This disclosure relates generally to methods and devices for use in treating various ocular diseases. Glaucoma is caused by a number of different eye diseases which can produce increased intraocular pressure (IOP) in the eye. The increased pressure is often caused by a backup of aqueous humour within the eye. Over time, the increased pressure can cause damage to the optic nerve, which can lead to blindness.
One way to treat glaucoma is to implant a drainage device, or shunt, in the eye. The drainage device functions to drain aqueous humour from the anterior chamber and thereby reduce the intraocular pressure. The drainage device is typically implanted using to an invasive surgical procedure. Pursuant to one such procedure, a flap is surgically formed in the sclera. The flap is folded back to form a small cavity and a shunt is inserted into the eye through the flap. Such a procedure can be quite traumatic for the patient.
The following references describe various devices and procedures for treating glaucoma: U.S. Pat. No. 6,827,700 to Lynch, U.S. Pat. No. 6,666,841 to Bergheim, U.S. Pat. No. 6,508,779 to Suson, U.S. Pat. No. 6,544,208 to Ethier, U.S. Pat. No. 5,601,094 to Reiss, U.S. Pat. No. 6,102,045 to Nordquist, United States Patent Application 2002/0156413 to Williams, 2002/0143284 to Tu, 2003/0236483 to Ren, 2002/0193725 to Odrich, 2002/0165478 to Gharib, 2002/0133168 to Smedley, 2005/0107734, 2004/0260228 to Lynch, 2004/0102729 to Haffner, 2004/0015140 to Sheilds, 2004/0254521 to Simon, 2004/0225250 to Yablonski. The aforementioned references are all incorporated herein by reference in their entireties.
Current devices and procedures for treating glaucoma have disadvantages and in some cases only moderate success rates. The procedures are very traumatic to the eye and also require highly accurate surgical skills, such as to properly place the drainage device in a proper location. In addition, the devices that drain fluid from the anterior chamber to a subconjunctival bleb beneath a scleral flap, are prone to infection, and can occlude and cease working. This can require re-operation to remove the device and place another one, or can result in further surgeries. In addition, for agents delivered via direct injection, other complications result, and numerous office visits are required to keep a therapeutic dose resident in the eye. In view of the foregoing, there is a need for improved devices and methods for the treatment of a variety of ocular diseases.
Disclosed are devices and methods for treatment of eye disease such as glaucoma. Using the devices and introduction and placement techniques of the present invention, it is possible to place a device using the suprachoroidal space as a conduit within which to place a drug delivery device. One such drug delivery device may be a tube, wicking element, bioabsorbable polymer structure, or other configuration of drug delivery substrate. The delivery device may include a port on the proximal end to assist in repeat injection, and may include a reservoir at some point along the device to either collect flow from the aqueous to concentrate it along the length of the device, or act as a repository for injected agent.
In addition, the devices of the present invention may be used to augment and assist delivery of drugs to the back of the eye either through injection into a port of the device, or by directing therapeutic agents placed by drops into the eye, but direction the flow of the aqueous containing the drop, into the suprachoroidal space and beyond, to various locations toward the back of the eye.
Placement of a suprachoroidal implant can also assist in delivering drugs to various locations within the eye, including to the back of the eye.
Injections to the back of the eye to treat a wide variety of systemic and ocular conditions such as inflammation, infection, cancerous growth, may be prevented or treated using the drug delivery devices of the present invention. More specifically, ocular conditions such as glaucoma, proliferative vitreoretinopathy, diabetic retinopathy, dry and wet AMD, uveitis, keratitis, cytomegalovirus retinitis, cystoid macular edema, herpes simplex viral and adenoviral infections can be treated or prevented. In many cases, multiple injections are required, leading to degradation of the injection site, and numerous office visits, resulting in increased cost to the healthcare system as well as issues of compliance with patients.
In one aspect, there is disclosed a device for delivering an agent to the eye, comprising an elongate element adapted for at least partial placement in a suprachoroidal space of the eye, the elongate element having a proximal end and a distal end, wherein the proximal end is positioned at a first location of the eye and wherein the distal end extends to a location within a posterior segment of the eye, the elongate element adapted to deliver a drug into the eye.
In another aspect, there is disclosed a method of delivering drug into the eye, comprising: implanting an elongate element in the eye such that at least a portion of the elongate member is positioned within the suprachoroidal space of the eye, the elongate member adapted to deliver a drug into the eye; and inserting a drug into the elongate member such that the drug flows along the elongate member into the suprachoroidal space.
In another aspect, there is disclosed a method of delivering drug into the eye, comprising: forming an incision in the cornea of the eye; inserting an elongate member through the incision into the eye wherein the elongate member is adapted to transport a drug; passing the delivery device along a pathway through the scleral spur of the eye into the suprachoroidal space; and flowing drug along the delivery device into the suprachoroidal space.
In another aspect, there is disclosed a method of delivering drug into the eye, comprising: implanting an elongate element in the eye such that at least a portion of the elongate member is positioned within the suprachoroidal space of the eye, the elongate member adapted to deliver a drug into the eye; placing a drop of a treatment medium onto the surface of the eye; permitting the treatment medium to flow into the anterior chamber of the eye; and causing the treatment medium to flow into the elongate member such that the treatment medium flows along the elongate member into the suprachoroidal space.
Other features and advantages should be apparent from the following description of various embodiments, which illustrate, by way of example, the principles of the invention.
Using the devices and introduction and placement techniques of the present invention, it is possible to place a device that uses the suprachoroidal space as a conduit within which to place a drug delivery device such as the device described herein. One such drug delivery device may be a wicking element, bioabsorbable polymer structure, or other configuration of drug delivery substrate.
One or more drug reservoir regions 2915 may be optionally formed within the suprachoroidal space for receipt of a drug. The drug reservoir region can be a space or volume within the suprachoroidal space into which a drug is inserted. A proximal end or proximal region 2918 of the drug delivery device 2910 can include a port that receives a drug for delivery into the suprachoroidal space, such as into the reservoir region 2915. With the body of the drug delivery device 2910 being anchored within the suprachoroidal space, the distal end and/or the proximal end of the device can be located at various locations relative to the eye to achieve a desired manner of drug delivery, as described below.
The drug delivery device 2910 can have a variety of structures. For example, as shown in
Any of the embodiments of the drug delivery device can include anchoring or retention members, such as fenestrations 2912 on the distal end of the device 2910 in
In an embodiment, the drug delivery device 2910 is adapted to deliver drops placed on the surface of the eye to suprachoroidal space. This is described further detail below with reference to
In another embodiment, a punctal plug is used to deliver a drug to the tear film and into the anterior chamber where the drug intermingles with the aqueous humor. The drug delivery device 29210 then delivers the drug into the suprachoroidal space and possibly to back regions of the eye. Pursuant to such an embodiment, one or more punctal plugs are placed in the eye, such as in the corners of the eye. The punctal plugs can be placed in various regions of the eye, such as in the lower two puncta and/or in the upper puncta. One or more drops of a drug or therapeutic agent are then placed onto the eye such that the drug flows into the anterior chamber via the punctal plugs. The drug then flows into an entry port in the drug delivery device 2910 and flows into the suprachoroidal space via the drug delivery device 2910. International Patent Publication WO 06/014434 to Lazar describes exemplary devices and methods for drug delivery through punctal plugs. That publication is incorporated herein by reference in its entirety.
