Drug eluting medical device

Information

  • Patent Grant
  • 11571498
  • Patent Number
    11,571,498
  • Date Filed
    Monday, November 30, 2020
    3 years ago
  • Date Issued
    Tuesday, February 7, 2023
    a year ago
Abstract
The present disclosure relates to medical devices, and methods for producing and using the devices. In embodiments, the medical device may be a buttress including a porous substrate possessing a therapeutic layer of a chemotherapeutic agent and optional excipient(s) thereon. By varying the form of chemotherapeutic agents and excipients, the medical devices may be used to treat both the area to which the medical device is attached as well as tissue at a distance therefrom.
Description
BACKGROUND

The present disclosure relates to medical devices, including surgical devices such as buttresses, for use with wound closure devices. Medical devices formed of the materials of the present disclosure are capable of delivering drugs to a patient.


Surgical stapling instruments are employed by surgeons to sequentially or simultaneously apply one or more rows of fasteners, e.g., staples or two-part fasteners, to body tissue for the purpose of joining segments of body tissue together. Such instruments generally include a pair of jaws or finger-like structures between which the body tissue to be joined is placed. When the stapling instrument is actuated, or “fired”, longitudinally moving firing bars contact staple drive members in one of the jaws. The staple drive members push the surgical staples through the body tissue and into an anvil in the opposite jaw, which forms the staples. If tissue is to be removed or separated, a knife blade can be provided in the jaws of the device to cut the tissue between the lines of staples.


When stapling certain tissue, such as lung, esophageal, intestinal, duodenal, and vascular tissues, or relatively thin or fragile tissues, it may be desirable to seal the staple line against air or fluid leakage. Preventing or reducing air or fluid leakage can significantly decrease post-operative recovery time. Additionally, it may be desirable to reinforce the staple line against the tissue to prevent tears in the tissue or pulling of the staples through the tissue. One method of preventing these tears involves the placement of a biocompatible fabric reinforcing material, sometimes referred to herein, in embodiments, as a “buttress” material, between the staple and the underlying tissue.


For some surgical procedures, it may also be desirable to introduce therapeutic agents at the site of treatment. For example, low dose radioisotope brachytherapy seeds can be implanted into a patient to treat micrometastatic cancer cells that may be present in tissue near the site of tumor transection in lung, bowel, or other organs.


Improved surgical repair materials, capable of use as buttresses for sealing and/or reinforcing staple lines against tissue, and improved methods for introducing therapeutic agents to a patient, remain desirable.


SUMMARY

The present disclosure relates to medical devices, including surgical buttresses, which can be used with tissue fixation devices, and methods of using the same. Other medical devices not used with tissue fixation devices are contemplated as well, such as tissue supports or other structures.


In embodiments, a medical device of the present disclosure includes a porous substrate and a therapeutic layer on at least a portion of the porous substrate. The therapeutic layer includes a chemotherapeutic agent alone or in combination with an excipient such as 2-hydroxypropyl-beta-cyclodextrin, methyl-ß-cyclodextrin, sodium dodecyl sulfate, octyl glucoside, sorbitan monooleate, sorbitan monolaurate, polyethoxylated fatty acid esters of sorbitan, sodium chloride, urea, oleic acid, citric acid, ascorbic acid, butylated hydroxytoluene, D-sorbitol, and combinations thereof, wherein the therapeutic layer has a surface to volume ratio from about 500 mm−1 to about 90,000 mm−1. A very high surface to volume ration for the therapeutic layer, providing a very high surface area for eluding the chemotherapeutic agent, while maintaining a low percentage of the weight of the coated buttress has been achieved. In any of the embodiments disclosed herein, the therapeutic layer can have the chemotherapeutic agent without an excipient.


In some embodiments, the chemotherapeutic agent may be paclitaxel and derivatives thereof, docetaxel and derivatives thereof, abraxane, tamoxifen, cyclophosphamide, actinomycin, bleomycin, dactinomycin, daunorubicin, doxorubicin, doxorubicin hydrochloride, epirubicin, mitomycin, methotrexate, fluorouracil, gemcitabine, gemcitabine hydrochloride, carboplatin, carmustine, methyl-CCNU, cisplatin, etoposide, camptothecin and derivatives thereof, phenesterine, vinblastine, vincristine, goserelin, leuprolide, interferon alfa, retinoic acid, nitrogen mustard alkylating agents, piposulfan, vinorelbine, irinotecan, irinotecan hydrochloride, vinblastine, pemetrexed, sorafenib tosylate, everolimus, erlotinib hydrochloride, sunitinib malate, capecitabine oxaliplatin, leucovorin calcium, bevacizumab, cetuximab, ramucirumab, trastuzumab, and combinations thereof.


In certain embodiments, the chemotherapeutic agent includes a polymorph of paclitaxel. Suitable polymorphs of paclitaxel include amorphous paclitaxel, crystalline paclitaxel dihydrate, anhydrous paclitaxel, and combinations thereof.


In some embodiments, the paclitaxel is a combination of amorphous paclitaxel and crystalline paclitaxel dihydrate. In embodiments, the amorphous paclitaxel is released from the medical device over a period of time from about 24 hours to about 168 hours, and the crystalline paclitaxel dihydrate is released from the medical device over a period of time from about 1 week to about 6 weeks.


In embodiments, the excipient includes urea, methyl-ß-cyclodextrin, oleic acid, polysorbate 80, D-sorbitol, octylglucoside, and combinations thereof. In any of the embodiments disclosed herein, the therapeutic layer includes a chemotherapeutic agent without an excipient.


In certain embodiments, the medical device includes surgical buttresses, hernia patches, staples, tacks, stents, and tissue scaffolds.


Other medical devices of the present disclosure include a porous substrate and a therapeutic layer on at least a portion of the porous substrate, the therapeutic layer including amorphous paclitaxel and crystalline paclitaxel dihydrate alone or in combination with an excipient such as urea, methyl-ß-cyclodextrin, oleic acid, polysorbate 80, D-sorbitol, octylglucoside, and combinations thereof. The therapeutic layer has a surface to volume ratio from about 500 mm−1 to about 90,000 mm−1.


In embodiments, the amorphous paclitaxel is released from the medical device over a period of time from about 24 hours to about 168 hours, and the crystalline paclitaxel dihydrate is released from the medical device over a period of time from about 1 week to about 6 weeks.


In some embodiments, the excipient is present in an amount from about 0.014% to about 14% by weight of the coated buttress.


In certain embodiments, the amorphous paclitaxel and crystalline paclitaxel dihydrate are present in an amount from about 0.1% to about 50% by weight of the coated buttress.


In embodiments, the medical device has a pore volume from about 65% to about 85%.


Methods for treating tissue with these medical devices are also provided. Where the medical device is a buttress, the method includes applying the medical device to tissue with a fixation device such as staples, tacks, clips, sutures, adhesives, and combinations thereof.


Methods for treating cancer with these devices are also provided. In embodiments, a method of treating cancer, in accordance with the present disclosure includes introducing to a patient a surgical stapler having a buttress thereon, the buttress including a coating of a drug; and using the stapler to remove an undesired portion of an organ and emplace the buttress in a remaining portion of the organ, including stapling the buttress to tissue and cutting the tissue.


In embodiments, the stapler is used on the lung.


In some embodiments, the buttress used in the method is made from a non-woven material coated with a chemotherapy drug.


In certain embodiments, the chemotherapy drug used in the method includes paclitaxel and derivatives thereof, docetaxel and derivatives thereof, abraxane, tamoxifen, cyclophosphamide, actinomycin, bleomycin, dactinomycin, daunorubicin, doxorubicin, doxorubicin hydrochloride, epirubicin, mitomycin, methotrexate, fluorouracil, gemcitabine, gemcitabine hydrochloride, carboplatin, carmustine, methyl-CCNU, cisplatin, etoposide, camptothecin and derivatives thereof, phenesterine, vinblastine, vincristine, goserelin, leuprolide, interferon alfa, retinoic acid, nitrogen mustard alkylating agents, piposulfan, vinorelbine, irinotecan, irinotecan hydrochloride, vinblastine, pemetrexed, sorafenib tosylate, everolimus, erlotinib hydrochloride, sunitinib malate, capecitabine oxaliplatin, leucovorin calcium, bevacizumab, cetuximab, ramucirumab, trastuzumab, and combinations thereof.


In embodiments, the coating on the buttress used in the method does not include an excipient.


In embodiments, the buttress used in the method is a non-woven surgical buttress formed from fibers of polyglycolic acid, polylactic acid, or glycolide trimethylene carbonate. In some embodiments, the non-woven material is porous.


In certain embodiments, the thickness of the buttress used in the method is from about 0.05 mm to about 0.5 mm.


In embodiments, the drug used in the method is paclitaxel. In some embodiments, the paclitaxel is amorphous. In other embodiments, the drug includes amorphous paclitaxel and crystalline paclitaxel.


In embodiments, medical devices of the present disclosure, such as a buttress, include a porous substrate and a therapeutic layer on at least a portion of the porous substrate, the therapeutic layer including a chemotherapeutic agent, the therapeutic layer having a surface to volume ratio from about 1,100 mm−1 to about 87,000 mm−1, wherein the therapeutic agent is present in amounts from about 1% to about 10% by weight of the coated buttress. In some embodiments, the therapeutic layer does not include any additional excipients.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the presently disclosed specimen retrieval device are described herein with reference to the drawings wherein:



FIG. 1 is a view of a buttress that has been treated in accordance with an embodiment of the present disclosure, showing how the buttress was cut for testing;



FIG. 2 is an alternate view of a buttress that has been treated in accordance with an embodiment of the present disclosure, showing a different pattern for cutting the buttress for testing;



FIG. 3 is a graph showing the % weight/weight paclitaxel found on the individual segments of buttress as depicted in FIG. 2 after application of paclitaxel thereto;



FIG. 4 is a graph showing the average cumulative paclitaxel eluted from buttresses with various coatings;



FIG. 5 is a depiction of a lung sectioning scheme for sampling tissue adjacent a buttress of the present disclosure after its placement in a dog;



FIG. 6 is a graph depicting the elution curves for formulations 9-16 of the present disclosure.



FIG. 7 is a graph depicting plasma levels of paclitaxel after placement of two buttresses of the present disclosure in a dog;



FIG. 8 is a graph summarizing the paclitaxel concentration in canine pleural fluid for days 0-7 after implantation, compared with observed clinical plasma levels;



FIG. 9 is a graph showing the concentration of various paclitaxel formulations of the present disclosure in the dog lung after 7 days, with varying distances from the staple line; and



FIG. 10 is a graph showing paclitaxel concentrations of paclitaxel formulations in other tissues (mediastinum, chest wall, pericardium, diaphragm, mediastinal lymph node, bronchus, esophagus and heart) after 7 days.





DETAILED DESCRIPTION

Various exemplary embodiments of the present disclosure are discussed herein below in terms of buttresses for use with tissue fixation devices, in embodiments surgical staples. While the below disclosure discusses in detail the use of these buttresses with staples, it will be appreciated that medical devices of the present disclosure include a range of buttressing materials and film-based medical devices that are used to mechanically support tissues, reinforce tissues along staple or suture lines, and decrease the incidence of fluid leakage and/or bleeding of tissues. For example, other suitable medical devices include hernia patches, staples, tacks, stents, and tissue scaffolds.


Medical devices of the present disclosure may be used with any fixation device utilized to close any wound, defect, and/or opening in tissue. Thus, while surgical buttresses are discussed in conjunction with a surgical stapling apparatus, it is envisioned that other fixation devices, such as tacks, sutures, clips, adhesives and the like, may be utilized in conjunction with medical devices of the present disclosure to affix the medical devices to tissue. Medical devices that are not used with a tissue fixation device, or other tissue support devices, are contemplated.


In embodiments, a buttress of the present disclosure may have a therapeutic layer or coating thereon which includes therapeutic agents for further treatment of tissue at or near the site where the surgical buttress of the present disclosure is placed. Thus, the present disclosure describes surgical buttresses, and methods and mechanisms for using the same, for the targeted delivery of therapeutic agents to a patient.


In the following discussion, the terms “proximal” and “trailing” may be employed interchangeably, and should be understood as referring to the portion of a structure that is closer to a clinician during proper use. The terms “distal” and “leading” may also be employed interchangeably, and should be understood as referring to the portion of a structure that is further from the clinician during proper use. As used herein, the term “patient” should be understood as referring to a human subject or other animal, and the term “clinician” should be understood as referring to a doctor, nurse or other care provider and may include support personnel.


Medical devices of the present disclosure, including surgical buttresses, may be fabricated from a biocompatible substrate material which is a bioabsorbable, non-absorbable, natural, or synthetic material. The medical device may also be formed of materials that are porous or non-porous. It should of course be understood that any combination of porous, non-porous, natural, synthetic, bioabsorbable, and/or non-bioabsorbable materials may be used to form a medical device of the present disclosure.


