This disclosure generally relates to a device, system, and method for treating obstructed vessels. More particularly, the disclosure relates to systems and devices that include an inflatable drug coated balloon catheter configured to vibrate and methods of use.
There are many procedures and systems for treating vascular or venous obstructions that are occluded with atheroma, plaque, calcific material, and the like. Such obstructions are often referred to as vascular occlusions. Partial and total occlusions can be treated, for example, by a surgical bypass procedure or a catheter-based intervention such as angioplasty, balloon angioplasty, stenting, and the like.
Ultrasound systems and devices have been proposed for use in ablating or removing obstructive material from blood vessels. Ultrasound catheters have been utilized to ablate various types of obstructions from blood vessels of humans and animals. Successful applications of ultrasound energy to smaller blood vessels, such as the coronary arteries, require the use of relatively small diameter ultrasound catheters which are sufficiently small and flexible to undergo transluminal advancement through the tortuous vasculature of the aortic arch and coronary tree. These ultrasound catheters incorporate a very small diameter ultrasound transmission member which extends through such catheters.
The devices and methods of the present invention have several features, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this invention as expressed by the claims which follow, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of Certain Preferred Embodiments” one will understand how the features of this invention provide several advantages over traditional procedures relating to the treatment of vascular and/or venous occlusions.
The following description and the accompanying figures describe and show the preferred embodiments as well as demonstrate several possible configurations for a mechanical vibration drug delivery balloon, system, and methods of use. The illustrations are not intended to limit the disclosed aspects and features of the invention to the specified embodiments or to usage only with the illustrated devices. Those of skill in the art will recognize that the disclosed aspects and features of the invention are not limited to any particular embodiment of a mechanical vibration drug delivery balloon, which may include one or more of the inventive aspects and features described herein.
Percutaneous transluminal angioplasty (“PTA”) and percutaneous transluminal coronary angioplasty (“PTCA”) may be used to open stenotic or occluded vessels. In general, a balloon is placed in the stenotic segment of the vessel and then expanded. The expanded balloon re-opens the vessel lumen. The balloon is then deflated and removed. A stent may be implanted. However, elastic recoil and restenosis often occurs after such procedures.
Stents, drug-eluting stents, drug-eluting balloons, and the like may help prevent restenosis. Drug-eluting stents and balloons can deliver drugs and/or therapeutics to the vessel wall which can help prevent restenosis. The effectiveness of drug-eluting balloons often depends on the pressure with which the balloon is inflated and/or the length of time the inflated balloon contacts the vessel wall.
According to the present invention, a drug-eluting or drug-coated balloon can increase the effectiveness of drug delivery to the sub-layers of the vessel wall. The systems, methods, and devices disclosed herein enable the increased delivery of a therapeutic to the target area (i.e. the vessel wall). In some embodiments, ultrasound energy is used to vibrate a drug-coated balloon. The drug-coated balloon may be inflated to contact the interior walls of a vessel in need of treatment. The drug-coated balloon may be coupled with a mechanical vibration transmission wire. The drug-coated balloon may then be vibrated. The vibration can increase the amount of drug transmitted from the surface of the balloon to the interior of the vessel walls, thus increasing the effectiveness of the treatment and further preventing re-stenosis. The drug coating may be paclitaxel. In sum, the systems, devices, and methods disclosed herein provide for a drug-coated balloon to be longitudinally vibrated at ultrasonic frequencies in order to deliver anti-stenosis drugs such as paclitaxel to deeper cellular layers in the vessel.
To assist in the description of these components of the systems, methods, and devices disclosed herein, the following coordinate terms are used. A “longitudinal axis” is generally parallel to a portion of the drug delivery balloon device as well as parallel to the axis of a vessel through which the drug delivery balloon device can travel. A “lateral axis” is normal to the longitudinal axis. A “transverse axis” extends normal to both the longitudinal and lateral axes. In addition, as used herein, “the longitudinal direction” refers to a direction substantially parallel to the longitudinal axis; “the lateral direction” refers to a direction substantially parallel to the lateral axis; and “the transverse direction” refers to a direction substantially parallel to the transverse axis. The term “axial” as used herein refers to the axis of the drug delivery balloon device, and therefore is substantially synonymous with the term “longitudinal” as used herein. Also, the terms “proximal” and “distal,” which are used to describe the present system, are used consistently with the description of the exemplary applications (i.e., the illustrative examples of the use applications). Thus, proximal and distal are also used in reference to the respective ends of the drug delivery balloon device.