A wide variety of systemic and ocular conditions such as inflammation, infection, cancerous growth, may be prevented or treated using the drug delivery devices of the present invention. More specifically, ocular conditions such as glaucoma, proliferative vitreoretinopathy, diabetic retinopathy, uveitis, keratitis, cytomegalovirus retinitis, cystoid macular edema, herpes simplex viral and adenoviral infections can be treated or prevented.
Depending on the dose required, and the delivery profile of the agent delivered, it may be advantageous for the drug delivery device to extend from the initial dissection plane at the point of the scleral spur, within the suprachoroidal space to the posterior segment of the eye, or any location therebetween. The geometry of the drug delivery device may assist in the ability to prolong or control various dosing regimes. For example, a longer delivery device may equate to a longer dosing potential, and similarly a larger diameter device may assist with this also. Because the drug delivery device of the present invention completely fills the suprachoroidal space, a “washout” effect may be minimized, thereby also assisting in the dosing. In addition, it may be advantageous to employ a sealant, to seal any communication between the anterior chamber and the newly dissected suprachoroidal space once the drug delivery device is placed. Products such as Tisseal® (Baxter Healthcare, Irvine, Calif.), fibrin glues, or small amounts of cyanoacrylate may be used for this purpose.
Alternatively, if delivery of a therapeutic agent of the present invention is desired in the anterior chamber, or within the sclera, tribecular meshwork, choroid or other structures in proximity to the suprachoroidal space, the entry point at which the delivery device accesses the suprachoroidal space may be varied, such that the distal end of the drug delivery device may be placed in the suprachoroidal space as a means for anchoring the device, and the proximal end (end nearest the outside of the eye) may be placed at the desired delivery location.
With reference to
The drug delivery device 2910 can be positioned within the suprachoroidal space or can have a length such that the distal end of the drug delivery device is positioned at any of a variety of points along the length of the suprachoroidal space, such as any point from the scleral spur to the back regions of the eye.
The proximal end of the drug delivery device 2910 can be positioned at various locations relative to the eye, as shown in
With reference to
With respect to any of the embodiments of
The following classes of drugs could be delivered using the devices of the present invention: anesthetics, analgesics, cell transport/mobility impending agents such as colchicine, vincristine, cytochalasin B and related compounds; antiglaucoma drugs including beta-blockers such as timolol, betaxolol, atenolol, and prostaglandin analogues such as bimatoprost, travoprost, latanoprost etc; carbonic anhydrase inhibitors such as acetazolamide, methazolamide, dichlorphenamide, diamox; and neuroprotectants such as nimodipine and related compounds. Additional examples include antibiotics such as tetracycline, chlortetracycline, bacitracin, neomycin, polymyxin, gramicidin, oxytetracycline, chloramphenicol, gentamycin, and erythromycin; antibacterials such as sulfonamides, sulfacetamide, sulfamethizole and sulfisoxazole; anti-fungal agents such as fluconazole, nitrofurazone, amphotericine B, ketoconazole, and related compounds; anti-viral agents such as trifluorothymidine, acyclovir, ganciclovir, DDI, AZT, foscamet, vidarabine, trifluorouridine, idoxuridine, ribavirin, protease inhibitors and anti-cytomegalovirus agents; antiallergenics such as methapyriline; chlorpheniramine, pyrilamine and prophenpyridamine; anti-inflammatories such as hydrocortisone, dexamethasone, fluocinolone, prednisone, prednisolone, methylprednisolone, fluorometholone, betamethasone and triamcinolone; decongestants such as phenylephrine, naphazoline, and tetrahydrazoline; miotics and anti-cholinesterases such as pilocarpine, carbachol, di-isopropyl fluorophosphate, phospholine iodine, and demecarium bromide; mydriatics such as atropine sulfate, cyclopentolate, homatropine, scopolamine, tropicamide, eucatropine; sympathomimetics such as epinephrine and vasoconstrictors and vasodilators; Ranibizumab, Bevacizamab, and Triamcinolone.
Non-steroidal anti-inflammatories (NSAIDs) may also be delivered, such as cyclooxygenase-1 (COX-1) inhibitors (e.g., acetylsalicylic acid, for example ASPIRIN® from Bayer AG, Leverkusen, Germany; ibuprofen, for example ADVIL® from Wyeth, Collegeville, Pa.; indomethacin; mefenamic acid), COX-2 inhibitors (CELEBREX® from Pharmacia Corp., Peapack, N.J.; COX-1 inhibitors), including a prodrug Nepafenac®; immunosuppressive agents, for example Sirolimus (RAPAMUNE®, from Wyeth, Collegeville, Pa.), or matrix metalloproteinase (MMP) inhibitors (e.g., tetracycline and tetracycline derivatives) that act early within the pathways of an inflammatory response. Anticlotting agents such as heparin, antifibrinogen, fibrinolysin, anti clotting activase, etc., can also be delivered.
Antidiabetic agents that may be delivered using the present devices include acetohexamide, chlorpropamide, glipizide, glyburide, tolazamide, tolbutamide, insulin, aldose reductase inhibitors, etc. Some examples of anti-cancer agents include 5-fluorouracil, adriamycin, asparaginase, azacitidine, azathioprine, bleomycin, busulfan, carboplatin, carmustine, chlorambucil, cisplatin, cyclophosphamide, cyclosporine, cytarabine, dacarbazine, dactinomycin, daunorubicin, doxorubicin, estramustine, etoposide, etretinate, filgrastin, floxuridine, fludarabine, fluorouracil, fluoxymesterone, flutamide, goserelin, hydroxyurea, ifosfamide, leuprolide, levamisole, lomustine, nitrogen mustard, melphalan, mercaptopurine, methotrexate, mitomycin, mitotane, pentostatin, pipobroman, plicamycin, procarbazine, sargramostin, streptozocin, tamoxifen, taxol, teniposide, thioguanine, uracil mustard, vinblastine, vincristine and vindesine.
Hormones, peptides, nucleic acids, saccharides, lipids, glycolipids, glycoproteins, and other macromolecules can be delivered using the present devices. Examples include: endocrine hormones such as pituitary, insulin, insulin-related growth factor, thyroid, growth hormones; heat shock proteins; immunological response modifiers such as muramyl dipeptide, cyclosporins, interferons (including α, β, and γ interferons), interleukin-2, cytokines, FK506 (an epoxy-pyrido-oxaazcyclotricosine-tetrone, also known as Tacrolimus), tumor necrosis factor, pentostatin, thymopentin, transforming factor beta2, erythropoetin; antineogenesis proteins (e.g., anit VEGF, Interfurons), among others and anticlotting agents including anticlotting activase. Further examples of macromolecules that can be delivered include monoclonal antibodies, brain nerve growth factor (BNGF), celiary nerve growth factor (CNGF), vascular endothelial growth factor (VEGF), and monoclonal antibodies directed against such growth factors. Additional examples of immunomodulators include tumor necrosis factor inhibitors such as thalidomide.