In embodiments, the medical devices of the present disclosure, such as a surgical buttress, may be biodegradable, so that the device does not have to be retrieved from the body. The term “biodegradable” as used herein is defined to include both bioabsorbable and bioresorbable materials. By biodegradable, it is meant that the medical device decomposes or loses structural integrity under body conditions (e.g., enzymatic degradation or hydrolysis), or is broken down (physically or chemically) under physiologic conditions in the body such that the degradation products are excretable or absorbable by the body.


Non-limiting examples of materials which may be used in forming a medical device of the present disclosure, for example a surgical buttress, include, but are not limited to, poly(lactic acid), poly(glycolic acid), poly(trimethylene carbonate), poly(dioxanone), poly(hydroxybutyrate), poly(phosphazine), polyethylene terephthalate, polyethylene glycols, polyethylene oxides, polyacrylamides, polyhydroxyethylmethylacrylate, polyvinylpyrrolidone, polyvinyl alcohols, polyacrylic acid, polyacetate, polycaprolactone, polypropylene, aliphatic polyesters, glycerols, poly(amino acids), copoly(ether-esters), polyalkylene oxalates, polyamides, poly(iminocarbonates), polyalkylene oxalates, polyoxaesters, polyorthoesters, polyphosphazenes, and copolymers, block copolymers, homopolymers, blends and combinations thereof.


In embodiments, natural biological polymers may be used in forming a medical device of the present disclosure. Suitable natural biological polymers include, but are not limited to, collagen, gelatin, fibrin, fibrinogen, elastin, keratin, albumin, cellulose, oxidized cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxyethyl cellulose, carboxymethyl cellulose, chitin, chitosan, and combinations thereof. In addition, natural biological polymers may be combined with any of the other polymeric materials described herein to produce a medical device of the present disclosure.


In embodiments, a medical device of the present disclosure, such as a surgical buttress, may be formed of porous material(s). Any porous portion of a medical device of the present disclosure may have openings or pores over at least a part of a surface thereof. Suitable porous materials include, but are not limited to, fibrous structures (e.g., knitted structures, woven structures, non-woven structures, etc.) and/or foams (e.g., open or closed cell foams).


In embodiments, the pores may be in sufficient number and size so as to interconnect across the entire thickness of the medical device. Woven fabrics, knitted fabrics and open cell foams are illustrative examples of structures in which the pores can be in sufficient number and size so as to interconnect across the entire thickness of the medical device.


In other embodiments, the pores may not interconnect across the entire thickness of the medical device. Closed cell foams or fused non-woven materials are illustrative examples of structures in which the pores may not interconnect across the entire thickness of the medical device. In some embodiments, pores may be located on a portion of the medical device, with other portions of the medical device having a non-porous texture. Those skilled in the art may envision a variety of pore distribution patterns and configurations for a porous medical device of the present disclosure.


Where the medical device of the present disclosure is porous and includes fibrous materials, the medical device may be formed using any suitable method including, but not limited to, knitting, weaving, non-woven techniques (including melt blowing), wet-spinning, electro-spinning, extrusion, co-extrusion, and the like. In embodiments, the medical device is a surgical buttress possessing a three dimensional structure, such as the textiles described in U.S. Pat. Nos. 7,021,086 and 6,443,964, the entire disclosures of each of which are incorporated by reference herein.


The porosity of the fabric used to form the substrate may allow for the infiltration of biological fluids and/or cellular components which, in turn, may accelerate the release kinetics of any therapeutic agent from the medical device of the present disclosure, thus increasing the rate of release of therapeutic agent(s) from the medical device into the surrounding tissue and fluids.


Substrates used to form medical devices of the present disclosure, such as surgical buttresses, may have a thickness from about 0.05 mm to about 0.5 mm, in embodiments from about 0.1 mm to about 0.2 mm.


Where the substrate used to form the medical device is porous, the medical device of the present disclosure may have a pore volume from about 65% to about 85%, in embodiments from about 70% to about 80%.


As noted above, in embodiments the medical devices of the present disclosure also include therapeutic agent(s) in a therapeutic layer or coating thereon. Therapeutic agents which may be added to a medical device of the present disclosure include, but are not limited to, drugs, amino acids, peptides, polypeptides, proteins, polysaccharides, muteins, immunoglobulins, antibodies, cytokines (e.g., lymphokines, monokines, chemokines), blood clotting factors, hemopoietic factors, interleukins (1 through 18), interferons (β-IFN, α-IFN and γ-IFN), erythropoietin, nucleases, tumor necrosis factor, colony stimulating factors (e.g., GCSF, GM-CSF, MCSF), insulin, anti-tumor agents and tumor suppressors, blood proteins, fibrin, thrombin, fibrinogen, synthetic thrombin, synthetic fibrin, synthetic fibrinogen, gonadotropins (e.g., FSH, LH, CG, etc.), hormones and hormone analogs (e.g., growth hormone, luteinizing hormone releasing factor), vaccines (e.g., tumoral, bacterial and viral antigens), somatostatin, antigens, blood coagulation factors, growth factors (e.g., nerve growth factor, insulin-like growth factor), bone morphogenic proteins, TGF-B, protein inhibitors, protein antagonists, protein agonists, nucleic acids, such as antisense molecules, DNA, RNA, RNAi, oligonucleotides, polynucleotides, cells, viruses, and ribozymes.


In embodiments, the therapeutic agent applied to a medical device of the present disclosure may include an anti-tumor agent and/or tumor suppressor, referred to, in embodiments, as a “chemotherapeutic agent” and/or an “antineoplastic agent.” Suitable chemotherapeutic agents include, for example, paclitaxel and derivatives thereof, docetaxel and derivatives thereof, abraxane, tamoxifen, cyclophosphamide, actinomycin, bleomycin, dactinomycin, daunorubicin, doxorubicin, doxorubicin hydrochloride, epirubicin, mitomycin, methotrexate, fluorouracil, gemcitabine, gemcitabine hydrochloride, carboplatin, carmustine (BCNU), methyl-CCNU, cisplatin, etoposide, camptothecin and derivatives thereof, phenesterine, vinblastine, vincristine, goserelin, leuprolide, interferon alfa, retinoic acid (ATRA), nitrogen mustard alkylating agents, piposulfan, vinorelbine, irinotecan, irinotecan hydrochloride, vinblastine, pemetrexed, sorafenib tosylate, everolimus, erlotinib hydrochloride, sunitinib malate, capecitabine oxaliplatin, leucovorin calcium, bevacizumab, cetuximab, ramucirumab, trastuzumab, combinations thereof, and the like.


In embodiments, paclitaxel and/or paclitaxel derivatives may be used as the therapeutic agent. Paclitaxel may have various forms, referred to herein as “polymorphs,” including amorphous paclitaxel, crystalline paclitaxel, sometimes referred to as crystalline paclitaxel dihydrate, and/or anhydrous paclitaxel, or mixtures thereof.


In accordance with the present disclosure, the polymorph form of paclitaxel utilized in forming the therapeutic layer may be varied by the aqueous composition, the solvent polarity and the composition of protic and aprotic solvents utilized in the solvent system to form the solution for applying the therapeutic layer. For example, paclitaxel dissolved and then dried from 10% v/v water in methanol will yield a predominantly crystalline paclitaxel dihydrate layer, while the same paclitaxel dissolved and then dried from non-polar solvent dichloromethane will yield a predominantly amorphous layer.


The crystallinity of the paclitaxel will impact its solubility in aqueous systems. Accordingly, the polymorph form of paclitaxel in the therapeutic layer may be adjusted and selected to provide a tailored release of therapeutic agent from the implant of the present disclosure. Although the drug in any form is hydrophobic, as amorphous paclitaxel it is more soluble in aqueous environments, and crystalline paclitaxel is less soluble in aqueous environments, more than one polymorphic form of paclitaxel may be used, in embodiments, to provide implants that have multiple release profiles of paclitaxel. For example, medical devices of the present disclosure having both amorphous paclitaxel and crystalline paclitaxel dihydrate thereon may release a bolus of therapeutic agent upon implantation (in the form of the amorphous paclitaxel), while also slowly releasing the therapeutic agent (in the form of the crystalline paclitaxel dihydrate).


In embodiments with no excipient, the amount of amorphous paclitaxel in the therapeutic layer on the medical device may be from 0% to about 100% by weight of the therapeutic layer, in embodiments from about 10% to about 90% by weight of the therapeutic layer, with the crystalline paclitaxel dihydrate being present in amounts from about 0 to about 100% by weight of the therapeutic layer, in embodiments from about 90% to about 10% by weight of the therapeutic layer.


Medical devices of the present disclosure may release amorphous paclitaxel over a period of time from about 24 hours to about 168 hours, in embodiments from about 48 hours to about 96 hours, and release the crystalline paclitaxel dihydrate over a period of time from about 1 week to about 6 weeks, in embodiments from about 2 weeks to about 4 weeks.


In other embodiments, the therapeutic agent may be applied as part of a coating, including polymeric materials or other carrier components within the purview of those skilled in the art. In embodiments, such coatings may include, for example, degradable coatings such as those prepared from monomers such as glycolide, lactide, trimethylene carbonate, p-dioxanone, epsilon-caprolactone, and combinations thereof. If a coating is utilized, the buttress possessing such a coating should remain supple both during and after implantation.


In other embodiments, regardless of whether the therapeutic agent is applied with or without some additional polymeric material to form a coating, in addition to the therapeutic agents described above, therapeutic layers applied to the substrate material in forming a medical device of the present disclosure may also include excipients to enhance both the ability of the therapeutic agent to adhere to the medical device, in embodiments a surgical buttress, as well as to modify the elution of the therapeutic agent from the medical device.


In embodiments, suitable excipients which may be combined with a therapeutic agent to form the therapeutic layer on the medical device include surfactants such as, but not limited to, cyclodextrins such as 2-hydroxypropyl-beta-cyclodextrin and methyl-ß-cyclodextrin, sodium dodecyl sulfate, octyl glucoside, and sorbitan fatty acid esters such as sorbitan monooleate, sorbitan monolaurate and polyethoxylated fatty acid esters of sorbitan, sometimes referred to herein as polysorbates, including those sold under the name TWEEN™. Examples of such polysorbates include polysorbate 80 (TWEEN™ 80), polysorbate 20 (TWEEN™ 20), polysorbate 60 (TWEEN™ 60), polysorbate 65 (TWEEN™ 65), polysorbate 85 (TWEEN™ 85), combinations thereof, and the like. In embodiments, low molecular weight poly(ethylene glycol)s may be added as an excipient, either alone or in any combination with any of the other above excipients.


In other embodiments, suitable excipients may include salts such as sodium chloride and/or other materials such as urea, oleic acid, citric acid, and ascorbic acid. In yet other embodiments, the excipient may be a stabilizer such as butylated hydroxytoluene (BHT).


Still other suitable excipients include polyhydric alcohols such as D-sorbitol, mannitol, combinations thereof, and the like.


In certain embodiments, suitable excipients include urea, methyl-ß-cyclodextrin, oleic acid, polysorbate 80, D-sorbitol, octylglucoside, combinations thereof, and the like.


In some embodiments, excipients which are hydrotropes may be included in the therapeutic layers of the present disclosure. These materials attract water into the therapeutic layer, which may enhance its degradation and resulting release of the therapeutic agent from the therapeutic layer. However, in view of the high surface to volume ratios for the therapeutic agents in the therapeutic layers of the present disclosure, such excipients are not, in fact, required. Embodiments of the present disclosure include a therapeutic layer having a chemotherapeutic agent without an excipient.


The therapeutic agent(s) and any excipient may be applied to a medical device of the present disclosure by any method within the purview of those skilled in the art. As noted above, in embodiments the therapeutic agent is in a solution, which is then applied to a medical device of the present disclosure, such as a buttress. The solution possessing the therapeutic agent, along with any excipient, may be applied to the medical device by any method within the purview of those skilled in the art, including spraying, dipping, solution casting, combinations thereof, and the like. After application, the solvent may be driven off by methods within the purview of those skilled in the art, including heating, the application of a vacuum, combinations thereof, and the like. Driving off the solvent leaves the therapeutic agent and any excipient behind to form the therapeutic layer on the medical device.


After formation, medical devices of the present disclosure may possess the therapeutic agent in the coated buttress thereon in amounts from about 0.1% to about 50% by weight of the coated buttress, in embodiments from about 1% to about 10% by weight of the coated buttress. While excipients are not required, where present, non-polymeric excipients may be present in an amount from about 0.01% to about 80% by weight of the coated buttress, in embodiments from about 1% to about 11% by weight of the coated buttress. In other embodiments, where present, polymeric excipients may be present in an amount from about 0.014% to about 14% by weight of the coated buttress, in embodiments from about 5% to about 15% by weight of the coated buttress.


