gharib et al. Feb 2004 A1
20040073156 Brown Apr 2004 A1
20040082993 Woods Apr 2004 A1
20040082995 Woods Apr 2004 A1
20040088048 Richter et al. May 2004 A1
20040092856 Dahan May 2004 A1
20040102729 Haffner et al. May 2004 A1
20040111050 Smedley et al. Jun 2004 A1
20040111153 Woods et al. Jun 2004 A1
20040147870 Burns et al. Jul 2004 A1
20040148022 Eggleston Jul 2004 A1
20040169820 Dai et al. Sep 2004 A1
20040193095 Shadduck Sep 2004 A1
20040193262 Shadduck Sep 2004 A1
20040210181 Vass et al. Oct 2004 A1
20040210185 Tu et al. Oct 2004 A1
20040216749 Tu Nov 2004 A1
20040225250 Yablonski Nov 2004 A1
20040236343 Taylor et al. Nov 2004 A1
20040237971 Radhakrishnan et al. Dec 2004 A1
20040249333 Bergheim et al. Dec 2004 A1
20040254517 Quiroz-Mercado et al. Dec 2004 A1
20040254519 Tu et al. Dec 2004 A1
20040254520 Porteous et al. Dec 2004 A1
20040254521 Simon Dec 2004 A1
20040260228 Lynch et al. Dec 2004 A1
20050008673 Snyder et al. Jan 2005 A1
20050021138 Woods Jan 2005 A1
20050049578 Tu et al. Mar 2005 A1
20050060032 Magnante et al. Mar 2005 A1
20050065534 Hohl Mar 2005 A1
20050085906 Hanna Apr 2005 A1
20050090806 Lynch et al. Apr 2005 A1
20050090807 Lynch et al. Apr 2005 A1
20050107734 Coroneo May 2005 A1
20050113914 Miller et al. May 2005 A1
20050119601 Lynch et al. Jun 2005 A9
20050119636 Haffner et al. Jun 2005 A1
20050119737 Bene et al. Jun 2005 A1
20050125003 Pinchuk et al. Jun 2005 A1
20050143817 Hunter et al. Jun 2005 A1
20050149080 Hunter et al. Jul 2005 A1
20050171507 Christian et al. Aug 2005 A1
20050175663 Hunter et al. Aug 2005 A1
20050181011 Hunter et al. Aug 2005 A1
20050181018 Peyman Aug 2005 A1
20050181977 Hunter et al. Aug 2005 A1
20050182350 Nigam Aug 2005 A1
20050191331 Hunter et al. Sep 2005 A1
20050192527 Gharib et al. Sep 2005 A1
20050197613 Sniegowski et al. Sep 2005 A1
20050209549 Bergheim et al. Sep 2005 A1
20050209550 Bergheim et al. Sep 2005 A1
20050232972 Odrich Oct 2005 A1
20050244462 Farooq Nov 2005 A1
20050250788 Tu et al. Nov 2005 A1
20050266047 Tu et al. Dec 2005 A1
20050267397 Bhalla Dec 2005 A1
20050267398 Protopsaltis et al. Dec 2005 A1
20050271704 Tu et al. Dec 2005 A1
20050273033 Grahn et al. Dec 2005 A1
20050277864 Haffner et al. Dec 2005 A1
20050283108 Savage Dec 2005 A1
20050287188 Anderson et al. Dec 2005 A1
20050288617 Yaron et al. Dec 2005 A1
20050288619 Gharib et al. Dec 2005 A1
20060020248 Prescott Jan 2006 A1
20060032507 Tu Feb 2006 A1
20060036207 Koonmen et al. Feb 2006 A1
20060069340 Simon Mar 2006 A1
20060074375 Bergheim et al. Apr 2006 A1
20060084907 Bergheim et al. Apr 2006 A1
20060116626 Smedley et al. Jun 2006 A1
20060129215 Helmus et al. Jun 2006 A1
20060155238 Shields Jul 2006 A1
20060173397 Tu et al. Aug 2006 A1
20060195055 Bergheim et al. Aug 2006 A1