In addition, nucleic acids can also be delivered wherein the nucleic acid may be expressed to produce a protein that may have a variety of pharmacological, physiological or immunological activities. Thus, the above list of drugs is not meant to be exhaustive. A wide variety of drugs or agents may be used in the present invention, without restriction on molecular weight, etc.
Additional examples of beneficial drugs that may be employed in the present invention and the specific conditions to be treated or prevented are disclosed in Remington, supra; The Pharmacological Basis of Therapeutics, by Goodman and Gilman, 19th edition, published by the MacMillan Company, London; and The Merck Index, 13th Edition, 1998, published by Merck & Co., Rahway, N.J., and U.S. Pat. No. 6,331,313 to Wong, which is previously expressly incorporated herein by reference, including the above text.
Although embodiments of various methods and devices are described herein in detail with reference to certain versions, it should be appreciated that other versions, embodiments, methods of use, and combinations thereof are also possible. Therefore the spirit and scope of the appended claims should not be limited to the description of the embodiments contained herein.
Benefit of priority under 35 U.S.C. §119(e) is claimed to U.S. Provisional Application Ser. No. 60/759,835, filed Jan. 17, 2006, entitled “GLAUCOMA TREATMENT DEVICE;” to U.S. Provisional Application Ser. No. 60/783,632, filed Mar. 17, 2006, entitled “GLAUCOMA TREATMENT DEVICE”; and to U.S. Provisional Application Ser. No. 60/824,552, filed Sep. 5, 2006, entitled “GLAUCOMA TREATMENT DEVICE.” The subject matter of each of the above-noted provisional applications and international applications is incorporated by reference in its entirety by reference thereto.
Number | Name | Date | Kind |
---|---|---|---|
3767759 | Wichterle | Oct 1973 | A |
3788327 | Donowitz et al. | Jan 1974 | A |
3915172 | Wichterle et al. | Oct 1975 | A |
4037604 | Newkirk | Jul 1977 | A |
4402681 | Haas et al. | Sep 1983 | A |
4457757 | Molteno | Jul 1984 | A |
4521210 | Wong | Jun 1985 | A |
4554918 | White | Nov 1985 | A |
4604087 | Joseph | Aug 1986 | A |
4634418 | Binder | Jan 1987 | A |
4722724 | Schocket | Feb 1988 | A |
4750901 | Molteno | Jun 1988 | A |
4782820 | Woods | Nov 1988 | A |
4787885 | Binder | Nov 1988 | A |
4826478 | Schocket | May 1989 | A |
4846172 | Berlin | Jul 1989 | A |
4863457 | Lee | Sep 1989 | A |
4886488 | White | Dec 1989 | A |
4900300 | Lee | Feb 1990 | A |
4932966 | Christie et al. | Jun 1990 | A |
4946436 | Smith | Aug 1990 | A |
4957505 | McDonald | Sep 1990 | A |
4968296 | Ritch et al. | Nov 1990 | A |
5041081 | Odrich | Aug 1991 | A |
5071408 | Ahmed | Dec 1991 | A |
5073163 | Lippman | Dec 1991 | A |
5092837 | Ritch et al. | Mar 1992 | A |
5127901 | Odrich | Jul 1992 | A |
5171213 | Price, Jr. | Dec 1992 | A |
5178604 | Baerveldt et al. | Jan 1993 | A |
5180362 | Worst | Jan 1993 | A |
5300020 | L'Esperance, Jr. | Apr 1994 | A |
5338291 | Speckman et al. | Aug 1994 | A |
5342370 | Simon et al. | Aug 1994 | A |
5346464 | Camras | Sep 1994 | A |
5370607 | Memmen | Dec 1994 | A |
5372577 | Ungerleider | Dec 1994 | A |
5397300 | Baerveldt et al. | Mar 1995 | A |
5433701 | Rubinstein | Jul 1995 | A |
5443505 | Wong et al. | Aug 1995 | A |
5454746 | Guegan et al. | Oct 1995 | A |
5476445 | Baerveldt et al. | Dec 1995 | A |
5558629 | Baerveldt et al. | Sep 1996 | A |
5558630 | Fisher | Sep 1996 | A |
5569197 | Helmus et al. | Oct 1996 | A |
5601094 | Reiss | Feb 1997 | A |
5626558 | Suson | May 1997 | A |
5626559 | Solomon | May 1997 | A |
5651782 | Simon et al. | Jul 1997 | A |
5676944 | Alvarado et al. | Oct 1997 | A |
5702414 | Richter et al. | Dec 1997 | A |
5704907 | Nordquist et al. | Jan 1998 | A |
5713844 | Peyman | Feb 1998 | A |
5741292 | Mendius | Apr 1998 | A |
5743868 | Brown et al. | Apr 1998 | A |
5752928 | de Roulhac et al. | May 1998 | A |
5807302 | Wandel | Sep 1998 | A |
5868697 | Richter et al. | Feb 1999 | A |
5882327 | Jacob | Mar 1999 | A |
5893837 | Eagles et al. | Apr 1999 | A |
5968058 | Richter et al. | Oct 1999 | A |
6007510 | Nigam | Dec 1999 | A |
6007511 | Prywes | Dec 1999 | A |
6019786 | Thompson | Feb 2000 | A |
6050970 | Baerveldt | Apr 2000 | A |
6077299 | Adelberg et al. | Jun 2000 | A |
6102045 | Nordquist et al. | Aug 2000 | A |
6142969 | Nigam | Nov 2000 | A |
6186974 | Allan et al. | Feb 2001 | B1 |
6203513 | Yaron et al. | Mar 2001 | B1 |
6221078 | Bylsma | Apr 2001 | B1 |
6251090 | Avery et al. | Jun 2001 | B1 |
6261256 | Ahmed | Jul 2001 | B1 |
6264668 | Prywes | Jul 2001 | B1 |
6331313 | Wong et al. | Dec 2001 | B1 |
6375642 | Grieshaber et al. | Apr 2002 | B1 |
6383219 | Telandro et al. | May 2002 | B1 |
6443985 | Woods | Sep 2002 | B1 |
6450984 | Lynch et al. | Sep 2002 | B1 |
6464724 | Lynch et al. | Oct 2002 | B1 |
6468283 | Richter et al. | Oct 2002 | B1 |
6471666 | Odrich | Oct 2002 | B1 |
6471777 | Kobayashi et al. | Oct 2002 | B1 |
6508779 | Suson | Jan 2003 | B1 |
6510600 | Yaron et al. | Jan 2003 | B2 |
6524275 | Lynch et al. | Feb 2003 | B1 |
6533768 | Hill | Mar 2003 | B1 |
6537568 | Olejnik et al. | Mar 2003 | B2 |
6544208 | Ethier et al. | Apr 2003 | B2 |
6544249 | Yu et al. | Apr 2003 | B1 |
6558342 | Yaron et al. | May 2003 | B1 |
6589203 | Mitrev | Jul 2003 | B1 |