After formation, medical devices of the present disclosure may possess the therapeutic agent in the therapeutic layer thereon in amounts from about 0.01% to about 100% by weight of the therapeutic layer, in embodiments from about 1% to about 75% by weight of the therapeutic layer. While excipients are not required, where present, non-polymeric excipients may be present in an amount from about 1% to about 99% by weight of the therapeutic layer, in embodiments from about 8.5% to about 79.4% by weight of the therapeutic layer, and most preferably in embodiments from 9.5% to about 15%. In embodiments, where present, polymeric excipients may be present in an amount from about 1% to about 99% by weight of the therapeutic layer, in embodiments from about 5% to about 15% by weight of the therapeutic layer.


A therapeutic layer having both a therapeutic agent and non-polymeric excipients may have a thickness from about 13 nm to about 2.9 μm, in embodiments from about 25 nm to about 100 nm.


A therapeutic layer having both a therapeutic agent and polymeric excipients may have a thickness from about 2 nm to about 1.1 μm, in embodiments from about 30 nm to about 100 nm.


In other embodiments, the therapeutic layers may include little or no excipients, so very thin therapeutic layers may be applied to the substrate. This will maintain the porosity of the substrate. Such therapeutic layers may have a thickness from about 11 nm to about 218 nm, in embodiments from about 25 nm to about 75 nm.


In embodiments where the substrate is porous, the therapeutic layer may be present on surfaces throughout the substrate, including within the pores itself. Such a device with non-polymeric excipients or no excipients may have the therapeutic layer at a surface to volume ratio from about 500 mm−1 to about 90,000 mm−1. Such a device with polymeric excipients may have the therapeutic layer at a surface to volume ratio from about 1,100 mm−1 to about 87,000 mm−1. This high surface to volume ratio enables relatively fast elution of therapeutic agents from the therapeutic layer, especially hydrophobic drugs such as paclitaxel that have low aqueous solubility. A very high surface to area ratio, providing a high surface area for eluding the chemotherapeutic agent, with a low percentage of the weight of the buttress or other device, has been achieved.


In embodiments, the therapeutic layers of the present disclosure may fragment upon affixation of the medical device possessing the therapeutic layer to tissue. This may result in migration of the therapeutic agent to locations distant from the site of implantation, for example in cases where the buttress is attached to the periphery of a lung lobe, therapeutic agent may migrate into mediastinal lymph nodes, while therapeutic agent(s) remaining on the implant may diffuse directly into tissue adjacent the site of implantation.


As described in greater detail in the Examples below, it has surprisingly been found in a dog model that a medical device having paclitaxel in a therapeutic layer of the present disclosure may release paclitaxel throughout the pleural cavity and reach therapeutic levels in other distant sites in the chest cavity, including the chest wall, diaphragm, esophagus, mediastinum, and pericardium. These are all sites of possible local recurrence of cancer after surgical resection. This widespread distribution at therapeutic levels of a poorly soluble drug such as paclitaxel is surprising. Additionally, very low levels of paclitaxel were observed in the blood, meaning toxicity associated with traditional intravenous therapy may be avoided. Utilizing the implants of the present disclosure, a local regional therapy for treating both the lungs and chest is now possible.


Without wishing to be bound by any theory, it is believed multiple mechanisms are responsible for these surprising results. As noted above, the buttress morphology provides a large surface area, giving more opportunity for the paclitaxel to diffuse away from the buttress. Additionally, some of the therapeutic layer flakes off during firing of staples through the medical device, and migrates into the pleural fluid. Once there, the flakes dissolve and deliver paclitaxel wherever the pleural fluid travels. This could explain the distant migration of the paclitaxel to sites like the chest wall, diaphragm, esophagus, and pericardium.


As noted above, the medical device of the present disclosure may be used with any fixation device to further assist in sealing tissue. For example, medical devices of the present disclosure may be used in conjunction with staples, tacks, clips, sutures, adhesives, combinations thereof, and the like.


In embodiments, medical devices of the present disclosure may be used with staples. For example, a surgical buttress formed of a medical device of the present disclosure is provided to reinforce and seal the lines of staples applied to tissue by a surgical stapling apparatus. The buttress may be configured into any shape, size, or dimension suitable to fit any surgical stapling, fastening, or firing apparatus.


In embodiments, the buttresses described herein may be used in sealing a wound by approximating the edges of wound tissue between a staple cartridge and an anvil of a surgical stapling apparatus which contains the buttress. Firing of the surgical stapling apparatus forces the legs of at least one staple to pass through the opening on the staple cartridge and the buttress, the tissue, and the openings on the anvil to secure the buttress to the tissue, to secure the adjoining tissue to one another, and to seal the tissue.


Where the medical device of the present disclosure is used to form a surgical buttress, upon application to a site of bleeding tissue, the buttress may affect hemostasis of said tissue. As used herein, the term “hemostasis” means the arrest of bleeding.


In addition to providing hemostasis at the site of application of the buttress, the medical devices of the present disclosure may also provide for treatment of tissue with the therapeutic agent at both the site of implantation and elsewhere in the body.


In some embodiments, the present disclosure provides methods of treating cancer. These methods include, in embodiments, introducing to a patient needing treatment a surgical stapler having a buttress thereon, the buttress including a coating of a drug, such as a chemotherapeutic agent, and using the stapler to remove an undesired portion of an organ and to place the buttress in a remaining portion of the organ, including stapling the buttress to tissue and cutting the tissue. Where the tissue to be removed is within a patient's body, the method includes introducing the stapler and buttress into the patient's body.


For example, in embodiments, it has been found that for applications such as lung resection in the treatment of lung cancer, the application of medical devices of the present disclosure, in embodiments surgical buttresses, will treat the site of application of the surgical buttress with a chemotherapeutic agent, such as paclitaxel or its derivatives. Moreover, it has been found that the devices of the present disclosure, depending upon the form of the chemotherapeutic agent, excipients, combinations thereof, and the like, may also elute the chemotherapeutic agent therefrom. The chemotherapeutic agent may be physically removed from the surgical buttress by mechanical/physical forces imparted to the buttress upon firing of a staple therethrough. The chemotherapeutic agent may also dissolve into the pleural fluid within the pleural space and travel throughout the space.


In embodiments, the use of the medical devices of the present disclosure, such as surgical buttresses, may be utilized to maintain therapeutic levels of chemotherapeutics such as paclitaxel, thereby continuing to treat a patient and prevent recurrence of non-small cell lung cancer.


Benefits of the introduction of the chemotherapeutic with the medical devices of the present disclosure include, for example:

    • Eliminates systemic toxicity typically associated with intravenous chemotherapy;
    • Reduce drug payload to ˜10% of conventional intravenous chemotherapy infusion; and
    • Provides prolonged exposure and in the case of paclitaxel provides greater potency at lower drug concentrations.


Several embodiments of the disclosure are described below with reference to the following non-limiting Examples. The Examples are intended to be illustrative only and are not intended to limit the scope of the present disclosure. As used herein, “room temperature” refers to a temperature of from about 20° C. to about 30° C. Also, parts and percentages, such as solution percentages, are by weight unless otherwise indicated.


Example 1

The feasibility of applying paclitaxel to lung staple buttresses was tested as follows. Staple buttresses made of polyglycolic acid were utilized for the tests. Sections of the material were soaked in tetrahydrofuran, chloroform, toluene, dichloromethane or methanol or combinations thereof as potential formulation solvents. The buttresses visually appeared to be compatible with each solvent, with no deformation or tackiness after several days.


The paclitaxel formulation used to coat the buttress material was a solution of 50 mg/mL paclitaxel and 7 mg/mL urea, in 10:90 v/v water:THF (commercially available as FREEPAC™ paclitaxel eluting formulation). The dried formulation was expected to contain a mixture of amorphous paclitaxel and paclitaxel dihydrate). This formulation was used to coat three buttresses.


Roughly 5 mL of the paclitaxel solution described above was placed in three (3) small vials and a buttress (40 mm in length) was delivered to each vial and allowed to soak in the paclitaxel solution for less than 30 seconds. Each buttress was removed with tweezers and allowed to dry. The buttresses appeared visually dry in 15 to 30 seconds after removal from the paclitaxel solution. Each buttress was then placed on a glass plate and allowed to fully dry for about ten minutes.


No real change in the visual appearance of the buttresses was observed. Light handling did not produce any dusting or particulate from the buttresses. Treated and untreated buttresses were photographed at 50× magnification, with little to no difference in the surface appearance observed.


Each buttress and an untreated buttress were analyzed for paclitaxel as follows. Coupons were extracted with 0.5% v/v acetic acid in methanol under sonication for about 30 minutes. The extract was analyzed using an ultrahigh performance liquid chromatograph with UV detection at 229 nm for residual paclitaxel against a standard of known concentration.


Recovery of paclitaxel was observed with a normal related compound profile. No interfering peaks were observed in the untreated buttress. The results are summarized in Table 1 below.









TABLE 1







Recovered paclitaxel












Paclitaxel
% Related


Sample
Material
(μg)
Substances





1
40 mm
5362
0.16



buttress


2
40 mm
4795
0.15



buttress


3
40 mm
5018
0.16



buttress









In view of the above data in Table 1, dip coating appeared to be effective for applying the paclitaxel solution to a buttress.


Example 2

The production of staple buttresses with varying forms of paclitaxel was tested as follows. Paclitaxel solutions were prepared using crystalline paclitaxel dihydrate, amorphous paclitaxel, and a combination of the two (as described above in Example 1). Two of the samples included urea as an excipient.


The formulations prepared, including the amounts and various forms of paclitaxel (PTX), excipient, if any, and the solvents used to make the paclitaxel solutions, are summarized below in Table 2.













TABLE 2






PTX
Urea




Sample
(mg/mL)
(mg/mL)
Solvent
PTX polymorph







4
50.9
7.0
90:10 THF:water
mixed di-






hydrate:amorphous


5
24.9
3.5
90:10
dihydrate





methanol:water


6
25.6
0.0
methylene
amorphous





chloride









Sample 4 included urea as an excipient. For consistency, urea was included at the same ratio in the dihydrate material (sample 5). No urea was included in the amorphous formulation (sample 6).


90×10 mm buttress profiles (8 cm2 one-sided fabric area) were dip coated in each formulation and dried. As with the results described above in Example 1, there was no visible change to the surface of the buttress with any of the formulations. The drug showed excellent affinity to the polymer fabric and a buttress from each formulation was aggressively handled, shaken, and hit against a glass plate with no visible shedding of drug. The coated buttresses were set aside for elution analysis.


Example 3

A formulation of paclitaxel in 10:90 v/v toluene:THF was prepared at a concentration of 51.1 mg/mL, and designated Sample 8. This formulation produces an amorphous paclitaxel layer, which was used to coat five 90×10 mm buttress profiles (8 cm2 one-sided fabric area)(referred to as Samples 8.1, 8.2, 8.3, 8.4 and 8.5), each of which was weighed prior to application. After application, each buttress was cut into four pieces, A, B, C, and D, as depicted in FIG. 1. Each section was weighed and then tested per a developmental drug content method. Buttresses were extracted with 0.5% v/v acetic acid in methanol under sonication for 15 minutes. The sample extracts were analyzed using a UPLC with UV detection at 229 nm for both paclitaxel and related compounds against a standard of known paclitaxel concentration using a water and acetonitrile gradient on an Agilent Zorbax RRHD Eclipse PlusC18, 2.1×100 mm, 1.8-μm particle size column.


Weights, drug mass, and % weight/weight observed on each segment of the buttress is summarized below in Tables 3, 4 and 5.














TABLE 3









Uncoated


%



Weight
Coated Weights (mg) by segment
Delta
weight















Sample
(mg)
A
B
C
D
Total
(mg)
gain


















8.1
41.18
14.06
9.57
10.99
10.5
45.12
3.94
9.57


8.2
42.71
12.5
13.04
9.77
11.33
46.64
3.93
9.20


8.3
43.53
13.42
12.38
9.11
12.72
47.63
4.10
9.42


8.4
43.32
11.44
13.11
11.33
11.05
46.93
3.61
8.33


8.5
42.22
12.22
13.4
10.98
9.82
46.42
4.20
9.95
















TABLE 4







Recovered paclitaxel (mg) per segment













A
B
C
D
Total


















8.1
1.35
0.90
1.02
0.82
4.08



8.2
1.14
1.10
0.84
0.90
3.97



8.3
1.33
1.15
0.79
1.05
4.33



8.4
1.07
1.13
0.95
0.85
4.00



8.5
1.14
1.14
0.91
0.84
4.03

















TABLE 5







Paclitaxel, % weight/weight per segment














Sample
A
B
C
D
Avg







8.1
9.57
9.41
9.25
7.84
9.02



8.2
9.10
8.43
8.62
7.91
8.51



8.3
9.94
9.31
8.64
8.28
9.04



8.4
9.36
8.65
8.35
7.65
8.50



8.5
9.32
8.53
8.28
8.56
8.67










As can be seen from the data summarized in Table 3 above, the buttress material gained 9.3% weight on average, or about 4 mg of drug. Results of recovered paclitaxel (Table 4) and paclitaxel observed as % weight/weight per segment (Table 5) were fairly consistent.


