Drug patterned reinforcement material for circular anastomosis

Information

  • Patent Grant
  • 10806459
  • Patent Number
    10,806,459
  • Date Filed
    Friday, September 14, 2018
    6 years ago
  • Date Issued
    Tuesday, October 20, 2020
    4 years ago
Abstract
A surgical stapling apparatus includes a staple cartridge assembly, an anvil assembly operatively associated with the staple cartridge assembly, and a surgical buttress releasably coupled to the staple cartridge assembly or the anvil assembly. The staple cartridge assembly includes a tissue facing surface having staple retaining slots defined therein, each staple retaining slot housing a staple therein, and a circular knife disposed radially inwardly of the tissue facing surface. The anvil assembly includes an anvil member including a tissue facing surface and an anvil shaft extending from the anvil member. The surgical buttress has a circular configuration defining a central aperture therethrough. The surgical buttress includes an inner concentric portion having a therapeutic coating disposed thereon and an outer concentric portion free of the therapeutic coating.
Description
BACKGROUND
Technical Field

The present disclosure relates to surgical buttresses that are releasably attached to surgical stapling apparatus and more particularly, to surgical buttresses for local drug delivery.


Description of Related Art

Surgical stapling apparatus are employed by surgeons to sequentially or simultaneously apply one or more rows of fasteners, e.g., staples or two-part fasteners, to body tissue for the purpose of joining segments of body tissue together and/or creating anastomoses.


Circular surgical stapling apparatus generally include a staple cartridge assembly including circular rows of staples, an anvil assembly operatively associated with the staple cartridge assembly, and a circular blade disposed internal to the circular rows of staples. In use, during an end-to-end circular anastomosis procedure, two ends of hollow tissue sections, e.g., bowels, intestines, or other tubular organs, are clamped between the anvil and staple cartridge assemblies and are joined by driving the circular rows of staples through the clamped hollow tissue sections. During firing of the staples, the circular blade is advanced to cut portions of the tissue sections extending inside the staple lines, thereby establishing a passage through the two stapled tissue sections.


Surgical supports, e.g., meshes or buttress materials, may be used in combination with surgical stapling apparatus to bridge, repair, and/or reinforce tissue defects within a patient. The surgical support reinforces the staple line as well as covers the juncture of the tissue sections to reduce incidents of, for example, tearing, leakage, bleeding, and/or strictures prior to healing.


Circular anastomosis may be utilized during tumor removal. For example, surgical resection of localized endoluminal tumors is part of the standard of care for esophageal, gastric, and colorectal cancers. Once an endoluminal tumor is excised, gastrointestinal conduits are often reconnected by forming a stapled circular anastomosis. Even with surgery, however, each of these cancers is still associated with a high rate of post-surgical local recurrence. These cancers can be further treated with adjuvant systemic chemotherapy or radiotherapy, but each of these treatments can carry toxic side effects and/or be ineffective at reducing local recurrence.


Accordingly, it would be desirable to utilize a drug coated surgical support at the site of a circular anastomosis to locally deliver drugs such as chemotherapeutics, immunotherapies, or targeted therapies to reduce the risk of recurrence near the anastomosis.


SUMMARY

The present disclosure is directed to surgical buttresses including one or more drugs patterned on select locations of the surgical buttress for localized drug delivery and treatment while protecting the underlying tissue during anastomotic healing and allowing for normal tissue integration into a majority of the surgical buttress.


A surgical stapling apparatus, in accordance with aspects of the present disclosure, includes a staple cartridge assembly, an anvil assembly operatively associated with the staple cartridge assembly, and a surgical buttress releasably coupled to the staple cartridge assembly or the anvil assembly. The staple cartridge assembly includes a tissue facing surface having staple retaining slots defined therein, each staple retaining slot housing a staple therein, and a circular knife disposed radially inwardly of the tissue facing surface. The anvil assembly includes an anvil member including a tissue facing surface and an anvil shaft extending from the anvil member. The surgical buttress has a circular configuration defining a central aperture therethrough. The surgical buttress includes an inner concentric portion having a therapeutic coating disposed thereon and an outer concentric portion free of the therapeutic coating.


The inner concentric portion of the surgical buttress may include a first concentric region extending radially inwardly of an inner staple line of the surgical buttress, and a second concentric region extending radially outwardly of the inner staple line to a middle staple line of the surgical buttress.