6592621 | Domino | Jul 2003 | B1 |
6595945 | Brown | Jul 2003 | B2 |
6626858 | Lynch et al. | Sep 2003 | B2 |
6638239 | Bergheim et al. | Oct 2003 | B1 |
6638305 | Laguette | Oct 2003 | B2 |
6648283 | Chase et al. | Nov 2003 | B2 |
6666841 | Gharib et al. | Dec 2003 | B2 |
6676607 | de Juan, Jr. et al. | Jan 2004 | B2 |
6699210 | Williams et al. | Mar 2004 | B2 |
6699211 | Savage | Mar 2004 | B2 |
6719750 | Varner et al. | Apr 2004 | B2 |
6726664 | Yaron et al. | Apr 2004 | B2 |
6730056 | Ghaem et al. | May 2004 | B1 |
6736791 | Tu et al. | May 2004 | B1 |
6741666 | Henry et al. | May 2004 | B1 |
6780164 | Bergheim et al. | Aug 2004 | B2 |
6783544 | Lynch et al. | Aug 2004 | B2 |
6827699 | Lynch | Dec 2004 | B2 |
6827700 | Lynch et al. | Dec 2004 | B2 |
6881197 | Nigam | Apr 2005 | B1 |
6881198 | Brown | Apr 2005 | B2 |
6939298 | Brown et al. | Sep 2005 | B2 |
6955656 | Bergheim et al. | Oct 2005 | B2 |
6962573 | Wilcox | Nov 2005 | B1 |
6966888 | Cullen et al. | Nov 2005 | B2 |
6969384 | de Juan, Jr. et al. | Nov 2005 | B2 |
6981958 | Gharib et al. | Jan 2006 | B1 |
6989007 | Shadduck | Jan 2006 | B2 |
7041077 | Shields | May 2006 | B2 |
7090681 | Weber et al. | Aug 2006 | B2 |
7094225 | Tu et al. | Aug 2006 | B2 |
7097660 | Portney | Aug 2006 | B2 |
7135009 | Tu et al. | Nov 2006 | B2 |
7160264 | Lisk, Jr. et al. | Jan 2007 | B2 |
7163543 | Smedley et al. | Jan 2007 | B2 |
7186232 | Smedley et al. | Mar 2007 | B1 |
7192412 | Zhou et al. | Mar 2007 | B1 |
7195774 | Carvalho et al. | Mar 2007 | B2 |
7207965 | Simon | Apr 2007 | B2 |
7220238 | Lynch et al. | May 2007 | B2 |
7273475 | Tu et al. | Sep 2007 | B2 |
7291125 | Coroneo | Nov 2007 | B2 |
7293873 | Dai et al. | Nov 2007 | B2 |
7297130 | Bergheim et al. | Nov 2007 | B2 |
7331984 | Tu et al. | Feb 2008 | B2 |
7341599 | Peyman | Mar 2008 | B1 |
7381221 | Lang et al. | Jun 2008 | B2 |
7431710 | Tu et al. | Oct 2008 | B2 |
7488303 | Haffner et al. | Feb 2009 | B1 |
7563241 | Tu et al. | Jul 2009 | B2 |
7708711 | Tu et al. | May 2010 | B2 |
7857782 | Tu et al. | Dec 2010 | B2 |
7867186 | Haffner et al. | Jan 2011 | B2 |
7867205 | Bergheim et al. | Jan 2011 | B2 |
20010025150 | de Juan, Jr. et al. | Sep 2001 | A1 |
20020013546 | Grieshaber et al. | Jan 2002 | A1 |
20020013572 | Berlin | Jan 2002 | A1 |
20020072673 | Yamamoto et al. | Jun 2002 | A1 |
20020111608 | Baerveldt et al. | Aug 2002 | A1 |
20020128613 | Nakayama | Sep 2002 | A1 |
20020133168 | Smedley et al. | Sep 2002 | A1 |
20020143284 | Tu et al. | Oct 2002 | A1 |
20020156413 | Williams et al. | Oct 2002 | A1 |
20020165478 | Gharib et al. | Nov 2002 | A1 |
20020177856 | Richter et al. | Nov 2002 | A1 |
20020193725 | Odrich | Dec 2002 | A1 |
20030028225 | Chow et al. | Feb 2003 | A1 |
20030028228 | Sand | Feb 2003 | A1 |
20030060752 | Bergheim et al. | Mar 2003 | A1 |
20030097151 | Smedley et al. | May 2003 | A1 |
20030097171 | Elliott | May 2003 | A1 |
20030135149 | Cullen et al. | Jul 2003 | A1 |
20030181848 | Bergheim et al. | Sep 2003 | A1 |
20030187384 | Bergheim et al. | Oct 2003 | A1 |
20030208163 | Yaron et al. | Nov 2003 | A1 |
20030229303 | Haffner et al. | Dec 2003 | A1 |
20030236483 | Ren | Dec 2003 | A1 |
20030236484 | Lynch et al. | Dec 2003 | A1 |
20040015140 | Shields | Jan 2004 | A1 |
20040024345 | Gharib et al. | Feb 2004 | A1 |
20040073156 | Brown | Apr 2004 | A1 |
20040082993 | Woods | Apr 2004 | A1 |
20040082995 | Woods | Apr 2004 | A1 |
20040088048 | Richter et al. | May 2004 | A1 |
20040092856 | Dahan | May 2004 | A1 |
20040102729 | Haffner et al. | May 2004 | A1 |
20040111050 | Smedley et al. | Jun 2004 | A1 |
20040111153 | Woods et al. | Jun 2004 | A1 |
20040147870 | Burns et al. | Jul 2004 | A1 |
20040148022 | Eggleston | Jul 2004 | A1 |
20040169820 | Dai et al. | Sep 2004 | A1 |
20040193095 | Shadduck | Sep 2004 | A1 |
20040193262 | Shadduck | Sep 2004 | A1 |
20040210181 | Vass et al. | Oct 2004 | A1 |
20040210185 | Tu et al. | Oct 2004 | A1 |
20040216749 | Tu | Nov 2004 | A1 |
20040225250 | Yablonski | Nov 2004 | A1 |
20040236343 | Taylor et al. | Nov 2004 | A1 |
20040237971 | Radhakrishnan et al. | Dec 2004 | A1 |
20040249333 | Bergheim et al. | Dec 2004 | A1 |
20040254517 | Quiroz-Mercado et al. | Dec 2004 | A1 |
20040254519 | Tu et al. | Dec 2004 | A1 |
20040254520 | Porteous et al. | Dec 2004 | A1 |
20040254521 | Simon | Dec 2004 | A1 |
20040260228 | Lynch et al. | Dec 2004 | A1 |
20050008673 | Snyder et al. | Jan 2005 | A1 |
20050021138 | Woods | Jan 2005 | A1 |
20050049578 | Tu et al. | Mar 2005 | A1 |
20050060032 | Magnante et al. | Mar 2005 | A1 |
20050065534 | Hohl | Mar 2005 | A1 |
20050085906 | Hanna | Apr 2005 | A1 |
20050090806 | Lynch et al. | Apr 2005 | A1 |
20050090807 | Lynch et al. | Apr 2005 | A1 |
20050107734 | Coroneo | May 2005 | A1 |
20050113914 | Miller et al. | May 2005 | A1 |
20050119601 | Lynch et al. | Jun 2005 | A9 |
20050119636 | Haffner et al. | Jun 2005 | A1 |
20050119737 | Bene et al. | Jun 2005 | A1 |
20050125003 | Pinchuk et al. | Jun 2005 | A1 |
20050143817 | Hunter et al. | Jun 2005 | A1 |
20050149080 | Hunter et al. | Jul 2005 | A1 |
20050171507 | Christian et al. | Aug 2005 | A1 |
20050175663 | Hunter et al. | Aug 2005 | A1 |
20050181011 | Hunter et al. | Aug 2005 | A1 |
20050181018 | Peyman | Aug 2005 | A1 |
20050181977 | Hunter et al. | Aug 2005 | A1 |
20050182350 | Nigam | Aug 2005 | A1 |