Example 4

Sheets of polyglycolic acid fabric were punched to form 90×10 mm buttress profiles, and then paclitaxel formulations were applied thereto. The formulations and testing are described below.


Paclitaxel formulations were prepared at concentrations of 25 mg/mL with various excipients. Crystallinity of the paclitaxel in samples 10, 11 and 12 was controlled for, with the paclitaxel being either completely crystalline paclitaxel dihydrate or a fully amorphous form. The composition of the remaining samples (9, 13, 14, 15 and 16), based on the 10:90 water:THF solvent system described above in Example 1, is expected to contain a mixture of amorphous paclitaxel and paclitaxel dihydrate. The various formulations are summarized below in Table 6.















TABLE 6






Paclitaxel








(PTX)

(PTX)
Excipient
Exc
PTX:Exc


Sample
polymorph
Solvent
(mg/mL)
(Exc)
(mg/mL)
(mol:mol)





















9
PTX semi
10% water
24.99
Urea
 3.50
1:2



crystalline
in THF



w/Urea


10
PTX
10% water in
24.83
Urea
 3.50
1:2



Dihydrate
65:35 v:v



w/Urea
MeOH:acetone


11
PTX
10% water in
25.17
NA
NA
NA



Dihydrate
65:35 v:v




MeOH:acetone


12
Amorphous
10% toluene
25.00
NA
NA
NA



PTX
in THF


13
PTX semi
10% water
24.86
Methyl-β-
76.59
1:2



crystalline
in THF

Cyclodextrin


14
PTX semi
THF w/1.3%
25.13
Oleic Acid/
3.1
  1:0.37



crystalline
water, 2.9%

Na Oleate




EtOH


15
PTX semi
10% water
24.89
Tween 80/
0.375/21.62
1:0.01/1:4



crystalline
in THF

Sorbitol


16
PTX semi
10% water
25.16
Octylglucoside
34.37
1:4



crystalline
in THF









Five milliliters of each of the above formulations was prepared and poured into the reservoir of a coating fixture (the reservoir volume was 25 mL). A sheet of twelve buttress profiles was passed through the reservoir by hand, coating the material, and was held with tweezers to dry. All solvent systems dried very quickly, within less than 30 seconds.


As in earlier Examples 1 and 2 above, little to no change was visible on the material to the naked eye for all formulations, with the exception of sample 10 (crystalline paclitaxel dihydrate with urea). For that sample, some white streaking and non-uniform coating was observed. Buttress profiles were removed from the sheet with tweezers.


The buttresses were then tested for drug potency/uniformity. Five buttresses from each formulation (designated sample 9-1, 9-2, 9-3, 9-4, 9-5, 10-1, 10-2, 10-3, etc.) were extracted and tested per a developmental drug content method. Buttresses were extracted with 0.5% v/v acetic acid in methanol under sonication for 15 minutes. The sample extracts were analyzed using a UPLC with UV detection at 229 nm for both paclitaxel and related compounds against a standard of known paclitaxel concentration using a water and acetonitrile gradient on an Agilent Zorbax RRHD Eclipse PlusC18, 2.1×100 mm, 1.8-μm particle size column.


Each buttress was cut into two segments, E and F, as depicted in FIG. 2. The segments, representing roughly half of the buttress profile, were weighed and tested individually.


The segment and total values are shown in FIG. 3 (FIG. 3 has % weight/weight paclitaxel for the individual segments) and Table 7 below (the letter for each sample corresponding with the segment tested as depicted in FIG. 2), and the averages for each formulation are shown below in Table 8 below.









TABLE 7







Individual segments % weight/weight paclitaxel















Paclitaxel %



Sample
Weight (mg)
Paclitaxel (μg)
weight/weight
















 9-1-E
20.93
1808
8.64



 9-1-F
17.70
1611
9.10



 9-2-E
21.83
1985
9.09



 9-2-F
23.06
2096
9.09



 9-3-E
18.29
1999
10.93



 9-3-F
21.73
2327
10.71



 9-4-E
20.23
1772
8.76



 9-4-F
22.81
2180
9.56



 9-5-E
18.40
1628
8.85



 9-5-F
18.68
1757
9.41



10-1-E
18.33
1624
8.86



10-1-F
19.97
1896
9.49



10-2-E
21.95
1872
8.53



10-2-F
21.65
1963
9.07



10-3-E
17.69
1657
9.37



10-3-F
20.13
1970
9.79



10-4-E
17.46
1724
9.87



10-4-F
20.11
2148
10.68



10-5-E
21.56
1923
8.92



10-5-F
21.35
1963
9.19



11-1-E
16.26
1460
8.98



11-1-F
19.60
1777
9.07



11-2-E
20.71
1976
9.54



11-2-F
22.35
2185
9.78



11-3-E
19.78
1858
9.39



11-3-F
21.59
2073
9.60



11-4-E
20.35
1834
9.01



11-4-F
17.63
1623
9.21



11-5-E
20.09
2008
10.00



11-5-F
19.01
1895
9.97



12-1-E
16.16
1504
9.31



12-1-F
18.41
1584
8.60



12-2-E
20.04
2150
10.73



12-2-F
17.88
1886
10.55



12-3-E
15.74
1293
8.21



12-3-F
18.89
1622
8.59



12-4-E
17.15
1422
8.29



12-4-F
20.48
1718
8.39



12-5-E
22.15
1851
8.36



12-5-F
20.51
1857
9.05



13-1-E
24.37
1592
6.53



13-1-F
26.71
1768
6.62



13-2-E
22.95
1626
7.08



13-2-F
21.79
1583
7.26



13-3-E
19.45
1290
6.63



13-3-F
26.46
1685
6.37



13-4-E
21.00
1344
6.40



13-4-F
22.63
1468
6.49



13-5-E
25.79
1732
6.72



13-5-F
19.90
1393
7.00



14-1-E
20.31
872
4.29



14-1-F
25.54
1020
3.99



14-2-E
22.78
1031
4.53



14-2-F
24.94
1027
4.12



14-3-E
22.51
1038
4.61



14-3-F
25.35
1065
4.20



14-4-E
20.30
1030
5.07



14-4-F
27.83
1258
4.52



14-5-E
26.34
1360
5.16



14-5-F
25.18
1184
4.70



15-1-E
20.67
1797
8.69



15-1-F
17.99
1899
10.56



15-2-E
17.93
1745
9.73



15-2-F
20.18
1770
8.77



15-3-E
19.59
1766
9.01



15-3-F
16.89
1672
9.90



15-4-E
22.66
1852
8.17



15-4-F
19.91
1946
9.77



15-5-E
18.43
1763
9.57



15-5-F
20.86
2314
11.09



16-1-E
20.37
1639
8.05



16-1-F
18.93
1609
8.50



16-2-E
20.23
1644
8.13



16-2-F
20.31
1587
7.81



16-3-E
17.59
1464
8.32



16-3-F
22.21
1758
7.92



16-4-E
18.30
1507
8.23



16-4-F
20.06
1579
7.87



16-5-E
19.11
1639
8.58



16-5-F
23.03
1923
8.35

















TABLE 8







Average potency values ± SD













Paclitaxel %


Formulation
Weight (mg)
Paclitaxel (μg)
weight/weight













9
40.73 ± 3.20
3833 ± 416
9.41 ± 0.79


10
40.04 ± 2.96
3748 ± 165
9.39 ± 0.59


11
39.47 ± 2.82
3738 ± 379
9.46 ± 0.40


12
37.48 ± 3.30
3377 ± 474
9.01 ± 0.94


13
46.21 ± 2.87
3096 ± 211
6.70 ± 0.30


14
48.22 ± 2.06
2177 ± 249
4.50 ± 0.33


15
39.02 ± 2.24
3705 ± 252
9.50 ± 0.55


16
40.03 ± 1.42
3270 ± 176
8.17 ± 0.19









As can be seen from the data in Tables 7 and 8, there was a fair amount of variation in the individual buttress weights, but the % weight/weight of paclitaxel in the therapeutic layers was fairly consistent within each group. Most formulations had between 8 and 10% drug by weight. Formulations 13 (methyl-ß-cyclodextrin excipient) and 14 (oleic acid/Na oleate excipient) had less drug in the therapeutic layer.


Drug elution from the buttresses was then examined as follows. Three buttresses from each formulation were mounted on mandrels and introduced to 37° C. 0.3% SDS in 10 mM ammonium acetate and placed in a 37° C. incubator shaker at 100 rpm. At each timepoint, the mandrel and buttress were removed and transferred to a fresh vial of media. Timepoints varied per formulation. An aliquot of each formulation was filtered through a 0.2 μm nylon filter and analyzed by a developmental HPLC method for similar sample types. A water and acetonitrile gradient on a Luna 3 μm PFP(2) 100 Å, 4.6×100 column was used for separation with UV detection at 229 nm against a standard of known paclitaxel concentration. FIG. 4 is a graph showing the average cumulative drug eluted from the buttresses. Tables 9, 10, 11, and 12 below summarize the cumulative drug eluted for the buttresses of Formulations 9, 10, 11 and 12, respectively.









TABLE 9







Formulation 9 cumulative drug eluted (μg)













Time (min)
60
180
360
1440
1800
2880
















Buttress 1
843
1202
1585
2358
2511
2530


Buttress 2
834
1168
1510
2290
2505
2639


Buttress 3
1012
1369
1722
2495
2790
2958


Avg
896
1246
1606
2381
2602
2709


SD
100
108
108
104
163
222


% RSD
11
9
7
4
6
8
















TABLE 10







Formulation 10 cumulative drug eluted (μg)













Time (min)
60
180
360
1440
1800
2880
















Buttress 1
699
1044
1324
1916
2165
2408


Buttress 2
673
1023
1357
1979
2297
2627


Buttress 3
661
928
1195
1765
2009
2416


Avg
678
998
1292
1887
2157
2484


SD
20
62
86
110
144
124


% RSD
3
6
7
6
7
5
















TABLE 11







Formulation 11 cumulative drug eluted (μg)













Time (min)
60
180
360
1440
1800
2880
















Buttress 1
288
459
652
1254
1569
2143


Buttress 2
322
527
757
1343
1706
2282


Buttress 3
288
482
710
1332
1712
2290


Avg
299
489
707
1310
1662
2239


SD
20
35
53
48
81
83


% RSD
7
7
7
4
5
4
















TABLE 12







Formulation 12 cumulative drug eluted (μg)














Time (min)
5
10
15
30
120
240
1440

















Buttress 1
1096
1668
1979
2317
2531
2582
2707


Buttress 2
1356
2401
3053
3657
4082
4218
4542


Buttress 3
1225
1988
2437
2925
3252
3345
3559


Avg
1225
2019
2489
2966
3289
3382
3603


SD
130
367
539
671
776
818
919


% RSD
11
18
22
23
24
24
25









As can be seen from the data set forth in Tables 9-12, by varying the excipients and forms of paclitaxel applied to a buttress, as well as the solvents used to form the solutions used to apply the paclitaxel and excipient to the buttress, both the amounts of paclitaxel released from the buttresses and the release profiles of the paclitaxel (e.g., bolus vs. extended release) could be adjusted.



FIG. 6 is a graph depicting the elution curves for formulations 9-16.


The surface of each buttress was imaged by a scanning electron microscope (SEM). Results were generally as expected, with crystalline formulations showing needle formations, and amorphous formulations showing tightly coated fibers and some webbing between fibers. Formulation 16 differed slightly in that it appeared to more thoroughly coat the material than the other semi-amorphous formulations.


Example 5

A study was conducted where buttresses of the present disclosure were implanted in the pleural cavity of dogs, and the elution and migration of drug on the buttress was measured.


Briefly, two formulations were implanted in a total of four dogs (one formulation in two dogs and the other formulation in the other two dogs). Bilateral thoracotomies were created and 60 mm staplers having two of the buttresses with paclitaxel thereon were utilized. The first buttress included the formulation of Example 5, sample 9 (semi-crystalline paclitaxel and urea) and the second buttress was the amorphous paclitaxel described above in Example 5, sample 12. The two dogs having the first buttress were referred to as FREEPAC #1 (or PTX+urea dog #1) and FREEPAC #2 (or PTX+urea dog #1), and the two dogs having the second buttress were referred to as Amorph dog #1 and Amorph dog #2.


Each buttress was fired across the tips of five or six lung lobes for each animal. A mediastinum fenestration was placed to allow liquid and air communication between hemi-thoraces. A chest drain was placed and both thoracotomies were closed. The chest drains were removed within about 36 to about 48 hours after surgery. The four animals were euthanized 7 days after surgery and tissues of interest were collected for paclitaxel analysis. The tissues collected included: 1) tissue at the buttress staple line; 2) tissue adjacent the staple line; and 3) various locations away from the buttress, including the thoracic wall, mediastinum, heart, pericardium, mediastinal lymph nodes, remnant lobes, esophagus, bronchus, and diaphragm.