In embodiments, the therapeutic coating is disposed only within the first concentric region of the surgical buttress. In some embodiments, the first concentric region is defined between the inner staple line and a knife cut line of the surgical buttress and, in some other embodiments, the first concentric region is defined between the inner staple line and an inner edge of the surgical buttress. In certain embodiments, the inner edge of the surgical buttress is disposed radially inwardly of the circular knife of the staple cartridge assembly. In embodiments, the therapeutic coating is disposed partially within the second concentric region of the surgical buttress.


The therapeutic coating may include a chemotherapy drug or an immunotherapy drug. The therapeutic coating may be disposed on first and/or second sides of the surgical buttress.


In some embodiments, the surgical buttress is disposed on the tissue facing surface of the anvil assembly or the staple cartridge assembly and, in some embodiments, the surgical buttress is disposed on the anvil shaft of the anvil assembly in spaced relation relative to the tissue facing surfaces of the anvil and staple cartridge assemblies.


A staple cartridge assembly, in accordance with aspects of the present disclosure, includes a staple cartridge and a surgical buttress. The staple cartridge includes a tissue facing surface having staple retaining slots defined therein, each staple retaining slot housing a staple therein, and a circular knife disposed radially inwardly of the tissue facing surface. The surgical buttress is releasably disposed on the tissue facing surface of the staple cartridge. The surgical buttress has a circular configuration defining a central aperture therethrough. The surgical buttress includes an inner concentric portion having a therapeutic coating disposed thereon and an outer concentric portion free of the therapeutic coating.


The inner concentric portion of the surgical buttress may include a first concentric region extending radially inwardly of an inner staple line of the surgical buttress, and a second concentric region extending radially outwardly of the inner staple line to a middle staple line of the surgical buttress.


In embodiments, the therapeutic coating is disposed only within the first concentric region of the surgical buttress. In some embodiments, the first concentric region is defined between the inner staple line and a knife cut line of the surgical buttress and, in some other embodiments, the first concentric region is defined between the inner staple line and an inner edge of the surgical buttress. In certain embodiments, the inner edge of the surgical buttress is disposed radially inwardly of the circular knife of the staple cartridge. In embodiments, the therapeutic coating is disposed partially within the second concentric region of the surgical buttress. In yet other embodiments, the drug can be applied in any number of arrangements or patterns on the buttress to produce the desired effect of drug delivery and tissue integration into portions of the drug loaded buttress.


The therapeutic coating may include a chemotherapy drug or an immunotherapy drug. The therapeutic coating may be disposed on first and/or second sides of the surgical buttress.


Other aspects, features, and advantages will be apparent from the description, drawings, and the claim.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of the present disclosure are described herein below with reference to the drawings, which are incorporated in and constitute a part of this specification, wherein:



FIG. 1A is a side, perspective view of a surgical stapling apparatus in accordance with an embodiment of the present disclosure;



FIG. 1B is a bottom, perspective view of an anvil assembly of the surgical stapling apparatus of FIG. 1A;



FIG. 2 is a partial cross-sectional view of the surgical stapling apparatus shown in FIG. 1A, including surgical buttresses releasably attached thereto in accordance with an embodiment of the present disclosure;



FIG. 3A is a top, plan view of a surgical buttress of FIG. 2, in an initial configuration prior to actuation of the surgical stapling apparatus;



FIG. 3B is a top, plan view of the surgical buttress of FIG. 3A, in a final configuration after actuation of the surgical stapling apparatus;



FIG. 4A is a top, plan view of a surgical buttress in accordance with another embodiment of the present disclosure;



FIG. 4B is a top, plan view of a surgical buttress in accordance with yet another embodiment of the present disclosure;



FIG. 5 is a top, plan view of a surgical buttress in accordance with an embodiment of the present disclosure;



FIG. 6 is a partial cross-sectional view of the surgical stapling apparatus shown in FIG. 1A including a surgical buttress releasably attached thereto in accordance with another embodiment of the present disclosure; and



FIG. 7 is a top, plan view of the surgical buttress of FIG. 6, in an initial configuration prior to actuation of the surgical stapling apparatus.