20050191331 | Hunter et al. | Sep 2005 | A1 |
20050192527 | Gharib et al. | Sep 2005 | A1 |
20050197613 | Sniegowski et al. | Sep 2005 | A1 |
20050209549 | Bergheim et al. | Sep 2005 | A1 |
20050209550 | Bergheim et al. | Sep 2005 | A1 |
20050232972 | Odrich | Oct 2005 | A1 |
20050244462 | Farooq | Nov 2005 | A1 |
20050250788 | Tu et al. | Nov 2005 | A1 |
20050266047 | Tu et al. | Dec 2005 | A1 |
20050267397 | Bhalla | Dec 2005 | A1 |
20050267398 | Protopsaltis et al. | Dec 2005 | A1 |
20050271704 | Tu et al. | Dec 2005 | A1 |
20050273033 | Grahn et al. | Dec 2005 | A1 |
20050277864 | Haffner et al. | Dec 2005 | A1 |
20050283108 | Savage | Dec 2005 | A1 |
20050287188 | Anderson et al. | Dec 2005 | A1 |
20050288617 | Yaron et al. | Dec 2005 | A1 |
20050288619 | Gharib et al. | Dec 2005 | A1 |
20060020248 | Prescott | Jan 2006 | A1 |
20060032507 | Tu | Feb 2006 | A1 |
20060036207 | Koonmen et al. | Feb 2006 | A1 |
20060069340 | Simon | Mar 2006 | A1 |
20060074375 | Bergheim et al. | Apr 2006 | A1 |
20060084907 | Bergheim et al. | Apr 2006 | A1 |
20060116626 | Smedley et al. | Jun 2006 | A1 |
20060129215 | Helmus et al. | Jun 2006 | A1 |
20060155238 | Shields | Jul 2006 | A1 |
20060173397 | Tu et al. | Aug 2006 | A1 |
20060195055 | Bergheim et al. | Aug 2006 | A1 |
20060195056 | Bergheim et al. | Aug 2006 | A1 |
20060200113 | Haffner et al. | Sep 2006 | A1 |
20060235367 | Takashima et al. | Oct 2006 | A1 |
20060241580 | Mittelstein et al. | Oct 2006 | A1 |
20060241749 | Tu et al. | Oct 2006 | A1 |
20060259138 | Peyman | Nov 2006 | A1 |
20060271186 | Nishi et al. | Nov 2006 | A1 |
20060276739 | Brown | Dec 2006 | A1 |
20070010827 | Tu et al. | Jan 2007 | A1 |
20070088242 | Coroneo | Apr 2007 | A1 |
20070088424 | Greenberg et al. | Apr 2007 | A1 |
20070088432 | Solovay et al. | Apr 2007 | A1 |
20070106235 | Coroneo | May 2007 | A1 |
20070106236 | Coroneo | May 2007 | A1 |
20070118147 | Smedley et al. | May 2007 | A1 |
20070123982 | Yablonski et al. | May 2007 | A1 |
20070141106 | Bonutti et al. | Jun 2007 | A1 |
20070149915 | Yablonski | Jun 2007 | A1 |
20070191863 | De Juan et al. | Aug 2007 | A1 |
20070207186 | Scanlon et al. | Sep 2007 | A1 |
20070208134 | Hunter et al. | Sep 2007 | A1 |
20070276315 | Haffner et al. | Nov 2007 | A1 |
20070276316 | Haffner et al. | Nov 2007 | A1 |
20070282244 | Tu et al. | Dec 2007 | A1 |
20070282245 | Tu et al. | Dec 2007 | A1 |
20070293807 | Lynch et al. | Dec 2007 | A1 |
20080015488 | Tu et al. | Jan 2008 | A1 |
20080045878 | Bergheim et al. | Feb 2008 | A1 |
20080046076 | Rombach | Feb 2008 | A1 |
20080097459 | Kammerlander et al. | Apr 2008 | A1 |
20080106698 | Dai et al. | May 2008 | A1 |
20080119864 | Deinzer et al. | May 2008 | A1 |
20080125862 | Blake | May 2008 | A1 |
20080129962 | Dai et al. | Jun 2008 | A1 |
20080195027 | Coroneo | Aug 2008 | A1 |
20080200860 | Tu et al. | Aug 2008 | A1 |
20080228127 | Burns et al. | Sep 2008 | A1 |
20080234624 | Bergheim et al. | Sep 2008 | A2 |
20090036819 | Tu et al. | Feb 2009 | A1 |
20090043321 | Conston et al. | Feb 2009 | A1 |
20090118702 | Lazar | May 2009 | A1 |
20100010416 | Juan, Jr. et al. | Jan 2010 | A1 |
20100274259 | Yaron et al. | Oct 2010 | A1 |
20110028883 | Juan, Jr. et al. | Feb 2011 | A1 |
20110098629 | Juan, Jr. et al. | Apr 2011 | A1 |
20110238075 | Clauson et al. | Sep 2011 | A1 |
20110306915 | De Juan, Jr. et al. | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
0 228 185 | Jul 1987 | EP |
1173124 | Jan 2002 | EP |
1173125 | Jan 2002 | EP |
1173126 | Jan 2002 | EP |
1184010 | Mar 2002 | EP |
1310222 | May 2003 | EP |
1473004 | Nov 2004 | EP |
1477146 | Nov 2004 | EP |
1418868 | Mar 2008 | EP |
1932492 | Jun 2008 | EP |
1977724 | Oct 2008 | EP |
1545655 | Dec 2008 | EP |
2027837 | Feb 2009 | EP |
2101891 | Jan 1983 | GB |
2018289 | Aug 1994 | RU |
2056818 | Mar 1996 | RU |
2074686 | Mar 1997 | RU |
2074687 | Mar 1997 | RU |
2157678 | Oct 2000 | RU |
WO 8900869 | Feb 1989 | WO |
WO 9112046 | Aug 1991 | WO |
9219294 | Nov 1992 | WO |
WO 9409721 | May 1994 | WO |
WO 9409837 | May 1994 | WO |
9413234 | Jun 1994 | WO |
WO 9508310 | Mar 1995 | WO |
WO 9620742 | Jul 1996 | WO |
WO 9636377 | Nov 1996 | WO |
WO 9823237 | Jun 1998 | WO |
WO 9830181 | Jul 1998 | WO |
WO 9926567 | Jun 1999 | WO |
WO 0006223 | Feb 2000 | WO |
WO 0064389 | Nov 2000 | WO |
WO 0064390 | Nov 2000 | WO |
WO 0064391 | Nov 2000 | WO |
WO 0064393 | Nov 2000 | WO |
WO 0064511 | Nov 2000 | WO |
WO 0178631 | Oct 2001 | WO |
WO 0178656 | Oct 2001 | WO |
WO 0197727 | Dec 2001 | WO |
WO 0236052 | May 2002 | WO |
WO 02070045 | Sep 2002 | WO |
WO 02074052 | Sep 2002 | WO |
WO 02080811 | Oct 2002 | WO |
WO 02080829 | Oct 2002 | WO |
02087418 | Nov 2002 | WO |
02089699 | Nov 2002 | WO |
WO 02087479 | Nov 2002 | WO |
02102274 | Dec 2002 | WO |
03000154 | Jan 2003 | WO |
03015659 | Feb 2003 | WO |
03015667 | Feb 2003 | WO |
03017867 | Mar 2003 | WO |
WO 03041622 | May 2003 | WO |
03049646 | Jun 2003 | WO |
WO 03073968 | Sep 2003 | WO |
WO 03099175 | Dec 2003 | WO |
WO 2004014218 | Feb 2004 | WO |
2004026347 | Apr 2004 | WO |
2004037122 | May 2004 | WO |
2004037127 | May 2004 | WO |
WO 2004043231 | May 2004 | WO |
2004053568 | Jun 2004 | WO |
WO 2004056294 | Jul 2004 | WO |
WO 2004060219 | Jul 2004 | WO |
WO 2004062469 | Jul 2004 | WO |
WO 2004066871 | Aug 2004 | WO |
WO-2004073552 | Sep 2004 | WO |
2004107024 | Dec 2004 | WO |