20060195056 Bergheim et al. Aug 2006 A1
20060200113 Haffner et al. Sep 2006 A1
20060235367 Takashima et al. Oct 2006 A1
20060241580 Mittelstein et al. Oct 2006 A1
20060241749 Tu et al. Oct 2006 A1
20060259138 Peyman Nov 2006 A1
20060271186 Nishi et al. Nov 2006 A1
20060276739 Brown Dec 2006 A1
20070010827 Tu et al. Jan 2007 A1
20070088242 Coroneo Apr 2007 A1
20070088424 Greenberg et al. Apr 2007 A1
20070088432 Solovay et al. Apr 2007 A1
20070106235 Coroneo May 2007 A1
20070106236 Coroneo May 2007 A1
20070118147 Smedley et al. May 2007 A1
20070123982 Yablonski et al. May 2007 A1
20070141106 Bonutti et al. Jun 2007 A1
20070149915 Yablonski Jun 2007 A1
20070191863 De Juan et al. Aug 2007 A1
20070207186 Scanlon et al. Sep 2007 A1
20070208134 Hunter et al. Sep 2007 A1
20070276315 Haffner et al. Nov 2007 A1
20070276316 Haffner et al. Nov 2007 A1
20070282244 Tu et al. Dec 2007 A1
20070282245 Tu et al. Dec 2007 A1
20070293807 Lynch et al. Dec 2007 A1
20080015488 Tu et al. Jan 2008 A1
20080045878 Bergheim et al. Feb 2008 A1
20080046076 Rombach Feb 2008 A1
20080097459 Kammerlander et al. Apr 2008 A1
20080106698 Dai et al. May 2008 A1
20080119864 Deinzer et al. May 2008 A1
20080125862 Blake May 2008 A1
20080129962 Dai et al. Jun 2008 A1
20080195027 Coroneo Aug 2008 A1
20080200860 Tu et al. Aug 2008 A1
20080228127 Burns et al. Sep 2008 A1
20080234624 Bergheim et al. Sep 2008 A2
20090036819 Tu et al. Feb 2009 A1
20090043321 Conston et al. Feb 2009 A1
20090118702 Lazar May 2009 A1
20100010416 Juan, Jr. et al. Jan 2010 A1
20100274259 Yaron et al. Oct 2010 A1
20110028883 Juan, Jr. et al. Feb 2011 A1
20110098629 Juan, Jr. et al. Apr 2011 A1
20110238075 Clauson et al. Sep 2011 A1
20110306915 De Juan, Jr. et al. Dec 2011 A1
Foreign Referenced Citations (89)
Number Date Country
0 228 185 Jul 1987 EP
1173124 Jan 2002 EP
1173125 Jan 2002 EP
1173126 Jan 2002 EP
1184010 Mar 2002 EP
1310222 May 2003 EP
1473004 Nov 2004 EP
1477146 Nov 2004 EP
1418868 Mar 2008 EP
1932492 Jun 2008 EP
1977724 Oct 2008 EP
1545655 Dec 2008 EP
2027837 Feb 2009 EP
2101891 Jan 1983 GB
2018289 Aug 1994 RU
2056818 Mar 1996 RU
2074686 Mar 1997 RU
2074687 Mar 1997 RU
2157678 Oct 2000 RU
WO 8900869 Feb 1989 WO
WO 9112046 Aug 1991 WO
9219294 Nov 1992 WO
WO 9409721 May 1994 WO
WO 9409837 May 1994 WO
9413234 Jun 1994 WO
WO 9508310 Mar 1995 WO
WO 9620742 Jul 1996 WO
WO 9636377 Nov 1996 WO
WO 9823237 Jun 1998 WO
WO 9830181 Jul 1998 WO
WO 9926567 Jun 1999 WO
WO 0006223 Feb 2000 WO
WO 0064389 Nov 2000 WO
WO 0064390 Nov 2000 WO
WO 0064391 Nov 2000 WO
WO 0064393 Nov 2000 WO
WO 0064511 Nov 2000 WO
WO 0178631 Oct 2001 WO
WO 0178656 Oct 2001 WO
WO 0197727 Dec 2001 WO
WO 0236052 May 2002 WO
WO 02070045 Sep 2002 WO
WO 02074052 Sep 2002 WO
WO 02080811 Oct 2002 WO
WO 02080829 Oct 2002 WO