To facilitate a complete understanding of the embodiments, the remainder of the detailed description describes the drug delivery balloon systems, methods, and devices, with reference to the Figures; wherein like elements among the embodiments are referenced with like numerals throughout the following description.
The ultrasound transducer 126 is electrically coupled to a signal generator 127. The ultrasound device 120 may include an elongate body having a proximal portion 122 and a distal portion 121. The ultrasound device 120 may be an ultrasonic energy delivery member, or a catheter having at least one lumen extending longitudinally with an ultrasound transmission member extending therethrough.
The signal generator 127 can send electrical signals to the ultrasound transducer 126. The ultrasound transducer 126 can then convert the electrical signals to ultrasonic vibrations. The ultrasonic vibrations can then be transmitted through the ultrasound transmission member and the drug delivery balloon, thus delivering ultrasonic vibrations to a treatment location. In some embodiments, ultrasonic vibrations are longitudinal ultrasonic vibrations. The treatment location can be an area of a vessel and/or vessel wall that has stenosis or restenosis. Vessels can include veins and arteries. The methods and devices described herein can also be applied to other body lumens and organs, for example, biliary ducts.
The ultrasound device 120 may also include a Y-connector 123 that is operatively coupled to the ultrasound transducer 126. For example, the Y-connector 123 may be coupled to the ultrasound transducer 126 by way of a device knob 124 and a slide collar 125. The ultrasound transducer 126 may be connected to a signal generator 127, which may be coupled to a foot actuated on-off switch 128. The signal generator 127 can be supported by an IV pole 129. When the on-off switch 128 is depressed, the signal generator 127 can send an electrical signal to the ultrasound transducer 126, which converts the electrical signal to ultrasound energy. Such ultrasound energy can subsequently pass through the ultrasound device 120 and be delivered to the distal portion 121. A conventional guidewire (not shown) may be utilized in conjunction with the device 120.
Continuing with
Generally, the ultrasonic device 120 may include any suitable number of side-arms or ports for passage of a guidewire, application of suction, infusing and/or withdrawing irrigation fluid, dye and/or the like, or any other suitable ports or connections. Also, the device may be used with any suitable ultrasound transducer 126, signal generator 127, coupling device(s) and/or the like. Therefore, the exemplary embodiment shown in
The device knob 124 can include a proximal housing 208. The housing 208 may include one or more surface features 212 for increasing the outer surface area of housing 208. Increased surface area can enhance the ability of housing 208 to dissipate heat generated by ultrasound transmission member 230. Surface features 212 may be of any suitable size or shape and can include, for example, ridges, jags, undulations, grooves or the like. Any suitable number of surface features 212 may be used. Additionally, the housing 208 may be made of one or more heat dissipating materials, such as aluminum, stainless steel, any other conductive metal(s), or any suitable non-metallic conductive material.
Continuing with
The catheter body 204 may be a generally flexible, tubular, elongate member, having any suitable diameter and length for reaching a vascular occlusion. In some embodiments, for example, the catheter body 204 has a length in the range of about 100-200 cm. In one embodiment, the catheter body 204 has an outer diameter in the range of about 0.5-5.0 mm. In other embodiments, for use in relatively small vessels for example, the catheter body 204 may have an outer diameter in the range of about 0.25-2.5 mm. However, any other suitable length or diameter may be used without departing from the scope of the present invention. Examples of catheter bodies similar to those which may be used in the present invention are described in U.S. Pat. Nos. 5,267,954 and 5,989,208, which are herein incorporated by reference in their entireties. The catheter body 204 can insulate the ultrasound transmission member 230 and prevent an operator's hands from contacting the ultrasound transmission member 230 during use of the device. The catheter body 204 can also serve as an inflation lumen for the drug delivery balloon 200.