The plasma levels of paclitaxel, and the paclitaxel levels in the chest drain fluid compared with implant time, were also tracked for each animal. Plasma was collected intra-operatively, and then post-operatively at 30 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 24 hours, 72 hours, and 168 hours.


At necropsy, each of the tissues being sampled was divided into a 3×3 cm grid and then further sliced into three layers to produce 27 samples for paclitaxel drug analysis. The lung sectioning scheme for the tissue adjacent the buttress is outlined in FIG. 5.


Graphs summarizing the results obtained are set forth as FIGS. 7-10. As depicted in FIG. 7, the plasma levels of both the buttress with amorphous paclitaxel and the buttress with the combination of amorphous paclitaxel and paclitaxel dihydrate with urea subsided over time, with low plasma levels. (The inset box in FIG. 7 is taken from human clinical data (Ohtsu et al.) for a 180 mg/m2 infusion administered over a 3-hour period. The reported average Cmax value for 3 patients was 5,232±151 nM, while the average plasma value for 3 patients was 402±3 nM, assuming a clearance period of 48 hours to reach paclitaxel plasma levels below therapeutic levels of 30 nM. Local delivery of paclitaxel at the site of lung tissue resection resulted in minimal delivery of drug to the plasma. In fact, both formulations did not cross the therapeutic threshold, with peak levels more than two orders of magnitude lower than normally experienced after a clinical intravenous (IV) dose of paclitaxel. It should also be noted that none of the four dogs experienced any signs of drug toxicity typically experienced with IV paclitaxel delivery, including no significant change in bloodstream neutrophil cell count.)



FIG. 8 summarizes the paclitaxel concentration in canine pleural fluid for days 0-7 after implantation, compared with observed clinical plasma levels. As set forth in FIG. 8, paclitaxel (PTX) pleural fluid concentration in canine study was compared with overlaid clinical plasma paclitaxel levels (Filled circles) and overlaid NSCLC cell line doubling times (Filled triangles) and lung carcinoma clinical isolate doubling times (Open triangles). Target paclitaxel effective range is highlighted in area bordered by dashed lines. The target therapeutic range was determined by adjusting experimental in vitro NSCLC cell line IC90 values with a factor to account for the impact of the in vivo tumor environment. Two paclitaxel containing formulations (semicrystalline paclitaxel+urea vs. amorphous paclitaxel) were each implanted into the lungs of canines for seven days. Plasma and pleural fluid paclitaxel levels were monitored at several time points and paclitaxel tissue levels were measured at seven days post-surgery. The semicrystalline paclitaxel+urea formulation sustained therapeutic levels of paclitaxel in the pleural fluid up to at least the 7 day study termination time point, whereas the amorphous formulation maintained therapeutic levels up to at least 40-60 hours, at which point chest drains were removed. Both locally delivered formulations sustained therapeutic levels of paclitaxel in the pleural fluid space longer than achieved in plasma after intravenous injection in humans. Additionally, both local formulations sustained therapeutic levels beyond the cell doubling times of many lung carcinoma clinical isolates, indicating improved chance of efficacy compared to intravenous paclitaxel administration.


The inset box in FIG. 8 is taken from human clinical data (Ohtsu et al.) for a 180 mg/m2 infusion administered over a 3-hour period. The reported average Cmax value for 3 patients was 5,232±151 nM, while the average plasma value for 3 patients was 402±3 nM, assuming a clearance period of 48 hours to reach paclitaxel plasma levels below 30 nM. The clinical paclitaxel plasma levels reported by Ohtsu for a 180 mg/m2 infusion administered over a 3-hour period is plotted in comparison to the paclitaxel pleural fluid levels found in the 7-day canine study. It has been demonstrated in multiple preclinical models that paclitaxel levels in tissues follow plasma levels after IV injection (See, Eiseman, et al. Cancer Chemother. Pharmacol. 1994; 34(6):465-71; Soma, et al. J. Surg. Res. 2009 July; 155(1):142-6; Schrump, et al. J. Thorac. Cardiovasc. Surg. 2002 April; 123(4):686-94.)


Paclitaxel levels in lung after IV injection in mice, rabbits, and sheep are within 0.6-4.3 times the levels found in plasma on a drug mass/tissue mass basis up until plasma levels begin to approach sub-therapeutic paclitaxel levels. Importantly, when paclitaxel is cleared from the bloodstream it is also rapidly washed out of lung and other tissues. From these preclinical observations it can be inferred that IV paclitaxel administered to humans remains at therapeutic concentrations in lung tissue not much longer than 48 hours after initiation of treatment.


It has also been demonstrated that paclitaxel potency increases with exposure time and is more effective at lower concentrations against faster dividing cell types. This effect of increasing potency with exposure duration can be attributed to paclitaxel's mechanism of action; namely paclitaxel must be at sufficiently high concentrations during cell division to disrupt microtubule polymerization and thus cause cell death. Because of this effect, paclitaxel is most effective as a chemotherapeutic agent against slowly dividing cancer cells when maintained over a long period of time at therapeutic levels in the tissue of interest. For example, it has been demonstrated that primary lung carcinoma tumors collected as clinical isolates from 15 affected patients had doubling times ranging from approximately 68 to 296 hours. (Baguley, et al., “Inhibition of growth of primary human tumour cell cultures by a 4-anilinoquinazoline inhibitor of the epidermal growth factor receptor family of tyrosine kinases,” Eur. J. Cancer. 1998 June; 34(7):1086-90.)


Because sustained localized delivery of paclitaxel enables therapeutic levels for much longer periods than intravenous therapy this mode of delivery should provide superior efficacy against NSCLC.



FIG. 9 is a graph summarizing the concentration of various paclitaxel formulations in the lung after 7 days, with varying distances from the staple line. Therapeutic levels of paclitaxel were found in canine lung both on the surface and in the lung interior up to 3 cm away from the staple line buttress edge at 7 days post-surgery for the semicrystalline paclitaxel+urea formulation. The amorphous paclitaxel formulation produced therapeutic levels at the surface of lung but not in the lung interior.



FIG. 10 is a graph summarizing paclitaxel concentrations of various paclitaxel formulations in other tissues (mediastinum, chest wall, pericardium, diaphragm, lymph node, bronchus, esophagus and heart) after 7 days. At 7 days post-surgery the semicrystalline paclitaxel+urea formulation produced therapeutic levels of paclitaxel in all regional tissues sampled in the ipsilateral chest except for the heart, whereas the amorphous paclitaxel formulation produced therapeutic levels in the mediastinum and mediastinal lymph node. The distant delivery of therapeutic levels of paclitaxel to the mediastinum and mediastinal lymph nodes is significant as these are sites of typical local and regional recurrence after lobectomies and sublobar resections respectively. In theory, paclitaxel delivery to these structures should reduce the risk of locoregional recurrence after surgery for early stage NSCLC. Additionally, delivery of therapeutic levels of paclitaxel to the chest wall, diaphragm, bronchus and esophagus should reduce the risk of recurrence in these structures as well.


In addition, therapeutic levels of paclitaxel were found in mediastinal lymph nodes after implantation of the implants of the present disclosure. The nodes in which the paclitaxel was found were several centimeters away from the buttressed staple lines. The concentrations of paclitaxel in the lymph node were comparable to the concentration of paclitaxel found within the first 3 cm adjacent to the buttressed staple lines. These results suggest some active transport of paclitaxel to these sites, most likely through the lymphatic drainage system, which is also most often cited as the pathway for metastasis.


It will be understood that various modifications may be made to the embodiments disclosed herein. Therefore, the above description should not be construed as limiting, but merely as an exemplification of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the present disclosure. Such modifications and variations are intended to come within the scope of the following claims.

Claims
  • 1. A medical device comprising: a porous substrate; anda therapeutic layer having a thickness from about 11 nm to about 218 nm on at least a portion of the porous substrate, the therapeutic layer including a chemotherapeutic agent,wherein the therapeutic layer has a surface to volume ratio from about 500 mm−1 to about 90,000 mm−1.
  • 2. The medical device of claim 1, wherein the chemotherapeutic agent is selected from paclitaxel and derivatives thereof, docetaxel and derivatives thereof, abraxane, tamoxifen, cyclophosphamide, actinomycin, bleomycin, dactinomycin, daunorubicin, doxorubicin, doxorubicin hydrochloride, epirubicin, mitomycin, methotrexate, fluorouracil, gemcitabine, gemcitabine hydrochloride, carboplatin, carmustine, methyl-CCNU, cisplatin, etoposide, camptothecin and derivatives thereof, phenesterine, vinblastine, vincristine, goserelin, leuprolide, interferon alfa, retinoic acid, nitrogen mustard alkylating agents, piposulfan, vinorelbine, irinotecan, irinotecan hydrochloride, vinblastine, pemetrexed, sorafenib tosylate, everolimus, erlotinib hydrochloride, sunitinib malate, capecitabine oxaliplatin, leucovorin calcium, bevacizumab, cetuximab, ramucirumab, trastuzumab, or combinations thereof.
  • 3. The medical device of claim 1, wherein the chemotherapeutic agent includes a polymorph of paclitaxel.
  • 4. The medical device of claim 3, wherein the polymorph of paclitaxel is selected from amorphous paclitaxel, crystalline paclitaxel dihydrate, anhydrous paclitaxel, or combinations thereof.
  • 5. The medical device of claim 1, wherein the porous substrate has a pore volume from about 65% to about 85%.
  • 6. The medical device of claim 1, wherein the therapeutic layer has a thickness from about from about 25 nm to about 75 nm.
  • 7. The medical device of claim 1, wherein the therapeutic layer further comprises an excipient selected from 2-hydroxypropyl-beta-cyclodextrin, methyl-ß-cyclodextrin, sodium dodecyl sulfate, octylglucoside, sorbitan monooleate, sorbitan monolaurate, polyethoxylated fatty acid esters of sorbitan, oleic acid, citric acid, ascorbic acid, butylated hydroxytoluene, D-sorbitol, or combinations thereof.
  • 8. The medical device of claim 1, wherein the medical device is selected from surgical buttresses, hernia patches, staples, tacks, stents, or tissue scaffolds.
  • 9. A method for treating tissue comprising applying the medical device of claim 1 to tissue.
  • 10. The method of claim 9, wherein applying the medical device to tissue occurs with a fixation device selected from staples, tacks, clips, sutures, adhesives, or combinations thereof.
  • 11. A medical device comprising: a porous substrate; anda therapeutic layer having a thickness from about 25 nm to about 75 nm on at least a portion of the porous substrate, the therapeutic layer including a chemotherapeutic agent,wherein the therapeutic layer has a surface to volume ratio from about 500 mm−1 to about 90,000 mm−1.
  • 12. The medical device of claim 11, wherein the chemotherapeutic agent is selected from paclitaxel and derivatives thereof, docetaxel and derivatives thereof, abraxane, tamoxifen, cyclophosphamide, actinomycin, bleomycin, dactinomycin, daunorubicin, doxorubicin, doxorubicin hydrochloride, epirubicin, mitomycin, methotrexate, fluorouracil, gemcitabine, gemcitabine hydrochloride, carboplatin, carmustine, methyl-CCNU, cisplatin, etoposide, camptothecin and derivatives thereof, phenesterine, vinblastine, vincristine, goserelin, leuprolide, interferon alfa, retinoic acid, nitrogen mustard alkylating agents, piposulfan, vinorelbine, irinotecan, irinotecan hydrochloride, vinblastine, pemetrexed, sorafenib tosylate, everolimus, erlotinib hydrochloride, sunitinib malate, capecitabine oxaliplatin, leucovorin calcium, bevacizumab, cetuximab, ramucirumab, trastuzumab, or combinations thereof.
  • 13. The medical device of claim 11, wherein the chemotherapeutic agent includes a polymorph of paclitaxel.
  • 14. The medical device of claim 13, wherein the polymorph of paclitaxel is selected from amorphous paclitaxel, crystalline paclitaxel dihydrate, anhydrous paclitaxel, or combinations thereof.
  • 15. The medical device of claim 11, wherein the medical device has a pore volume from about 65% to about 85%.
  • 16. The medical device of claim 11, wherein the therapeutic layer further comprises an excipient selected from 2-hydroxypropyl-beta-cyclodextrin, methyl-ß-cyclodextrin, sodium dodecyl sulfate, octylglucoside, sorbitan monooleate, sorbitan monolaurate, polyethoxylated fatty acid esters of sorbitan, oleic acid, citric acid, ascorbic acid, butylated hydroxytoluene, D-sorbitol, or combinations thereof.
  • 17. A method for treating tissue comprising applying the medical device of claim 11 to tissue.
  • 18. The method of claim 17, wherein applying the medical device to tissue occurs with a fixation device selected from staples, tacks, clips, adhesives, sutures, or combinations thereof.
  • 19. A method of treating cancer, comprising: introducing to a patient a surgical stapler having a buttress thereon, the buttress including a therapeutic layer on at least a portion of the buttress, the therapeutic layer having a thickness from about 11 nm to about 218 nm and a surface to volume ratio from about 500 mm−1 to about 90,000 mm−1; andusing the stapler to remove an undesired portion of an organ and emplace the buttress in a remaining portion of the organ, including stapling the buttress to tissue and cutting the tissue.
  • 20. The method according to claim 19, wherein the stapler is used on the lung, and the therapeutic layer includes a chemotherapeutic agent.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. application Ser. No. 15/837,498, filed Dec. 11, 2017, which claims the benefit of and priority to U.S. Provisional Patent Application No. 62/448,509 filed Jan. 20, 2017, the entire disclosures of each of which are incorporated by reference herein.