02087418 Nov 2002 WO
02089699 Nov 2002 WO
WO 02087479 Nov 2002 WO
02102274 Dec 2002 WO
03000154 Jan 2003 WO
03015659 Feb 2003 WO
03015667 Feb 2003 WO
03017867 Mar 2003 WO
WO 03041622 May 2003 WO
03049646 Jun 2003 WO
WO 03073968 Sep 2003 WO
WO 03099175 Dec 2003 WO
WO 2004014218 Feb 2004 WO
2004026347 Apr 2004 WO
2004037122 May 2004 WO
2004037127 May 2004 WO
WO 2004043231 May 2004 WO
2004053568 Jun 2004 WO
WO 2004056294 Jul 2004 WO
WO 2004060219 Jul 2004 WO
WO 2004062469 Jul 2004 WO
WO 2004066871 Aug 2004 WO
WO-2004073552 Sep 2004 WO
2004107024 Dec 2004 WO
WO 2004110391 Dec 2004 WO
WO 2005016418 Feb 2005 WO
2005046516 May 2005 WO
WO 2005046782 May 2005 WO
WO 2005055873 Jun 2005 WO
2005082285 Sep 2005 WO
2005084587 Sep 2005 WO
WO 2005105197 Nov 2005 WO
WO 2005107664 Nov 2005 WO
WO 2005107845 Nov 2005 WO
WO 2006012421 Feb 2006 WO
WO 2006014434 Feb 2006 WO
WO 2006036715 Apr 2006 WO
WO 2007084582 Jul 2007 WO
WO 2007087061 Aug 2007 WO
2007113832 Oct 2007 WO
WO 2007115259 Oct 2007 WO
WO 2007130393 Nov 2007 WO
2008031231 Mar 2008 WO
WO 2008061043 May 2008 WO
Non-Patent Literature Citations (104)
Entry
Einmahl, S., et al., “Evaluation of a novel biomaterial in the suprachoroidal space of the rabbit eye,” Investigative Opthamology and Visual Sciences, 43:1533-1539, (2002).
Hylton, C. and A. Robin et al., “Update on prostaglandin analogs,” Current Opinion in Opthamology, 14:65-69, (2003).
Bick MW “Use of tantalum for ocular drainage” Arch Ophthal. 42(4): 373-88 (1949).
Bietti “The present state of the use of plastics in eye surgery” Acta Ophthalmol (Copenh) 33(4):337-70 (1955).
Classen et al. “A histopathologic and immunohistorchemical analysis of the filtration bleb after unsuccessful glaucoma seton implantation” Am. J. Ophthalmol. 122:20512 (1996).
Cohen et al. “First day post-operative review following uncomplicated phacoemulsification” Eye 12(4):634-6 (1998).
Derwent English abstract for EP 1184010, published Mar. 6, 2002 entitled: “Drainage unit for an eye, consists of a hollow line, a distribution member, and a pressure relief valve which only allows water to leave the eye chamber above a certain pressure,” Accession Nbr. 12409716 [351].
Dinakaran et al. “Is the first post-operative day review necessary following uncomplicated phacoemulsification surgery?” Eye, 14(3A):364-6 (2000).
Emi et al. “Hydrostatic pressure of the suprachoroidal space” Invest. Ophthal. Visual Sci. 30(2):233-238 (1989).
Fuchs E. “Detachment of the choroid inadvertently during cataract surgery” [German] von Graefes Arch Ophthalmol, 51:199-224 (1900).
Gills et al. “Action of cyclodialysis utilizing an implant studied by manometry in a human eye” Exp. Eye Res. 1967; 6:75-78.
Gills JP “Cyclodialysis implants” South Med J. 1967 60(7):692-5.