WO 2004110391 | Dec 2004 | WO |
WO 2005016418 | Feb 2005 | WO |
2005046516 | May 2005 | WO |
WO 2005046782 | May 2005 | WO |
WO 2005055873 | Jun 2005 | WO |
2005082285 | Sep 2005 | WO |
2005084587 | Sep 2005 | WO |
WO 2005105197 | Nov 2005 | WO |
WO 2005107664 | Nov 2005 | WO |
WO 2005107845 | Nov 2005 | WO |
WO 2006012421 | Feb 2006 | WO |
WO 2006014434 | Feb 2006 | WO |
WO 2006036715 | Apr 2006 | WO |
WO 2007084582 | Jul 2007 | WO |
WO 2007087061 | Aug 2007 | WO |
2007113832 | Oct 2007 | WO |
WO 2007115259 | Oct 2007 | WO |
WO 2007130393 | Nov 2007 | WO |
2008031231 | Mar 2008 | WO |
WO 2008061043 | May 2008 | WO |
Entry |
---|
Einmahl, S., et al., “Evaluation of a novel biomaterial in the suprachoroidal space of the rabbit eye,” Investigative Opthamology and Visual Sciences, 43:1533-1539, (2002). |
Hylton, C. and A. Robin et al., “Update on prostaglandin analogs,” Current Opinion in Opthamology, 14:65-69, (2003). |
Bick MW “Use of tantalum for ocular drainage” Arch Ophthal. 42(4): 373-88 (1949). |
Bietti “The present state of the use of plastics in eye surgery” Acta Ophthalmol (Copenh) 33(4):337-70 (1955). |
Classen et al. “A histopathologic and immunohistorchemical analysis of the filtration bleb after unsuccessful glaucoma seton implantation” Am. J. Ophthalmol. 122:20512 (1996). |
Cohen et al. “First day post-operative review following uncomplicated phacoemulsification” Eye 12(4):634-6 (1998). |
Derwent English abstract for EP 1184010, published Mar. 6, 2002 entitled: “Drainage unit for an eye, consists of a hollow line, a distribution member, and a pressure relief valve which only allows water to leave the eye chamber above a certain pressure,” Accession Nbr. 12409716 [351]. |
Dinakaran et al. “Is the first post-operative day review necessary following uncomplicated phacoemulsification surgery?” Eye, 14(3A):364-6 (2000). |
Emi et al. “Hydrostatic pressure of the suprachoroidal space” Invest. Ophthal. Visual Sci. 30(2):233-238 (1989). |
Fuchs E. “Detachment of the choroid inadvertently during cataract surgery” [German] von Graefes Arch Ophthalmol, 51:199-224 (1900). |
Gills et al. “Action of cyclodialysis utilizing an implant studied by manometry in a human eye” Exp. Eye Res. 1967; 6:75-78. |
Gills JP “Cyclodialysis implants” South Med J. 1967 60(7):692-5. |
Gross et al. “Surgical therapy of chronic glaucoma in aphakia and pseudophakia” Ophthalmology, 95:1195-201 (1988). |
Heine I. “Cyclodialysis, a new glaucoma operation” [German] Dtsch Med. Wochenschr, 31:824-826 (1905). |
Hildebrand et al. “Efficacy of anterior chamber decompression in controlling early intraocular pressure spikes after uneventful phacoemulsification” J. Catact Refract Surg., 29:1087-92 (2003). |
Howorth D J “Feasibility study for a micromachined glaucoma drainage device” Cranfield University School of industrial and manufacturing science MSc Thesis Academic Year 2001-2002 Sep. 13, 2002. |
Jordan J. “A Novel Approach to Suprachoroidal Drainage for the Surgical Treatment of Intractable Glaucoma” J. Glaucoma 15:200-205 (2006). |
Karlen et al. “Deep sclerectomy with collagen implant: medium term results” Br. J. Ophthalmol, Jan 1999, 83(1):6-11. |
Klemm et al. “Experimental use of space-retaining substances with extended duration: functional and morphological results” Graefes Arch Clin Exp Ophthalmol Sep. 1995; 233(9):592-7. |
Kozlov et al. “Nonpenetrating deep sclerectomy with collagen” Eye microsurgery 3:44-46 (1990) [Russian with English translation]. |
Krejci “Cyclodialysis with hydroxymethyl methacrylate capillary strip (HCS). Animal experiments with a new approach in glaucoma drainage surgery” Ophthalmologica 1972; 164(2):113-21. |
Lee et al. “Magnetic resonance imaging of the aqueous flow in eyes implanted with the trabeculo-suprachoroidal glaucoma seton” Invest. Ophthalmol. Vis. Sci. 33:948 (1992). |
Losche W. “Proposals for improvement of cyclodialysis” Klin Monatsblatter Augenheilkd Augenarztl Fortbild, 121(6):715-6 (1952) [GERMAN]. |
Mehta Kr. “The suprachoroidal henna wedge in glaucoma surgery” American Academy of Ophthalmology meeting 1977 page 144. |
Nesterov AP et al. “Surgical stimulation of the uveoscleral outflow. Experimental studies on enucleated human eyes” Acta Opthalmol (Copenh) June; 57(3):409-17 (1979). |
Ozdamar et al. “Suprachoroidal seton implantation in refractory glaucoma: a novel surgical technique” J. Glaucoma Aug. 2003; 12(4):354-9. |
Pinnas G. et al. “Cyclodialysis with teflon tube implants” Am J. Ophthalmol 1969 Nove; 68(5):879-883. |
Rosenberg et al. “Implants in glaucoma surgery” Chapter 88, The Glaucomas, Ritch et al. Eds. 2nd Ed. Mosby St. Louis 1986; p. 1783-1807. |
Row H. “Operation to control glaucoma: preliminary report” Arch. Ophthal 12:325 (1934). |
SOLX Clinical Literature Handout; Industry Show Feb. 2006; “The SOLX Gold Micro-shunt (GMS) treatment”. |
Srinivasan et al. “Microbial contamination of the anterior chamber during phacoemulsification” J. Cataract Refract Surg. 28:2173-6 (2002). |
Toris et al. “Aqueous humor dynamics in the aging human eye” Am J. Ophthalmol., 127:407-12 (1999). |
Troncosco UM “Cyclodialysis with insertion of metal implant in treatment of glaucoma Preliminary report” Arch. Ophthal. 23:270 (1940). |
Yablonski, “Some thoughts on the pressure dependence of uveoscleral flow” Journal of Glaucoma, 12(1):90-92 (2003). |