DETAILED DESCRIPTION

Various exemplary embodiments of the present disclosure are discussed herein below in terms of surgical buttresses for use with a surgical stapling apparatus. The surgical buttresses described herein may be used in sealing a wound by approximating the edges of tissue between a staple cartridge assembly and an anvil assembly of the surgical stapling apparatus which includes at least one surgical buttress. The surgical buttress is releasably attached to the surgical stapling apparatus such that staples fired from the surgical stapling apparatus attach the surgical buttress to tissue.


While the surgical buttresses are discussed in conjunction with a surgical stapling apparatus, it is envisioned that other surgical apparatus and/or fixation devices, such as tacks, sutures, clips, adhesives, and the like, may be utilized to affix surgical buttresses of the present disclosure to tissue. It should also be appreciated that while the principles of the present disclosure are described with respect to surgical buttresses, the buttressing materials of the present disclosure are suitable for use in a variety of medical devices to mechanically support and/or reinforce tissue such as, for example, hernia meshes, patches, stents, pledgets, and/or scaffolds.


Embodiments of the presently disclosed surgical buttresses will now be described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. Throughout this description, the term “proximal” refers to a portion of a structure, or component thereof, that is closer to a user, and the term “distal” refers to a portion of the structure, or component thereof, that is farther from the user.


Referring now to FIG. 1A, a surgical stapling apparatus or circular stapler 10 for use in stapling tissue and applying a surgical buttress to tissue is shown. The surgical stapling apparatus 10 includes a handle assembly 20, an elongated tubular body 30 extending distally from the handle assembly 20, an anvil assembly 40 releasably coupled to a distal end portion 32 of the elongated tubular body 30, and a staple cartridge assembly 50 disposed at the distal end portion 32 of the elongated tubular body 30.


The handle assembly 20 includes at least one movable handle member 22 for actuating the firing of staples 54 (FIG. 2) from the staple cartridge assembly 50 and the cutting of tissue secured between the anvil and staple cartridge assemblies 40, 50. The handle assembly 20 further includes an advancing member 24 for moving the anvil assembly 40 between an open or spaced apart position and a closed or approximated position relative to the staple cartridge assembly 50.


The elongated tubular body 30 may be flexible or rigid, and/or straight or curved along a portion or the entirety thereof. It should be understood that the elongated tubular body 30 may be otherwise configured (e.g., shaped and/or dimensioned) depending on, for example, the surgical application or procedure of use as is within the purview of those skilled in the art. The staple cartridge assembly 50 may be fixedly connected to the distal end portion 32 of the elongated tubular body 30 or may be configured to concentrically fit within, or be otherwise connected to, the distal end portion 32 of the elongated tubular body 30 such that the staple cartridge assembly 50 is removable and replaceable.


As shown in FIGS. 1A and 1B, the anvil assembly 40 includes an anvil member 42 having a tissue facing surface 44 defined by an outer perimeter 44a and an inner perimeter 44b. Staple forming recesses 43 (e.g., a circular array or circular rows of staple forming recesses) are defined in the tissue facing surface 44 of the anvil member 42. The staple forming recesses 43 mirror staple retaining slots 51 of the staple cartridge assembly 50 (e.g., corresponding in position, size, and/or shape). The anvil assembly 40 further includes an anvil shaft 46 extending distally from the anvil member 42. The anvil shaft 46 is releasably connectable to the elongated tubular body 30 of the surgical stapling apparatus 10.


The anvil shaft 46 of the anvil assembly 40 may be connected to a rod 34 extending through the elongated tubular body 30. The rod 34 can be operably coupled to the advancing member 24 of the handle assembly 20 such that, when the anvil shaft 46 is attached to the rod 34, rotation of the advancing member 24 results in longitudinal movement of the rod 34 which, in turn, results in longitudinal movement of the anvil assembly 40 relative to the elongated tubular body 30. For example, when the advancing member 24 is rotated in a first direction, the anvil assembly 40 is moved away from the elongated tubular body 30, allowing tissue to be placed between the anvil and staple cartridge assemblies 40, 50 and, when the advancing member 24 is rotated in a second direction, the anvil assembly 40 is moved toward the elongated tubular body 30, allowing the tissue to be clamped between the anvil and staple cartridge assemblies 40, 50. It should be understood that other mechanisms for moving the anvil assembly 40 with respect to the elongated tubular body 30 are contemplated and within the purview of those skilled in the art.