Gross et al. “Surgical therapy of chronic glaucoma in aphakia and pseudophakia” Ophthalmology, 95:1195-201 (1988).
Heine I. “Cyclodialysis, a new glaucoma operation” [German] Dtsch Med. Wochenschr, 31:824-826 (1905).
Hildebrand et al. “Efficacy of anterior chamber decompression in controlling early intraocular pressure spikes after uneventful phacoemulsification” J. Catact Refract Surg., 29:1087-92 (2003).
Howorth D J “Feasibility study for a micromachined glaucoma drainage device” Cranfield University School of industrial and manufacturing science MSc Thesis Academic Year 2001-2002 Sep. 13, 2002.
Jordan J. “A Novel Approach to Suprachoroidal Drainage for the Surgical Treatment of Intractable Glaucoma” J. Glaucoma 15:200-205 (2006).
Karlen et al. “Deep sclerectomy with collagen implant: medium term results” Br. J. Ophthalmol, Jan 1999, 83(1):6-11.
Klemm et al. “Experimental use of space-retaining substances with extended duration: functional and morphological results” Graefes Arch Clin Exp Ophthalmol Sep. 1995; 233(9):592-7.
Kozlov et al. “Nonpenetrating deep sclerectomy with collagen” Eye microsurgery 3:44-46 (1990) [Russian with English translation].
Krejci “Cyclodialysis with hydroxymethyl methacrylate capillary strip (HCS). Animal experiments with a new approach in glaucoma drainage surgery” Ophthalmologica 1972; 164(2):113-21.
Lee et al. “Magnetic resonance imaging of the aqueous flow in eyes implanted with the trabeculo-suprachoroidal glaucoma seton” Invest. Ophthalmol. Vis. Sci. 33:948 (1992).
Losche W. “Proposals for improvement of cyclodialysis” Klin Monatsblatter Augenheilkd Augenarztl Fortbild, 121(6):715-6 (1952) [GERMAN].
Mehta Kr. “The suprachoroidal henna wedge in glaucoma surgery” American Academy of Ophthalmology meeting 1977 page 144.
Nesterov AP et al. “Surgical stimulation of the uveoscleral outflow. Experimental studies on enucleated human eyes” Acta Opthalmol (Copenh) June; 57(3):409-17 (1979).
Ozdamar et al. “Suprachoroidal seton implantation in refractory glaucoma: a novel surgical technique” J. Glaucoma Aug. 2003; 12(4):354-9.
Pinnas G. et al. “Cyclodialysis with teflon tube implants” Am J. Ophthalmol 1969 Nove; 68(5):879-883.
Rosenberg et al. “Implants in glaucoma surgery” Chapter 88, The Glaucomas, Ritch et al. Eds. 2nd Ed. Mosby St. Louis 1986; p. 1783-1807.
Row H. “Operation to control glaucoma: preliminary report” Arch. Ophthal 12:325 (1934).
SOLX Clinical Literature Handout; Industry Show Feb. 2006; “The SOLX Gold Micro-shunt (GMS) treatment”.
Srinivasan et al. “Microbial contamination of the anterior chamber during phacoemulsification” J. Cataract Refract Surg. 28:2173-6 (2002).
Toris et al. “Aqueous humor dynamics in the aging human eye” Am J. Ophthalmol., 127:407-12 (1999).
Troncosco UM “Cyclodialysis with insertion of metal implant in treatment of glaucoma Preliminary report” Arch. Ophthal. 23:270 (1940).
Yablonski, “Some thoughts on the pressure dependence of uveoscleral flow” Journal of Glaucoma, 12(1):90-92 (2003).
Yablonski, “Trabeculectomy with Internal Tube Shunt: a novel glaucoma surgery” J. Glaucoma 14:91-97 (2005).
Zhou et al. “A trabecular bypass flow hypothesis” J Glaucoma. 14(1):74-83 (2005).
Barsky et al. “Evaluation of absorbable gelatin film (Gelfilm) in cyclodialysis clefts” Arch. Ophth. 60(6):1044-1052,1958.