Yablonski, “Trabeculectomy with Internal Tube Shunt: a novel glaucoma surgery” J. Glaucoma 14:91-97 (2005). |
Zhou et al. “A trabecular bypass flow hypothesis” J Glaucoma. 14(1):74-83 (2005). |
Barsky et al. “Evaluation of absorbable gelatin film (Gelfilm) in cyclodialysis clefts” Arch. Ophth. 60(6):1044-1052,1958. |
Brown et al., “Internal Sclerectomy for Glaucoma Filtering Surgery with an Automated Trephine,” Archives of Ophthalmology, 105:133-136 (1987). |
Burchfield JC, Kass MA, Wax MB. Primary valve malfunction of the Krupin eye valve with disk. J Glaucoma. Jun. 1997; 6(3):152-6. |
Chiou et al. “Ultrasound biomicroscopy of eyes undergoing deep sclerectomy with collagen implant” Br J Ophthalmol 80 (1996), pp. 541-544. |
Chylack LT, Bellows AR. Molecular sieving in suprachoroidal fluid formation in man. Invest Ophthalmol Vis Sci 17: 420, 1978. |
Collaborative Normal-Tension Study Group. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol 1998; 126:487-97. |
Congdon N, O'Colmain B, Klaver CC, et al. Causes and prevalence of visual impairment among adults in The United States. Arch Ophthalmol 2004; 122:477-85. |
Demailly et al. “Non-penetrating deep sclerectomy (NPDS) with or without collagen device (CD) in primary open-angle glaucoma: middle-term retrospective study” International Ophthalmology 20:131-140, 1997. |
Draeger “Chirurgische Malβnahmen bei kongenitalem Glaukom” (Surgical Interventions in Congenital Claucoma) Klin Monatsbl Augenheilkd 1993; 202(5):425-427 [Article in German with English summary included]. |
Ellis, RA “A Reduction of Intraocular Pressure Using Plastics in Surgery” Am J Ophth. 50; 1960, pp. 733-742. |
Fanous MM, Cohn Ra. Propionibacterium endophthalmitis following Molteno tube repositioning. J Glaucoma. Aug. 1997; 6(4):201-2. |
Friedman Ds, Wolfs Rs, O'Colmain Bj, et al. Prevalence of open-angle glaucoma among adults in The United States. Arch Ophthalmol 2004; 122:532-8. |
Gills, “Cyclodialysis Implants in Human Eyes” Am J Ophth 61:1966,841-846. |
Goldberg “Management Of Uncontrolled Glaucoma With The Molteno System” Australian and New Zealand Journal of Ophthalmology 1987; 15:97-107. |
Gordon Mo, Kass. MA, for the Ocular Hypertension Treatment Study Group. The Ocular Hypertension Treatment Study. Design and baseline description of the participants. Arch Ophthalmol 1999:573-83. |
Grant, W.M. , MD, Further Studies on Facility of Flow Through the Trabecular Meshwork, A.M.A. Archives of Ophthalmololgy, Oct. 1958, vol. 60, pp. 523-533. |
Harper SL, Foster CS. Intraocular lens explantation in uveitis. Int. Ophthalmol Clin. 2000 Winter; 40(1):107-16. |
Harrington “Cataract and Glaucoma. Management of the coexistent conditions and a description of a new operation combining lens extraction with reverse cyclodialysis.” Am J Ophthalmol. May 1966 ;61(5.2):1134-40. |
Heijl A, Leske MC, Bengtsson B, et al for the Early Manifest Glaucoma Trial Group. Reduction of intraocular pressure and glaucoma progression. Results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 2002; 120:1268-79. |
Javitt JC, Chiang YP. Preparing for managed competition. Utilization of ambulatory eye care visits to ophthalmologists. Arch Ophthalmol 1993; 111:1034-5. |
Jay Jl, Allan D. The benefit of early trabeculectomy versus conventional management in primary open-angle glaucoma relative to severity of disease. Eye 1989; 3:528-35. |
Kass MA, Heuer DK, Higginbotham EJ, et al for the Ocular Hypertension Treatment Study Group. The Ocular HypertensionTreatment Study. A randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120:701-13. |
Klemm et al. “Die Ultraschallbiomikroskopie als Kriterium der Funktionsprüfung des suprachorioidalen Spaltes nach kammerwinkelchirurgischen Eingriffen (Ultrasound Biomicroscopic Imaging for Assessment of the Suprachoroidal Cleft after Angle Surgery)” Klinische Monatsblätter für Augenheilkunde 1997; 210:74-77 [Article in German with English summary included]. |
Krejci L. “Microdrainage of anterior chamber of eye glaucoma operation using hydron capillary drain. ” Acta Univ Carol Med Monogr. 1974;(61):1-90. |
Kupfer “Studies on intraocular pressure. I. A technique for polyethylene tube implantation into the anterior chamber of the rabbit.” Arch Ophthalmol. Apr. 1961; 65:565-70. |
La Rocca “Gonioplasty in Glaucoma*A Preliminary Report” Br J Ophth 46:1962, pp. 404-415. |
Law et al., “Retinal Complications After Aqueous Shunt Surgical Procedures for Glaucoma” Arch Ophthal.; Dec 1996; vol. 114:1473-1480. |
Lee Ky. Trabeculo-suprachoroidal shunt for treating recalcitrant and secondary glaucoma. Presented at the American Academy of Ophthalmology Annual Meeting, Anaheim, CA, 1991. |
Leske Mc, Heijl A, Hussein M, et al for the Early Manifest Glaucoma Trial Group. Factors for glaucoma progression and the effect of treatment. The Early Manifest Glaucoma Trial. Arch Ophthalmol Jan. 2003; 121:48-56. |
Lichter PR, Musch DC, Gillespie BW, et al and the CIGTS Study Group. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology 2001; 108:1943-53. |
Marx et al., “Use of the Ganciclovir Implant in the Treatment of Recurrent Cytomegalovirus Retinitis” Arch Ophthal.; Jul. 1996; vol. 114:815-820. |
Mcpherson “Combined Trabeculotomy and Cataract Extraction as a Single Operation*” TR. AM. OPHTH. Soc., vol. LXXIV, 1976; 251-260. |