The inner cavity 244 may include one or more vibration absorption members 250. The vibration absorption members 250 can increase the ease of use by decreasing vibrations transmitted from the ultrasound transmission member 230 through the housing 208. The sonic connector 252 can facilitate the coupling of the ultrasound transmission member 230 to an ultrasound transducer device 126. The ultrasound transmission member 230 may extend distally from the sonic connector 252, through the inner cavity 244, Y-connector 216, catheter body 204, and drug delivery balloon 200, terminating at the distal tip 201.
Additional details of ultrasound systems and devices that include ultrasound transmission members (and their distal tips), ultra-sound transducers, sonic connectors and their connections to ultrasound devices are disclosed in U.S. Pat. Nos. 6,007,514, 6,427,118; 6,702,748; 6,855,123; 6,942,620; 6,942,677; 7,137,963; 7,220,233; 7,297,131; 7,335,180; 7,393,338; 7,540,852, 7,604,608 and in U.S. Pat. Pub. Nos. 2008/0108937, 2008/0287804, 2010/0317973, the disclosures of which are hereby incorporated by reference in their entireties.
Continuing with
Any suitable fluid may be passed through the sidearm 132 and the catheter body 204 and into the drug delivery balloon 200. Suitable fluids include, for example, refrigerated fluids, lubricious fluids, super-saturated saline or contrast/saline mixtures, or the like. Cooling and/or lubricating the ultrasound transmission member 230 and support wires 320 in the drug delivery balloon 200 may reduce friction and/or wear and tear of the ultrasound transmission member 230, thus prolonging the ultrasound transmission member's useful life and enhancing overall performance.
The drug delivery balloon 200 may be coupled to the distal portion 121 of the ultrasound device 120. The drug delivery balloon 200 may include a distal tip 201 and a drug-coated balloon wall 300. The distal tip 201 may include a guidewire lumen. In some embodiments, the distal tip 201 is configured to penetrate and/or cross a total occlusion.
As shown in
The drug-coated balloon wall 300 can be made from materials such as Nylon, Pebax, PET, Polyurethane and other similar materials known in the art. An exterior surface of the drug-coated balloon wall 300 may include at least one active ingredient and/or therapeutic. In some embodiments, the active ingredient is a drug effective to help prevent re-stenosis. In some embodiments the exterior surface of the drug-coated balloon wall 300 is hydrophilic or made hydrophilic by treatment with a hydrophilizing agent. The exterior surface of drug-coated balloon wall 300 may also include one or more excipients and/or enhancers. Methods known in the art can be used to coat at least a portion of the exterior surface of the drug-coated balloon wall 300 and/or the entire exterior surface the drug-coated balloon wall 300.
Any suitable drug may be included on the drug-coated balloon wall 300. Such drugs may include anti-stenosis or anti-proliferation drugs such as sirolimus, paclitaxel, zotarolimus, everolimus, Biolimus A9 and the like.
The support wires 320 and the ultrasound transmission member 230 may be formed of any material capable of effectively transmitting ultrasonic energy from the ultrasound transducer to the distal end 201 of the ultrasound transmission member 230. These materials include, but are not limited to, metals such as pure titanium or aluminum, or titanium or aluminum alloys, such as NiTi.
The ultrasound transmission member 230 may include one or more tapered regions and/or steps. The tapered regions and steps may increase and/or decrease in width or diameter along the length of the ultrasound transmission member 230 in the distal direction. In one embodiment, the ultrasound transmission member 230 includes at least one portion tapered in a direction extending distally from the proximal end. In another embodiment, the ultrasound transmission member 230 is continuously tapered in a direction extending distally from the proximal end. In one embodiment, the ultrasound transmission member 230 tapers in diameter from about 800 μm proximally, to about 200 μm distally.