Brown et al., “Internal Sclerectomy for Glaucoma Filtering Surgery with an Automated Trephine,” Archives of Ophthalmology, 105:133-136 (1987).
Burchfield JC, Kass MA, Wax MB. Primary valve malfunction of the Krupin eye valve with disk. J Glaucoma. Jun. 1997; 6(3):152-6.
Chiou et al. “Ultrasound biomicroscopy of eyes undergoing deep sclerectomy with collagen implant” Br J Ophthalmol 80 (1996), pp. 541-544.
Chylack LT, Bellows AR. Molecular sieving in suprachoroidal fluid formation in man. Invest Ophthalmol Vis Sci 17: 420, 1978.
Collaborative Normal-Tension Study Group. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol 1998; 126:487-97.
Congdon N, O'Colmain B, Klaver CC, et al. Causes and prevalence of visual impairment among adults in The United States. Arch Ophthalmol 2004; 122:477-85.
Demailly et al. “Non-penetrating deep sclerectomy (NPDS) with or without collagen device (CD) in primary open-angle glaucoma: middle-term retrospective study” International Ophthalmology 20:131-140, 1997.
Draeger “Chirurgische Malβnahmen bei kongenitalem Glaukom” (Surgical Interventions in Congenital Claucoma) Klin Monatsbl Augenheilkd 1993; 202(5):425-427 [Article in German with English summary included].
Ellis, RA “A Reduction of Intraocular Pressure Using Plastics in Surgery” Am J Ophth. 50; 1960, pp. 733-742.
Fanous MM, Cohn Ra. Propionibacterium endophthalmitis following Molteno tube repositioning. J Glaucoma. Aug. 1997; 6(4):201-2.
Friedman Ds, Wolfs Rs, O'Colmain Bj, et al. Prevalence of open-angle glaucoma among adults in The United States. Arch Ophthalmol 2004; 122:532-8.
Gills, “Cyclodialysis Implants in Human Eyes” Am J Ophth 61:1966,841-846.
Goldberg “Management Of Uncontrolled Glaucoma With The Molteno System” Australian and New Zealand Journal of Ophthalmology 1987; 15:97-107.
Gordon Mo, Kass. MA, for the Ocular Hypertension Treatment Study Group. The Ocular Hypertension Treatment Study. Design and baseline description of the participants. Arch Ophthalmol 1999:573-83.
Grant, W.M. , MD, Further Studies on Facility of Flow Through the Trabecular Meshwork, A.M.A. Archives of Ophthalmololgy, Oct. 1958, vol. 60, pp. 523-533.
Harper SL, Foster CS. Intraocular lens explantation in uveitis. Int. Ophthalmol Clin. 2000 Winter; 40(1):107-16.
Harrington “Cataract and Glaucoma. Management of the coexistent conditions and a description of a new operation combining lens extraction with reverse cyclodialysis.” Am J Ophthalmol. May 1966 ;61(5.2):1134-40.
Heijl A, Leske MC, Bengtsson B, et al for the Early Manifest Glaucoma Trial Group. Reduction of intraocular pressure and glaucoma progression. Results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 2002; 120:1268-79.
Javitt JC, Chiang YP. Preparing for managed competition. Utilization of ambulatory eye care visits to ophthalmologists. Arch Ophthalmol 1993; 111:1034-5.
Jay Jl, Allan D. The benefit of early trabeculectomy versus conventional management in primary open-angle glaucoma relative to severity of disease. Eye 1989; 3:528-35.
Kass MA, Heuer DK, Higginbotham EJ, et al for the Ocular Hypertension Treatment Study Group. The Ocular HypertensionTreatment Study. A randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120:701-13.
Klemm et al. “Die Ultraschallbiomikroskopie als Kriterium der Funktionsprüfung des suprachorioidalen Spaltes nach kammerwinkelchirurgischen Eingriffen (Ultrasound Biomicroscopic Imaging for Assessment of the Suprachoroidal Cleft after Angle Surgery)” Klinische Monatsblätter für Augenheilkunde 1997; 210:74-77 [Article in German with English summary included].