Migdal C, Gregory W, Hitchings R. Long term functional outcome after early surgery compared with laser and medicine in open-angle glaucoma. Ophthalmology 1994; 101:1651-7. |
Miglior S, Pfeiffer N, Zeyen T et al for the European Glaucoma Prevention Study Group. Results of the European Glaucoma Prevention Study. Ophthalmology 2005; 112:366-75. |
Miglior S, Zeyen T, Pfeiffer N, et al for the European Glaucoma Prevention Study Group. The European Glaucoma Prevention Study design and baseline description of the participants. Ophthalmology 2002; 109:1612-21. |
Miki, MD et al., “Intraocular Cannula for Continuous, Chronic Drug Delivery-Histopathic Observations and Function” Arch Ophthal.; May 1985; vol. 103:712-717. |
Molteno et al. “Long tube implants in the management of glaucoma” South African Medical Journal, Jun. 26, 1976; 50(27):1062-6. |
Molteno et al. “The Vicryl tie technique for inserting a draining implant in the treatment of secondary glaucoma. ” Australian and New Zealand Journal of Ophthalmology 1986; 14:343-354. |
Moses Ra “Detachment of ciliary body-anatomical and physical considerations” Investigative Ophthalmology & Visual Science, Assoc. For Research in Vision and Ophthalmology, US, vol. 4, No. 5, Oct. 5, 1965. |
Nguyen et al., “Complications of Baerveldt Glaucoma Drainage Implants” Arch Ophthal.; May 1998; vol. 116:571-575. |
O'Brien et al. “Cyclodialysis” Arch Ophthal. 1949; 42(5):606-619. |
Olsen, Timothy W., et al., Cannulation of the Suprachoroidal Space: A Novel Drug Delivery Methodology to the Posterior Segment, American Journal of Ophthalmology, vol. 142, No. 5, Nov. 2006, pp. 777-787.e2. |
Portney Gl, “Silicone elastomer implantation cyclodialysis.” Arch Ophthalmol 1973; 89:10-12. |
Pruett et al., “The Fishmouth Phenomenon—II. Wedge Scleral Buckling” Arch Ophthal.; Oct. 1977; vol. 95:1782-1787. |
Qadeer “Acrylic Gonio-Subconjunctival Plates in Glaucoma Surgery ” Br J Ophthalmol. Jun. 1954 ; 38(6):353-356. |
Quigley Ha, Vitale S. Models of open-angle glaucoma prevalence and incidence in The United States. Invest Ophthalmol Vis Sci 1997; 38:83-91. |
Richards et al. “Artificial Drainage Tubes for Glaucoma” Am J Ophth 60:1965,405-408. |
Ritch, et al., “Uveoscleral Outflow”, the Glaucomas. St. Louis: Mosby, 1996; pp. 337-343. |
Rowan, Patrick J., MD, Combined Cyclodialysis and Cataract Surgery, Ophthalmic Surgery and Lasers, Dec. 1998, vol. 29, No. 12, pp. 962-968 (9 pages). |
Sampimon “A New Approach to Filtering Glaucoma Surgery” Ophthalmologica (Basel) 151:1966, 637-644. |
Schappert S. Office visits for glaucoma: The United States, 1991-92. Advance data from vital and health statistics. vol. 262. Hyattsville, MD: National Center for Health Statistics, 1995. |
Shaffer RN, Weiss DI. Concerning cyclodialysis and hypotony. Arch Ophthalmol 68:25,1962. |
Sommer A, Tielsch JM, Katz J, et al. Racial differences in the cause-specific prevalence of blindness in east Baltimore. N Engl J Med 1991; 325:1412-7. |
Sourdille et al. “Reticulated hyaluronic acid implant in non-perforating trabecular surgery.” J Cataract Refract Surg 25:332—339. (1999):. |
Suguro K, Toris CB, Pederson JE. Uveoscleral outflow following cyclodialysis in the monkey eye using a fluorescent tracer. Invest Ophthalmol Vis Sci 1985: 26,810. |
The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am J Ophthalmol 2000; 130:429-40. |
The Advanced Glaucoma Intervention Study (AGIS); 13. Comparison of treatment outcomes within race: 10-year results. Ophthalmology 2004; 111:651-64. |
The Glaucoma Laser Trial (GLT). 2. Results of argon laser trabeculoplasty versus topical medicines. The Glaucoma Laser Trial Research Group. Ophthalmology 1990; 97:1403-13. |
The Glaucoma Laser Trial (GLT) and Glaucoma Laser Trial Follow-up Study: 7. Results. Am J Ophthahnol 1995; 120:718-31. |
Tielsch JM, Sommer A, Katz J, et al. Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore Eye Survey. JAMA 1991; 266:369-74. |
Toris et al. “Effect of intraocular pressure on uveoscleral outflow following cyclodialysis in the monkey eye.” Investigative Ophthalmology & Visual Science. 26 (1985) 1745-1749. |
Toris CB. Extravascular albumin concentration of the uvea. Invest Ophthalmol Vis Sci 1990; 31:43. |
Trigler L, Proia AD, Freedman SF. Fibrovascular ingrowth as a cause of Ahmed glaucoma valve failure in children. Am J Ophthalmol. Feb 2006; 141(2):388-9. |
Troncoso, Manuel U., Tantalum implants for inducing hypotny, Am Journal of Ophthalmology, vol. 32(4):499-508 (1949). |
Veen et al. “The gonioseton, a surgical treatment for chronic glaucoma” Documenta Ophthalmologica vol. 75, No. 3-4, 365-375. (1990). |
Wagner, Justin A., et al., Characterization of Uveoscleral Outflow in Enucleated Porcine Eyes Perfused under Constant Pressure, Invest Ophthalmol Vis Sci., Published in edited form in Sep. 2004, vol. 45, Issue 9, pp. 3203-3206. |
Wamsley S, Moster Mr, Rai S, Alvim Hs, Fontanarosa J. Results of the use of the Ex-Press miniature glaucoma implant in technically challenging, advanced glaucoma cases: a clinical pilot study. Am J Ophthalmol. Dec. 2004; 138(6):1049-51. |
Hoskins, et al., “Aqueous Humor Outflow”, Becker—Shaffer's Diagnosis and Therapy of the Glaucomas, 6th Edition, Chapter 4, pp. 41-66, 1989. |
Number | Date | Country | |
---|---|---|---|
20070233037 A1 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
60759835 | Jan 2006 | US | |
60783632 | Mar 2006 | US | |
60824552 | Sep 2006 | US |