In some embodiments, the ultrasound transmission member 230, wire, or wave guide extends longitudinally through a lumen of the catheter body 204. Ultrasonic energy can travel through the ultrasound transmission member 230 from an ultrasound transducer 126 connected to the proximal end of housing 208 to the distal portion of the device. The ultrasound transmission member 230 may operate at frequencies between about 10 Hz to about 20 MHz. In one embodiment, the frequency of vibration is 20 kHz. In one embodiment, the frequency of vibration is 17 kHz. The ultrasound transmission member 230 may operate in continuous mode, pulse mode, or combination of both.
As shown in
Turing to
As shown in
As illustrated in
The method can continue as shown in
The catheter body 204, ultrasound transmission member 230, and/or support wires 320 imbedded within the drug-coated balloon wall 300 may include one or more visualization markers. In some embodiments, the visualization markers include radiopaque markers. The visualization markers can help determine the position and orientation of the drug delivery balloon 900.
The method can continue as shown in
The method continues by applying ultrasonic vibrations to the drug delivery balloon 900. In one embodiment, the system 100 of
In some embodiments, the ultrasound transmission member 230 vibrates longitudinally. The one or more support wires 320 imbedded within the drug-coated balloon wall 300, coupled to the ultrasound transmission member 230, thus vibrate longitudinally as well. The relatively thin support wires 320, in comparison to the relatively thick ultrasound transmission member 230, can communicate high frequency vibrations across the surface of the drug-coated balloon wall 300. Thus, the inflated drug-coated balloon wall 300 can vibrate longitudinally while contacting the partial arterial occlusion 650 and/or the interior vessel wall 610. In this way, the drug can be physically rubbed off of the drug-coated balloon wall 300. In addition, the high frequency vibration can cause the drug to enter the layers of the vessel wall (i.e. the intima 602, the intermedia 603, and/or the adventitia 604). The ultrasonic vibrations may also cause cavitational effects which may also increase the amount of drug delivered to the interior of the vessel walls.
In some embodiments, when ultrasound energy travels through the ultrasound device and to the drug delivery balloon 900 there is an initial period of time during which the drug delivery balloon 900 vibrates in a more random and aggressive manner than during later time periods in the same activation cycle. After the initial period of time, the drug delivery balloon 900 settles into a steady state. In other words, when the ultrasonic energy first arrives at the drug delivery balloon 900, the longitudinal vibration may be initial absorbed while high frequency vibrations are transmitted to the support wires 320 and drug-coated balloon wall 300, thus vibrating or “shocking” the drug off of the balloon. As such, in some embodiments, the ultrasonic energy is provided in a pulsed or “on-off” manner. For example, in some embodiments, ultrasonic energy is delivered for short periods of time, followed by short periods of inactivation. In some embodiments, ultrasonic energy is delivered for a maximum of 5 minutes with automatic time-outs every 30 seconds.
As shown in
After ultrasound vibration is applied to the drug delivery balloon 900; the drug delivery balloon 900 may be deflated and removed. Fluid can be removed from the interior of the balloon and out through the catheter body 204. In some embodiments, a stent is placed in the vessel.
Turning to
The various embodiments described above thus provide a number of ways to provide for treatment of occluded vessels. In addition, the techniques described may be broadly applied for use with a variety of medical procedures. Of course, it is to be understood that not necessarily all such objectives or advantages may be achieved in accordance with any particular embodiment using the systems described herein. Thus, for example, those skilled in the art will recognize that the systems may be developed in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objectives or advantages as may be taught or suggested herein.
Furthermore, the skilled artisan will recognize the interchangeability of various features from different embodiments. Although these techniques and devices have been disclosed in the context of certain embodiments and examples, it will be understood by those skilled in the art that these techniques and devices may be extended beyond the specifically disclosed embodiments to other embodiments and/or uses and obvious modifications and equivalents thereof. Additionally, it is contemplated that various aspects and features of the invention described can be practiced separately, combined together, or substituted for one another, and that a variety of combination and subcombinations of the features and aspects can be made and still fall within the scope of the invention. Thus, it is intended that the scope of the systems disclosed herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.