Krejci L. “Microdrainage of anterior chamber of eye glaucoma operation using hydron capillary drain. ” Acta Univ Carol Med Monogr. 1974;(61):1-90.
Kupfer “Studies on intraocular pressure. I. A technique for polyethylene tube implantation into the anterior chamber of the rabbit.” Arch Ophthalmol. Apr. 1961; 65:565-70.
La Rocca “Gonioplasty in Glaucoma*A Preliminary Report” Br J Ophth 46:1962, pp. 404-415.
Law et al., “Retinal Complications After Aqueous Shunt Surgical Procedures for Glaucoma” Arch Ophthal.; Dec 1996; vol. 114:1473-1480.
Lee Ky. Trabeculo-suprachoroidal shunt for treating recalcitrant and secondary glaucoma. Presented at the American Academy of Ophthalmology Annual Meeting, Anaheim, CA, 1991.
Leske Mc, Heijl A, Hussein M, et al for the Early Manifest Glaucoma Trial Group. Factors for glaucoma progression and the effect of treatment. The Early Manifest Glaucoma Trial. Arch Ophthalmol Jan. 2003; 121:48-56.
Lichter PR, Musch DC, Gillespie BW, et al and the CIGTS Study Group. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology 2001; 108:1943-53.
Marx et al., “Use of the Ganciclovir Implant in the Treatment of Recurrent Cytomegalovirus Retinitis” Arch Ophthal.; Jul. 1996; vol. 114:815-820.
Mcpherson “Combined Trabeculotomy and Cataract Extraction as a Single Operation*” TR. AM. OPHTH. Soc., vol. LXXIV, 1976; 251-260.
Migdal C, Gregory W, Hitchings R. Long term functional outcome after early surgery compared with laser and medicine in open-angle glaucoma. Ophthalmology 1994; 101:1651-7.
Miglior S, Pfeiffer N, Zeyen T et al for the European Glaucoma Prevention Study Group. Results of the European Glaucoma Prevention Study. Ophthalmology 2005; 112:366-75.
Miglior S, Zeyen T, Pfeiffer N, et al for the European Glaucoma Prevention Study Group. The European Glaucoma Prevention Study design and baseline description of the participants. Ophthalmology 2002; 109:1612-21.
Miki, MD et al., “Intraocular Cannula for Continuous, Chronic Drug Delivery-Histopathic Observations and Function” Arch Ophthal.; May 1985; vol. 103:712-717.
Molteno et al. “Long tube implants in the management of glaucoma” South African Medical Journal, Jun. 26, 1976; 50(27):1062-6.
Molteno et al. “The Vicryl tie technique for inserting a draining implant in the treatment of secondary glaucoma. ” Australian and New Zealand Journal of Ophthalmology 1986; 14:343-354.
Moses Ra “Detachment of ciliary body-anatomical and physical considerations” Investigative Ophthalmology & Visual Science, Assoc. For Research in Vision and Ophthalmology, US, vol. 4, No. 5, Oct. 5, 1965.
Nguyen et al., “Complications of Baerveldt Glaucoma Drainage Implants” Arch Ophthal.; May 1998; vol. 116:571-575.
O'Brien et al. “Cyclodialysis” Arch Ophthal. 1949; 42(5):606-619.
Olsen, Timothy W., et al., Cannulation of the Suprachoroidal Space: A Novel Drug Delivery Methodology to the Posterior Segment, American Journal of Ophthalmology, vol. 142, No. 5, Nov. 2006, pp. 777-787.e2.
Portney Gl, “Silicone elastomer implantation cyclodialysis.” Arch Ophthalmol 1973; 89:10-12.
Pruett et al., “The Fishmouth Phenomenon—II. Wedge Scleral Buckling” Arch Ophthal.; Oct. 1977; vol. 95:1782-1787.
Qadeer “Acrylic Gonio-Subconjunctival Plates in Glaucoma Surgery ” Br J Ophthalmol. Jun. 1954 ; 38(6):353-356.
Quigley Ha, Vitale S. Models of open-angle glaucoma prevalence and incidence in The United States. Invest Ophthalmol Vis Sci 1997; 38:83-91.