US Referenced Citations (526)
Number Name Date Kind
3054406 Usher Sep 1962 A
3079606 Bobrov et al. Mar 1963 A
3124136 Usher Mar 1964 A
3364200 Ashton et al. Jan 1968 A
3490675 Green et al. Jan 1970 A
3499591 Green Mar 1970 A
3797494 Zaffaroni Mar 1974 A
3939068 Wendt et al. Feb 1976 A
3948666 Kitanishi et al. Apr 1976 A
4064062 Yurko Dec 1977 A
4166800 Fong Sep 1979 A
4282236 Broom Aug 1981 A
4347847 Usher Sep 1982 A
4354628 Green Oct 1982 A
4416698 McCorsley, III Nov 1983 A
4429695 Green Feb 1984 A
4452245 Usher Jun 1984 A
4605730 Shalaby et al. Aug 1986 A
4626253 Broadnax, Jr. Dec 1986 A
4655221 Devereux Apr 1987 A
4834090 Moore May 1989 A
4838884 Dumican et al. Jun 1989 A
4927640 Dahlinder et al. May 1990 A
4930674 Barak Jun 1990 A
5002551 Linsky et al. Mar 1991 A
5014899 Presty et al. May 1991 A
5040715 Green et al. Aug 1991 A
5057334 Vail Oct 1991 A
5065929 Schulze et al. Nov 1991 A
5112496 Dhawan et al. May 1992 A
5162430 Rhee et al. Nov 1992 A
5205459 Brinkerhoff et al. Apr 1993 A
5263629 Trumbull et al. Nov 1993 A
5281197 Arias et al. Jan 1994 A
5307976 Olson et al. May 1994 A
5312023 Green et al. May 1994 A
5314471 Brauker et al. May 1994 A
5318221 Green et al. Jun 1994 A
5324775 Rhee et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5332142 Robinson et al. Jul 1994 A
5344454 Clarke et al. Sep 1994 A
5392979 Green et al. Feb 1995 A
5397324 Carroll et al. Mar 1995 A
5405072 Zlock et al. Apr 1995 A
5410016 Hubbell et al. Apr 1995 A
5425745 Green et al. Jun 1995 A
5441193 Gravener Aug 1995 A
5441507 Wilk Aug 1995 A
5443198 Viola et al. Aug 1995 A
5468253 Bezwada et al. Nov 1995 A
5484913 Stilwell et al. Jan 1996 A
5503638 Cooper et al. Apr 1996 A
5514379 Weissleder et al. May 1996 A
5542594 McKean et al. Aug 1996 A
5543441 Rhee et al. Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5550187 Rhee et al. Aug 1996 A
5575803 Cooper et al. Nov 1996 A
5645915 Kranzler et al. Jul 1997 A
5653756 Clarke et al. Aug 1997 A
5683809 Freeman et al. Nov 1997 A
5690675 Sawyer et al. Nov 1997 A
5702409 Rayburn et al. Dec 1997 A
5752965 Francis et al. May 1998 A
5752974 Rhee et al. May 1998 A
5762256 Mastri et al. Jun 1998 A
5766188 Igaki Jun 1998 A
5769892 Kingwell Jun 1998 A
5782396 Mastri et al. Jul 1998 A
5799857 Robertson et al. Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5814057 Oi et al. Sep 1998 A
5819350 Wang Oct 1998 A
5833695 Yoon Nov 1998 A
5843096 Igaki et al. Dec 1998 A
5871135 Williamson, IV et al. Feb 1999 A
5874500 Rhee et al. Feb 1999 A
5895412 Tucker Apr 1999 A
5895415 Chow et al. Apr 1999 A
5902312 Frater et al. May 1999 A
5908427 McKean et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5931847 Bittner et al. Aug 1999 A
5957363 Heck Sep 1999 A
5964774 McKean et al. Oct 1999 A
5997895 Narotam et al. Dec 1999 A
6019791 Wood Feb 2000 A
6030392 Dakov Feb 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6063097 Oi et al. May 2000 A
6080169 Turtel Jun 2000 A
6093557 Pui et al. Jul 2000 A
6099551 Gabbay Aug 2000 A
6142933 Longo et al. Nov 2000 A
6149667 Hovland et al. Nov 2000 A
6152943 Sawhney Nov 2000 A
6155265 Hammerslag Dec 2000 A
6156677 Brown Reed et al. Dec 2000 A
6165201 Sawhney et al. Dec 2000 A
6179862 Sawhney Jan 2001 B1
6210439 Firmin et al. Apr 2001 B1
6214020 Mulhauser et al. Apr 2001 B1
6241139 Milliman et al. Jun 2001 B1
6258107 Balazs et al. Jul 2001 B1
6267772 Mulhauser et al. Jul 2001 B1
6270530 Eldridge et al. Aug 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6280453 Kugel et al. Aug 2001 B1
6299631 Shalaby Oct 2001 B1
6309569 Farrar et al. Oct 2001 B1
6312457 DiMatteo et al. Nov 2001 B1
6312474 Francis et al. Nov 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6399362 Pui et al. Jun 2002 B1
6436030 Rehil Aug 2002 B2
6454780 Wallace Sep 2002 B1
6461368 Fogarty et al. Oct 2002 B2
6500777 Wiseman et al. Dec 2002 B1
6503257 Grant et al. Jan 2003 B2
6514283 DiMatteo et al. Feb 2003 B2
6514534 Sawhney Feb 2003 B1
6517566 Hovland et al. Feb 2003 B1
6551356 Rousseau Apr 2003 B2
6566406 Pathak et al. May 2003 B1
6568398 Cohen May 2003 B2
6590095 Schleicher et al. Jul 2003 B1
6592597 Grant et al. Jul 2003 B2
6605294 Sawhney Aug 2003 B2
6610006 Amid et al. Aug 2003 B1
6627749 Kumar Sep 2003 B1
6638285 Gabbay Oct 2003 B2
6652594 Francis et al. Nov 2003 B2
6656193 Grant et al. Dec 2003 B2
6656200 Li et al. Dec 2003 B2
6669735 Pelissier Dec 2003 B1
6673093 Sawhney Jan 2004 B1
6677258 Carroll et al. Jan 2004 B2
6685714 Rousseau Feb 2004 B2
6702828 Whayne Mar 2004 B2
6703047 Sawhney et al. Mar 2004 B2
6704210 Myers Mar 2004 B1
6723114 Shalaby Apr 2004 B2
6726706 Dominguez Apr 2004 B2
6736823 Darois et al. May 2004 B2
6736854 Vadurro et al. May 2004 B2
6746458 Cloud Jun 2004 B1
6746869 Pui et al. Jun 2004 B2
6764720 Pui et al. Jul 2004 B2
6773458 Brauker et al. Aug 2004 B1
6818018 Sawhney Nov 2004 B1
6843252 Harrison et al. Jan 2005 B2
6896684 Monassevitch et al. May 2005 B2
6927315 Heinecke et al. Aug 2005 B1
6939358 Palacios et al. Sep 2005 B2
6946196 Foss Sep 2005 B2
6953139 Milliman et al. Oct 2005 B2
6959851 Heinrich Nov 2005 B2
7009034 Pathak et al. Mar 2006 B2
7025772 Gellman et al. Apr 2006 B2
7060087 DiMatteo et al. Jun 2006 B2
7087065 Ulmsten et al. Aug 2006 B2
7108701 Evens et al. Sep 2006 B2
7128253 Mastri et al. Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7134438 Makower et al. Nov 2006 B2
7141055 Abrams et al. Nov 2006 B2
7147138 Shelton, IV Dec 2006 B2
7160299 Baily Jan 2007 B2
7179268 Roy et al. Feb 2007 B2
7210810 Iversen et al. May 2007 B1
7214727 Kwon et al. May 2007 B2
7232449 Sharkawy et al. Jun 2007 B2
7241300 Sharkawy et al. Jul 2007 B2
7247338 Pui et al. Jul 2007 B2
7279322 Pui et al. Oct 2007 B2
7307031 Carroll et al. Dec 2007 B2
7308998 Mastri et al. Dec 2007 B2
7311720 Mueller et al. Dec 2007 B2
7328829 Arad et al. Feb 2008 B2
7347850 Sawhney Mar 2008 B2
7377928 Zubik et al. May 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7464849 Shelton, IV et al. Dec 2008 B2
7498063 Pui et al. Mar 2009 B2
7547312 Bauman et al. Jun 2009 B2
7559937 de la Torre et al. Jul 2009 B2
7571845 Viola Aug 2009 B2
7592418 Pathak et al. Sep 2009 B2
7594921 Browning Sep 2009 B2
7595392 Kumar et al. Sep 2009 B2
7604151 Hess et al. Oct 2009 B2
7611494 Campbell et al. Nov 2009 B2
7635073 Heinrich Dec 2009 B2
7645874 Saferstein et al. Jan 2010 B2
7649089 Kumar et al. Jan 2010 B2
7655288 Bauman et al. Feb 2010 B2
7662409 Masters Feb 2010 B2
7662801 Kumar et al. Feb 2010 B2
7665646 Prommersberger Feb 2010 B2
7666198 Suyker et al. Feb 2010 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7673782 Hess et al. Mar 2010 B2
7708180 Murray et al. May 2010 B2
7709631 Harris et al. May 2010 B2
7717313 Criscuolo et al. May 2010 B2
7722642 Williamson, IV et al. May 2010 B2
7735703 Morgan et al. Jun 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7754002 Maase et al. Jul 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7789889 Zubik et al. Sep 2010 B2
7793813 Bettuchi Sep 2010 B2
7799026 Schechter et al. Sep 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7824420 Eldridge et al. Nov 2010 B2
7845533 Marczyk et al. Dec 2010 B2
7845536 Viola et al. Dec 2010 B2
7846149 Jankowski Dec 2010 B2
7892247 Conston et al. Feb 2011 B2
7909224 Prommersberger Mar 2011 B2
7909837 Crews et al. Mar 2011 B2
7938307 Bettuchi May 2011 B2
7942890 D'Agostino et al. May 2011 B2
7950561 Aranyi May 2011 B2
7951166 Orban, III et al. May 2011 B2
7951248 Fallis et al. May 2011 B1
7967179 Olson et al. Jun 2011 B2
7988027 Olson et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011555 Tarinelli et al. Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
3038045 Bettuchi et al. Oct 2011 A1
8028883 Stopek Oct 2011 B2
8033483 Fortier et al. Oct 2011 B2
8033983 Chu et al. Oct 2011 B2
3062330 Prommersberger et al. Nov 2011 A1
8062673 Figuly et al. Nov 2011 B2
8083119 Prommersberger Dec 2011 B2
8091756 Viola Jan 2012 B2
8123766 Bauman et al. Feb 2012 B2
8123767 Bauman et al. Feb 2012 B2
8127975 Olson et al. Mar 2012 B2
8133336 Kettlewell et al. Mar 2012 B2
8133559 Lee et al. Mar 2012 B2
8146791 Bettuchi et al. Apr 2012 B2
8152777 Campbell et al. Apr 2012 B2
8157149 Olson et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8167895 D'Agostino et al. May 2012 B2
8177797 Shimoji et al. May 2012 B2
8178746 Hildeberg et al. May 2012 B2
8192460 Orban, Iii et al. Jun 2012 B2
8201720 Hessler Jun 2012 B2
8210414 Bettuchi et al. Jul 2012 B2
8210453 Hull et al. Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8225981 Criscuolo et al. Jul 2012 B2
8231043 Tarinelli et al. Jul 2012 B2
8235273 Olson et al. Aug 2012 B2
8245901 Stopek Aug 2012 B2
8252339 Figuly et al. Aug 2012 B2
8252921 Vignon et al. Aug 2012 B2
8256654 Bettuchi et al. Sep 2012 B2
8257391 Orban, III et al. Sep 2012 B2
8276800 Bettuchi Oct 2012 B2
8286849 Bettuchi Oct 2012 B2
8308042 Aranyi Nov 2012 B2
8308045 Bettuchi et al. Nov 2012 B2
8308046 Prommersberger Nov 2012 B2
8312885 Bettuchi et al. Nov 2012 B2
8313014 Bettuchi Nov 2012 B2
8317790 Bell et al. Nov 2012 B2
8322590 Patel et al. Dec 2012 B2
8348126 Olson et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8367089 Wan et al. Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8371493 Aranyi et al. Feb 2013 B2
8372094 Bettuchi et al. Feb 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8393517 Milo Mar 2013 B2
8408440 Olson et al. Apr 2013 B2
8408480 Hull et al. Apr 2013 B2
8413869 Heinrich Apr 2013 B2
8413871 Racenet et al. Apr 2013 B2
8418909 Kostrzewski Apr 2013 B2
8424742 Bettuchi Apr 2013 B2
8449603 Weber et al. May 2013 B2
8453652 Stopek Jun 2013 B2
8453904 Eskaros et al. Jun 2013 B2
8453909 Olson et al. Jun 2013 B2
8453910 Bettuchi et al. Jun 2013 B2
8464925 Hull et al. Jun 2013 B2
8470360 McKay Jun 2013 B2
8474677 Woodard, Jr. et al. Jul 2013 B2
8479968 Hodgkinson et al. Jul 2013 B2
8485414 Criscuolo et al. Jul 2013 B2
8496683 Prommersberger et al. Jul 2013 B2
8511533 Viola et al. Aug 2013 B2
8512402 Marczyk et al. Aug 2013 B2
8518440 Blaskovich et al. Aug 2013 B2
8529600 Woodard, Jr. et al. Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8540131 Swayze Sep 2013 B2
8551138 Orban, III et al. Oct 2013 B2
8556918 Bauman et al. Oct 2013 B2
8561873 Ingmanson et al. Oct 2013 B2
8579990 Priewe Nov 2013 B2
8584920 Hodgkinson Nov 2013 B2
8590762 Hess et al. Nov 2013 B2
8616430 Stopek et al. Dec 2013 B2
8617132 Golzarian et al. Dec 2013 B2
8631989 Aranyi et al. Jan 2014 B2
8646674 Schulte et al. Feb 2014 B2
8668129 Olson Mar 2014 B2
8678263 Viola Mar 2014 B2
8679137 Bauman et al. Mar 2014 B2
8684250 Bettuchi et al. Apr 2014 B2
8701958 Shelton, IV et al. Apr 2014 B2
8721703 Fowler May 2014 B2
8727197 Hess et al. May 2014 B2
8757466 Olson et al. Jun 2014 B2
8789737 Hodgkinson et al. Jul 2014 B2
8814888 Sgro Aug 2014 B2
8820606 Hodgkinson Sep 2014 B2
8827133 Shelton, IV et al. Sep 2014 B2
8857694 Shelton, IV et al. Oct 2014 B2