This application is a continuation of U.S. patent application Ser. No. 16/295,703, filed Mar. 7, 2019, now U.S. Pat. No. 11,134,966, which is a division of U.S. patent application Ser. No. 14/758,557, filed Jun. 29, 2015, now U.S. Pat. No. 10,245,051, which is a U.S. national stage application under 35 U.S.C. § 371 of International Application No. PCT/US2013/077232, filed Dec. 20, 2013, which claims priority under 35 U.S.C. § 119 (e) to U.S. Provisional Application No. 61/746,807, filed Dec. 28, 2012, entitled “DRUG DELIVERY VIA MECHANICAL VIBRATION BALLOON,” which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4217786 | Koji et al. | Aug 1980 | A |
4779624 | Yokoi | Oct 1988 | A |
4901729 | Saitoh | Feb 1990 | A |
4961424 | Kubota et al. | Oct 1990 | A |
5267954 | Nita | Dec 1993 | A |
5458568 | Racchini et al. | Oct 1995 | A |
5498238 | Shapland et al. | Mar 1996 | A |
5569198 | Racchini | Oct 1996 | A |
5609606 | O'Boyle | Mar 1997 | A |
5713848 | Dubrul et al. | Feb 1998 | A |
5722979 | Kusleika | Mar 1998 | A |
5735811 | Brisken | Apr 1998 | A |
5846218 | Brisken et al. | Dec 1998 | A |
5989208 | Nita | Nov 1999 | A |
6007514 | Nita | Dec 1999 | A |
6176842 | Tachibana et al. | Jan 2001 | B1 |
6210356 | Anderson et al. | Apr 2001 | B1 |
6427118 | Suzuki | Jul 2002 | B1 |
6461383 | Gesswein et al. | Oct 2002 | B1 |
6702748 | Nita et al. | Mar 2004 | B1 |
6855123 | Nita | Feb 2005 | B2 |
6942620 | Nita et al. | Sep 2005 | B2 |
6942677 | Nita et al. | Sep 2005 | B2 |
7137963 | Nita et al. | Nov 2006 | B2 |
7153315 | Miller | Dec 2006 | B2 |
7220233 | Nita et al. | May 2007 | B2 |
7297131 | Nita | Nov 2007 | B2 |
7335180 | Nita et al. | Feb 2008 | B2 |
7393338 | Nita | Jul 2008 | B2 |
7540852 | Nita et al. | Jun 2009 | B2 |
7604608 | Nita et al. | Oct 2009 | B2 |
7803149 | Bates et al. | Sep 2010 | B2 |
7901378 | Solar et al. | Mar 2011 | B2 |
7951111 | Drasler et al. | May 2011 | B2 |
8133236 | Nita | Mar 2012 | B2 |
8226566 | Nita | Jul 2012 | B2 |
8246643 | Nita | Aug 2012 | B2 |
20010051784 | Brisken et al. | Dec 2001 | A1 |
20020138036 | Babaev | Sep 2002 | A1 |
20040210134 | Hynynen et al. | Oct 2004 | A1 |
20040210135 | Hynynen et al. | Oct 2004 | A1 |
20040249401 | Rabiner et al. | Dec 2004 | A1 |
20070055154 | Torbati | Mar 2007 | A1 |
20070282407 | Demarais et al. | Dec 2007 | A1 |
20080097281 | Zusman et al. | Apr 2008 | A1 |
20100076299 | Gustus et al. | Mar 2010 | A1 |
20100125239 | Perry et al. | May 2010 | A1 |
20100292641 | Wijay | Nov 2010 | A1 |
20110082534 | Wallace | Apr 2011 | A1 |
20110264039 | Thielen et al. | Oct 2011 | A1 |
20120215099 | Wallace | Aug 2012 | A1 |
20130226163 | Peled | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
10146011 | Apr 2003 | DE |
9401047 | Jan 1994 | WO |
0160441 | Aug 2001 | WO |
2011094379 | Aug 2011 | WO |
2012151048 | Nov 2012 | WO |
20140105754 | Jul 2014 | WO |
Number | Date | Country | |
---|---|---|---|
20220022902 A1 | Jan 2022 | US |
Number | Date | Country | |
---|---|---|---|
61746807 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14758557 | US | |
Child | 16295703 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16295703 | Mar 2019 | US |
Child | 17462130 | US |