Richards et al. “Artificial Drainage Tubes for Glaucoma” Am J Ophth 60:1965,405-408.
Ritch, et al., “Uveoscleral Outflow”, the Glaucomas. St. Louis: Mosby, 1996; pp. 337-343.
Rowan, Patrick J., MD, Combined Cyclodialysis and Cataract Surgery, Ophthalmic Surgery and Lasers, Dec. 1998, vol. 29, No. 12, pp. 962-968 (9 pages).
Sampimon “A New Approach to Filtering Glaucoma Surgery” Ophthalmologica (Basel) 151:1966, 637-644.
Schappert S. Office visits for glaucoma: The United States, 1991-92. Advance data from vital and health statistics. vol. 262. Hyattsville, MD: National Center for Health Statistics, 1995.
Shaffer RN, Weiss DI. Concerning cyclodialysis and hypotony. Arch Ophthalmol 68:25,1962.
Sommer A, Tielsch JM, Katz J, et al. Racial differences in the cause-specific prevalence of blindness in east Baltimore. N Engl J Med 1991; 325:1412-7.
Sourdille et al. “Reticulated hyaluronic acid implant in non-perforating trabecular surgery.” J Cataract Refract Surg 25:332—339. (1999):.
Suguro K, Toris CB, Pederson JE. Uveoscleral outflow following cyclodialysis in the monkey eye using a fluorescent tracer. Invest Ophthalmol Vis Sci 1985: 26,810.
The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am J Ophthalmol 2000; 130:429-40.
The Advanced Glaucoma Intervention Study (AGIS); 13. Comparison of treatment outcomes within race: 10-year results. Ophthalmology 2004; 111:651-64.
The Glaucoma Laser Trial (GLT). 2. Results of argon laser trabeculoplasty versus topical medicines. The Glaucoma Laser Trial Research Group. Ophthalmology 1990; 97:1403-13.
The Glaucoma Laser Trial (GLT) and Glaucoma Laser Trial Follow-up Study: 7. Results. Am J Ophthahnol 1995; 120:718-31.
Tielsch JM, Sommer A, Katz J, et al. Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore Eye Survey. JAMA 1991; 266:369-74.
Toris et al. “Effect of intraocular pressure on uveoscleral outflow following cyclodialysis in the monkey eye.” Investigative Ophthalmology & Visual Science. 26 (1985) 1745-1749.
Toris CB. Extravascular albumin concentration of the uvea. Invest Ophthalmol Vis Sci 1990; 31:43.
Trigler L, Proia AD, Freedman SF. Fibrovascular ingrowth as a cause of Ahmed glaucoma valve failure in children. Am J Ophthalmol. Feb 2006; 141(2):388-9.
Troncoso, Manuel U., Tantalum implants for inducing hypotny, Am Journal of Ophthalmology, vol. 32(4):499-508 (1949).
Veen et al. “The gonioseton, a surgical treatment for chronic glaucoma” Documenta Ophthalmologica vol. 75, No. 3-4, 365-375. (1990).
Wagner, Justin A., et al., Characterization of Uveoscleral Outflow in Enucleated Porcine Eyes Perfused under Constant Pressure, Invest Ophthalmol Vis Sci., Published in edited form in Sep. 2004, vol. 45, Issue 9, pp. 3203-3206.
Wamsley S, Moster Mr, Rai S, Alvim Hs, Fontanarosa J. Results of the use of the Ex-Press miniature glaucoma implant in technically challenging, advanced glaucoma cases: a clinical pilot study. Am J Ophthalmol. Dec. 2004; 138(6):1049-51.
Hoskins, et al., “Aqueous Humor Outflow”, Becker—Shaffer's Diagnosis and Therapy of the Glaucomas, 6th Edition, Chapter 4, pp. 41-66, 1989.
Related Publications (1)
Number Date Country
20070233037 A1 Oct 2007 US
Provisional Applications (3)
Number Date Country
60759835 Jan 2006 US
60783632 Mar 2006 US
60824552 Sep 2006 US