8864009 Shelton, IV et al. Oct 2014 B2
8870050 Hodgkinson Oct 2014 B2
8900616 Belcheva et al. Dec 2014 B2
8920443 Hiles et al. Dec 2014 B2
8920444 Hiles et al. Dec 2014 B2
8939344 Olson et al. Jan 2015 B2
8956390 Shah et al. Feb 2015 B2
8967448 Carter et al. Mar 2015 B2
9005243 Stopek et al. Apr 2015 B2
9010606 Aranyi et al. Apr 2015 B2
9010608 Casasanta, Jr. et al. Apr 2015 B2
9010609 Carter et al. Apr 2015 B2
9010610 Hodgkinson Apr 2015 B2
9010612 Stevenson et al. Apr 2015 B2
9016543 Stopek et al. Apr 2015 B2
9016544 Hodgkinson et al. Apr 2015 B2
9027817 Milliman et al. May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9055944 Hodgkinson et al. Jun 2015 B2
9084602 Gleiman Jul 2015 B2
9107665 Hodgkinson et al. Aug 2015 B2
9107667 Hodgkinson Aug 2015 B2
9113871 Milliman et al. Aug 2015 B2
9113873 Marczyk et al. Aug 2015 B2
9113885 Hodgkinson et al. Aug 2015 B2
9113893 Sorrentino et al. Aug 2015 B2
9161753 Prior Oct 2015 B2
9161757 Bettuchi Oct 2015 B2
9186140 Hiles et al. Nov 2015 B2
9186144 Stevenson et al. Nov 2015 B2
9192378 Aranyi et al. Nov 2015 B2
9192379 Aranyi et al. Nov 2015 B2
9192380 Racenet et al. Nov 2015 B2
9192383 Milliman Nov 2015 B2
9192384 Bettuchi Nov 2015 B2
9198660 Hodgkinson Dec 2015 B2
9198663 Marczyk et al. Dec 2015 B1
9204881 Penna Dec 2015 B2
9220504 Viola et al. Dec 2015 B2
9226754 D'Agostino et al. Jan 2016 B2
9237892 Hodgkinson Jan 2016 B2
9237893 Carter et al. Jan 2016 B2
9277922 Carter et al. Mar 2016 B2
9295466 Hodgkinson et al. Mar 2016 B2
9326768 Shelton, IV May 2016 B2
9326773 Casasanta, Jr. et al. May 2016 B2
9328111 Zhou et al. May 2016 B2
9345479 Racenet et al. May 2016 B2
9351729 Orban, III et al. May 2016 B2
9351731 Carter et al. May 2016 B2
9351732 Hodgkinson May 2016 B2
9358005 Shelton, IV et al. Jun 2016 B2
9364229 D'Agostino et al. Jun 2016 B2
9364234 Stopek et al. Jun 2016 B2
9386988 Baxter, III et al. Jul 2016 B2
9402627 Stevenson et al. Aug 2016 B2
9414839 Penna Aug 2016 B2
9433412 Bettuchi et al. Sep 2016 B2
9433413 Stopek Sep 2016 B2
9433420 Hodgkinson Sep 2016 B2
9445812 Olson et al. Sep 2016 B2
9445817 Bettuchi Sep 2016 B2
9463260 Stopek Oct 2016 B2
9486215 Olson et al. Nov 2016 B2
9492170 Bear et al. Nov 2016 B2
9504470 Milliman Nov 2016 B2
9517164 Vitaris et al. Dec 2016 B2
9572576 Hodgkinson et al. Feb 2017 B2
9585657 Shelton, IV et al. Mar 2017 B2
9597077 Hodgkinson Mar 2017 B2
9610080 Whitfield et al. Apr 2017 B2
9622745 Ingmanson et al. Apr 2017 B2
9629626 Soltz et al. Apr 2017 B2
9636850 Stopek et al. May 2017 B2
9655620 Prescott et al. May 2017 B2
9675351 Hodgkinson et al. Jun 2017 B2
9681936 Hodgkinson et al. Jun 2017 B2
9687262 Rousseau et al. Jun 2017 B2
9693772 Ingmanson et al. Jul 2017 B2
9708184 Chan et al. Jul 2017 B2
9770245 Swayze et al. Sep 2017 B2
9775617 Carter et al. Oct 2017 B2
9782173 Mozdzierz Oct 2017 B2
10874768 Morgan Dec 2020 B2
20020091397 Chen Jul 2002 A1
20020151911 Gabbay Oct 2002 A1
20030065345 Weadock Apr 2003 A1
20030078209 Schmidt Apr 2003 A1
20030083676 Wallace May 2003 A1
20030125676 Swenson et al. Jul 2003 A1
20030181927 Wallace Sep 2003 A1
20030208231 Williamson et al. Nov 2003 A1
20040092912 Jinno et al. May 2004 A1
20040107006 Francis et al. Jun 2004 A1
20040254590 Hoffman et al. Dec 2004 A1
20040260272 Friedman et al. Dec 2004 A1
20040260315 Dell et al. Dec 2004 A1
20050002981 Lahtinen et al. Jan 2005 A1
20050021085 Abrams et al. Jan 2005 A1
20050059996 Bauman et al. Mar 2005 A1
20050059997 Bauman et al. Mar 2005 A1
20050070929 Dalessandro et al. Mar 2005 A1
20050118435 DeLucia et al. Jun 2005 A1
20050149073 Arani et al. Jul 2005 A1
20050283256 Sommerich et al. Dec 2005 A1
20060008505 Brandon Jan 2006 A1
20060121266 Fandel et al. Jun 2006 A1
20060173470 Oray et al. Aug 2006 A1
20060190027 Downey Aug 2006 A1
20070034669 de la Torre et al. Feb 2007 A1
20070203510 Bettuchi Aug 2007 A1
20070212394 Reyes et al. Sep 2007 A1
20070224235 Tenney et al. Sep 2007 A1
20070243227 Gertner Oct 2007 A1
20070246505 Pace-Floridia et al. Oct 2007 A1
20080009811 Cantor Jan 2008 A1
20080029570 Shelton et al. Feb 2008 A1
20080082126 Murray et al. Apr 2008 A1
20080140115 Stopek Jun 2008 A1
20080169328 Shelton Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080216855 Nasca Sep 2008 A1
20080220047 Sawhney et al. Sep 2008 A1
20080286325 Reyes et al. Nov 2008 A1
20080290134 Bettuchi et al. Nov 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090031842 Kawai et al. Feb 2009 A1
20090123521 Weber May 2009 A1
20090206125 Huitema et al. Aug 2009 A1
20090206126 Huitema et al. Aug 2009 A1
20090206139 Hall et al. Aug 2009 A1
20090206141 Huitema et al. Aug 2009 A1
20090206142 Huitema et al. Aug 2009 A1
20090218384 Aranyi Sep 2009 A1
20090277944 Dalessandro et al. Nov 2009 A9
20100016855 Ramstein et al. Jan 2010 A1
20100016888 Calabrese et al. Jan 2010 A1
20100076489 Stopek et al. Mar 2010 A1
20100087840 Ebersole et al. Apr 2010 A1
20100147921 Olson Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100174253 Cline et al. Jul 2010 A1
20100203151 Hiraoka Aug 2010 A1
20100243707 Olson et al. Sep 2010 A1
20100331859 Omori Dec 2010 A1
20110034910 Ross et al. Feb 2011 A1
20110089220 Ingmanson et al. Apr 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110166673 Patel et al. Jul 2011 A1
20110293690 Griffin et al. Dec 2011 A1
20110295200 Speck et al. Dec 2011 A1
20120080336 Shelton, IV et al. Apr 2012 A1
20120171383 Christensen et al. Jul 2012 A1
20120197272 Oray et al. Aug 2012 A1
20120241491 Aldridge et al. Sep 2012 A1
20120241493 Baxter, III et al. Sep 2012 A1
20120253298 Henderson et al. Oct 2012 A1
20120316633 Flanagan et al. Dec 2012 A1
20130153636 Shelton, IV et al. Jun 2013 A1
20130153641 Shelton, IV et al. Jun 2013 A1
20130209659 Racenet et al. Aug 2013 A1
20130256380 Schmid et al. Oct 2013 A1
20140048580 Merchant et al. Feb 2014 A1
20140131418 Kostrzewski May 2014 A1
20140239047 Hodgkinson et al. Aug 2014 A1
20150041347 Hodgkinson Feb 2015 A1
20150133995 Shelton, IV et al. May 2015 A1
20150209045 Hodgkinson et al. Jul 2015 A1
20150305743 Casasanta et al. Oct 2015 A1
20150327864 Hodgkinson et al. Nov 2015 A1
20160022268 Prior Jan 2016 A1
20160045200 Milliman Feb 2016 A1
20160100834 Viola et al. Apr 2016 A1
20160106430 Carter et al. Apr 2016 A1
20160157857 Hodgkinson et al. Jun 2016 A1
20160174988 D'Agostino et al. Jun 2016 A1
20160206315 Olson Jul 2016 A1
20160220257 Casasanta et al. Aug 2016 A1
20160249923 Hodgkinson et al. Sep 2016 A1
20160256166 Stopek et al. Sep 2016 A1
20160270793 Carter et al. Sep 2016 A1
20160310143 Bettuchi Oct 2016 A1
20160317720 Ostapoff et al. Nov 2016 A1
20160338704 Penna Nov 2016 A1
20160367252 Olson et al. Dec 2016 A1
20160367253 Hodgkinson Dec 2016 A1
20160367257 Stevenson et al. Dec 2016 A1
20170042540 Olson et al. Feb 2017 A1
20170049452 Milliman Feb 2017 A1
20170150967 Hodgkinson et al. Jun 2017 A1
Foreign Referenced Citations (26)
Number Date Country
2282761 Sep 1998 CA
1602563 Mar 1950 DE
19924311 Nov 2000 DE
0327022 Aug 1989 EP
0594148 Apr 1994 EP
2228082 Sep 2010 EP
2724734 Apr 2014 EP
3087931 Nov 2016 EP
2000166933 Jun 2000 JP
2002202213 Jul 2002 JP
2007124166 May 2007 JP
2010214132 Sep 2010 JP
9005489 May 1990 WO
9516221 Jun 1995 WO
9838923 Sep 1998 WO
9926826 Jun 1999 WO
0010456 Mar 2000 WO
0016684 Mar 2000 WO
2007106441 Sep 2007 WO
2010021757 Feb 2010 WO
2010075298 Jul 2010 WO
2010079218 Jul 2010 WO
2011119159 Sep 2011 WO
2015137962 Sep 2015 WO
2016205652 Dec 2016 WO
2017046193 Mar 2017 WO
Non-Patent Literature Citations (140)
Entry
Office Action issued in corresponding Japanese application JP 2018-004711 dated Sep. 3, 2021, together with English language translation (13 pages).
European Search Report corresponding to EP 12 16 5609.4, completed Jul. 5, 2012 and dated Jul. 13, 2012; (8 pp).
European Search Report corresponding to EP 12 15 8861.0, completed Jul. 17, 2012 and dated Jul. 24, 2012; (9 pp).
European Search Report corresponding to EP 12 16 5878.5, completed Jul. 24, 2012 and dated Aug. 6, 2012; (8 pp).
Extended European Search Report corresponding to EP 12 19 1035.0, completed Jan. 11, 2013 and dated Jan. 18, 2013; (7 pp).
Extended European Search Report corresponding to EP 12 18 6175.1, completed Jan. 15, 2013 and dated Jan. 23, 2013; (7 pp).
Extended European Search Report corresponding to EP 12 19 1114.3, completed Jan. 23, 2013 and dated Jan. 31, 2013; (10 pp).
Extended European Search Report corresponding to EP 12 19 2224.9, completed Mar. 14, 2013 and dated Mar. 26, 2013; (8 pp).
Extended European Search Report corresponding to EP 12 19 6904.2, completed Mar. 28, 2013 and dated Jul. 26, 2013; (8 pp).
Extended European Search Report corresponding to EP 12 19 6911.7, completed Apr. 18, 2013 and dated Apr. 24, 2013; (8 pp).
Extended European Search Report corresponding to EP 07 00 5842.5, completed May 13, 2013 and dated May 29, 2013; (7 pp).
Extended European Search Report corresponding to EP 12 19 8776.2, completed May 16, 2013 and dated May 27, 2013; (8 pp).
Extended European Search Report corresponding to EP 12 19 8749.9, completed May 21, 2013 and dated May 31, 2013; (8 pp).
Extended European Search Report corresponding to EP 13 15 6297.7, completed Jun. 4, 2013 and dated Jun. 13, 2013I; (7 pp).
Extended European Search Report corresponding to EP 13 17 3985.6, completed Aug. 19, 2013 and dated Aug. 28, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 3986.4, completed Aug. 20, 2013 and dated Aug. 29, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 7437.4, completed Sep. 11, 2013 and dated Sep. 19, 2013; 6 pages.
Extended European Search Report corresponding to EP 13 17 7441.6, completed Sep. 11, 2013 and dated Sep. 19, 2013; (6 pp).
Extended European Search Report corresponding to EP 07 86 1534.1, completed Sep. 20, 2013 and dated Sep. 30, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 18 3876.5, completed Oct. 14, 2013 and dated Oct. 24, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 17 1856.1, completed Oct. 29, 2013 and dated Nov. 7, 2013; (8 pp).
Extended European Search Report corresponding to EP 13 18 0373.6, completed Oct. 31, 2013 and dated Nov. 13, 2013; (7 pp).
Extended European Search Report corresponding to EP 13 18 0881.8, completed Nov. 5, 2013 and dated Nov. 14, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 6895.4, completed Nov. 29, 2013 and dated Dec. 12, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 18 2911.1, completed Dec. 2, 2013 and dated Dec. 16, 2013; (8 pp).
Extended European Search Report corresponding to EP 10 25 1795.0, completed Dec. 11, 2013 and dated Dec. 20, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 18 7911.6, completed Jan. 22, 2014 and dated Jan. 31, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 19 2111.6, completed Feb. 13, 2014 and dated Feb. 27, 2014; (10 pp).
Extended European Search Report corresponding to EP 13 19 5919.9, completed Feb. 10, 2014 and dated Mar. 3, 2014; (7 pp).
Extended European Search Report corresponding to EP 08 72 6500.5, completed Feb. 20, 2014 and dated Mar. 3, 2014; (7 pp).
Extended European Search Report corresponding to EP 13 19 5019.8, completed Mar. 14, 2014 and dated Mar. 24, 2014; (7 pp).
Extended European Search Report corresponding to EP 13 19 6816.6, completed Mar. 28, 2014 and dated Apr. 9, 2014; (9 pp).
Extended European Search Report corresponding to EP 13 19 7958.5, completed Apr. 4, 2014 and dated Apr. 15, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and dated Jun. 16, 2014; (5 pp).
Extended European Search Report corresponding to EP 14 15 7195.0, completed Jun. 5, 2014 and dated Jun. 18, 2014; (9 pp).
Extended European Search Report corresponding to EP 14 15 6342.9, completed Jul. 22, 2014 and dated Jul. 29, 2014; (8 pp).
Extended European Search Report issued in Appl. No. EP 18152491.9 dated Jun. 6, 2018 (12 pages).
Extended European Search Report issued in Appl. No. EP 18183850.9-1109 dated Dec. 20, 2018 (8 pages).
European Examination Report issued in corresponding Appl. No. EP 18152491.9 dated Jun. 17, 2020 (9 pages).
Extended European Search Report corresponding to EP 14 16 9739 1, completed Aug. 19, 2014 and dated Aug. 29, 2014; (7 pp).
Extended European Search Report corresponding to EP 14 15 7997 9, completed Sep. 9, 2014 and dated Sep. 17, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 16 8904 2, completed Sep. 10, 2014 and dated Sep. 18, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 19 4995 0, completed Jun. 5, 2014 and dated Oct. 13, 2014; (10 pp).
Extended European Search Report corresponding to EP 13 15 4571 7, completed Oct. 10, 2014 and dated Oct. 20, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 18 1125 7, completed Oct. 16, 2014 and dated Oct. 24, 2014; (7 pp).
Extended European Search Report corresponding to EP 14 18 1127 3, completed Oct. 16, 2014 and dated Nov. 10, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 19 0419 3, completed Mar. 24, 2015 and dated Mar. 30, 2015; (6 pp).
European Office Action corresponding to counterpart Int'l Appln No. EP 12 198 776.2 dated Apr. 7, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 13 156 297.7 dated Apr. 10, 2015.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln No. AU 2011250822 dated May 18, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 12 186 175.1 dated Jun. 1, 2015.
Chinese Office Action corresponding to counterpart Int'l Appln No. CN 201010517292.8 dated Jun. 2, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 14 17 48145 dated Jun. 9, 2015.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln No. AU 2014200584 dated Jun. 15, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 13 180 881.8 dated Jun. 19, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 14 157 195.0 dated Jul. 2, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 12 19 6902.6 dated Aug. 6, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 14 15 2060.1 dated Aug. 14, 2015.
Chinese Office Action corresponding to counterpart Int'l Appln No. CN 201210129787.2 dated Aug. 24, 2015.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,665,206 dated Nov. 19, 2013.
Chinese Notification of Reexamination corresponding to counterpart Int'l Appln. No. CN 201010517292.8 dated Jun. 2, 2015.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2014-216989 dated Sep. 11, 2015.
Canadian First Office Action corresponding to counterpart Int'l Appln. No. CA 2,686,105 dated Sep. 17, 2015.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-040188 dated Oct. 21, 2015.
European Communication corresponding to counterpart Int'l Appln. No. EP 13 17 6895.4 dated Nov. 5, 2015.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201210544552 dated Nov. 23, 2015.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201210545228 dated Nov. 30, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 18 0491.1 dated Dec. 9, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 18 3819.0 dated Dec. 11, 2015.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,697,819 dated Jan. 6, 2016.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,696,419 dated Jan. 14, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 12 19 8776.2 dated Jan. 19, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 17 4146.9 dated Jan. 20, 2016.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201310353628.5 dated Jan. 25, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 12 19 6912.5 dated Feb. 1, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-098903 dated Feb. 22, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 12 19 8753.1 dated Feb. 24, 2016.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201410449019.4 dated Mar. 30, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16150232.3, dated Apr. 12, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 11 18 3256.4 dated Apr. 20, 2016.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012244169 dated May 10, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 10 25 0715.9 dated May 12, 2016.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201410778512.0 dated May 13, 2016.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012227358 dated May 16, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-040188 dated May 17, 2016.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012244380 dated May 20, 2016.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2014227480 dated May 21, 2016.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012254977 dated May 30, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 14 17 2681.0 dated May 13, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 15 3647.9 dated Jun. 3, 2016.
Chinese Office Action corresponding to counterpart Int'l Appln. No. CN 201210545228 dated Jun. 29, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-250058 dated Jun. 29, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 14 15 7997.9 dated Jun. 29, 2016.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,712,617 dated Jun. 30, 2016.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 2013103036903 dated Jun. 30, 2016.
Australian Patent Examination Report No. 1 corresponding to counterpart Int'l Appln No. AU 2012250278 dated Jul. 10, 2016.
Australian Patent Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012244382 dated Jul. 10, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-255242 dated Jul. 26, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-268668 dated Jul. 27, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 14 15 2060.1 dated Aug. 4, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 12 16 5609.4 dated Aug. 5, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 15 15 2392.5 dated Aug. 8, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-003624 dated Aug. 25, 2016.
Australian Patent Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012261752 dated Sep. 3, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2014-252703 dated Sep. 26, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 12 19 8776.2 dated Sep. 12, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-000321 dated Sep. 13, 2016.
Chinese Second Office Action corresponding to counterpart Int'l Appln. No. CN 201310353628.5 dated Sep. 26, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 12 15 2541.4 dated Sep. 27, 2016.
Australian Patent Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012268923 dated Sep. 28, 2016.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 2013107068710 dated Dec. 16, 2016.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201310646606.8 dated Dec. 23, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-000321 dated Jan. 4, 2017.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 16 6367.9 dated Jan. 16, 2017.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2013206777 dated Feb. 1, 2017.
Chinese Second Office Action corresponding to counterpart Int'l Appln. No. CN 2013103036903 dated Feb. 23, 2017.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-175379 dated Mar. 1, 2017.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201410028462.4 dated Mar. 2, 2017.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201410084070 dated Mar. 13, 2017.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 19 6549.6 dated Mar. 17, 2017.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-147701 dated Mar. 21, 2017.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2013206804 dated Mar. 21, 2017.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2013211499 dated May 4, 2017.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2014201008 dated May 23, 2017.
European Search Report corresponding to EP 06 00 4598, completed Jun. 22, 2006; (2 pp).
European Search Report corresponding to EP 06 01 6962.0, completed Jan. 3, 2007 and dated Jan. 11, 2007; (10 pp).
International Search Report corresponding to International Application No. PCT/US2005/036740, completed Feb. 20, 2007 and dated Mar. 23, 2007; (8 pp).
International Search Report corresponding to International Application No. PCT/US2007/022713, completed Apr. 21, 2008 and dated May 15, 2008; (1 p).
International Search Report corresponding to International Application No. PCT/US2008/002981, completed Jun. 9, 2008 and dated Jun. 26, 2008; (2 pp).
European Search Report corresponding to EP 08 25 1779, completed Jul. 14, 2008 and dated Jul. 23, 2008; (5 pp).
European Search Report corresponding to EP 08 25 1989.3, completed Mar. 11, 2010 and dated Mar. 24, 2010; (6 op).
European Search Report corresponding to EP 10 25 0639.1, completed Jun. 17, 2010 and dated Jun. 28, 2010; (7 pp).
European Search Report corresponding to EP 10 25 0715.9, completed Jun. 30, 2010 and dated Jul. 20, 2010; (3 pp).
European Search Report corresponding to EP 05 80 4382.9, completed Oct. 5, 2010 and dated Oct. 12, 2010; (3 pp).
European Search Report corresponding to EP 09 25 2897.5, completed Feb. 7, 2011 and dated Feb. 15, 2011; (3 pp).
European Search Report corresponding to EP 10 25 0642.5, completed Mar. 25, 2011 and dated Apr. 4, 2011; (4 pp).
European Search Report corresponding to EP 12 15 2229.6, completed Feb. 23, 2012 and dated Mar. 1, 2012; (4 pp).
European Search Report corresponding to EP 12 15 0511.9, completed Apr. 16, 2012 and dated Apr. 24, 2012; (7 pp).
European Search Report corresponding to EP 12 15 2541 4, completed Apr. 23, 2012 and dated May 3, 2012; (10 pp).
Final Office Action issued in corresponding Japanese Application No. 2018-004711, dated Jun. 24, 2022, together with English language translation (15 pages).
Related Publications (1)
Number Date Country
20210085831 A1 Mar 2021 US
Provisional Applications (1)
Number Date Country
62448509 Jan 2017 US
Continuations (1)
Number Date Country
Parent 15837498 Dec 2017 US
Child 17106276 US