As shown in FIGS. 1A and 2, the staple cartridge assembly 50 includes a tissue facing surface 52 defined by an outer perimeter 52a and an inner perimeter 52b. Staple retaining or receiving slots 51 (e.g., a circular array or circular rows of staple retaining slots) are defined in the tissue facing surface 52 of the staple cartridge assembly 50, with a staple 54 disposed in each of the staple retaining slots 51. While the staple cartridge assembly 50 is shown including three circular rows of staple retaining slots 51, it should be understood that the staple cartridge assembly 50 may include one or more rows, or partial rows, of staple retaining slots 51 in a variety of arrangements in the tissue facing surface 52 of the staple cartridge assembly 50 (e.g., the rows and/or partial rows may be circular, oval, polygonal, etc.). It should further be understood that the shape of the staple retaining slots 51 may vary (e.g., the staple retaining slots may have a curved or angled shape) to accommodate the positioning of the staples 54 relative to each other, and/or the size of the staple retaining slots 51 may vary (e.g., one or more rows of staple retaining slots may be different in size from other row(s) of staple retaining slots) to accommodate different shaped and/or sized staples 54.


A staple pusher 56 is disposed in the staple cartridge assembly 50 and has a plurality of fingers or pushers 57 that are aligned with the staple retaining slots 51. The staple pusher 56 is movable in a distal direction to drive the staples 54 out of the staple cartridge assembly 50. A knife 58, substantially in the form of an open cup having a cylindrical shape with a rim thereof defining a knife blade 59, is disposed radially inwardly of the pushers 57. The knife 58 is mounted to a surface of the staple pusher 56 so that, in use, as the staple pusher 56 is advanced distally, the knife 58 is also advanced distally (e.g., axially outward) such that after the staples 54 are driven through tissue captured between the anvil and staple cartridge assemblies 40, 50, the portions of the tissue disposed radially inwardly of the staples 54 are cut by the knife blade 59.


The movable handle members 22 of the handle assembly 20 can be operably coupled to the staple pusher 56 by, for example, a tubular member or pair of bands (not shown) that are attached to the staple pusher 56 by, for example, linkages or the like. In this way, when the movable handle members 22 are actuated, the tubular member or bands are advanced, advancing the staple pusher 56, as described above. It should be understood that other mechanisms for firing the surgical stapling apparatus 10 are contemplated and within the purview of those skilled in the art.


For a detailed description of the structure and function of exemplary surgical stapling apparatus, reference may be made to U.S. Pat. Nos. 4,473,077; 4,576,167; 5,005,749; 5,119,983; 5,588,579; 5,915,616; and 6,053,390, the entire content of each of which is incorporated herein by reference. It should be understood that a variety of circular surgical stapling apparatus may be utilized with the surgical buttresses of the present disclosure. For example, circular staplers, such as, for example, EEA™ and CEEA™ staplers, available through Medtronic (North Haven, Conn.) may be utilized with the surgical buttresses of the present disclosure.


As shown in FIG. 2, surgical buttresses 60 are releasably attached to the tissue facing surfaces 44, 52 of the anvil and staple cartridge assemblies 40, 50, respectively. The surgical buttresses 60 may be releasably secured to the tissue facing surfaces 44, 52 of the anvil and/or staple cartridge assemblies 40, 50 via any suitable attachment feature within the purview of those skilled in the art, such as, chemical attachment features (e.g., adhesives), mechanical attachment features (e.g., mounting structures, such as tabs, pins, or straps), and/or attachment methods (e.g., welding). For a detailed description of exemplary attachment features suitable for use with a surgical buttress of the present disclosure, reference may be made to U.S. Pat. Nos. 8,584,920; 8,967,448; and 9,237,892, the entire content of each of which is incorporated herein by reference. In embodiments, an adhesive (not explicitly shown) is disposed between the surgical buttresses 60 and the respective tissue facing surface 44, 52 of the anvil and staple cartridge assemblies 40, 50.


The surgical stapling apparatus 10 and detachable anvil assembly 40 are used in an anastomosis procedure to effect joining of tissue sections 1, 2 (e.g., intestinal or other tubular organ sections). The anastomosis procedure is typically performed using minimally invasive surgical techniques including laparoscopic means and instrumentation. At the point in the procedure shown in FIG. 2, such as after removal of a diseased tissue section, the anvil assembly 40 has been applied to the operative site (e.g., through a surgical incision or a body orifice) and positioned within tissue section 1, the elongated tubular body 30 of the surgical stapling apparatus 10 has been inserted (e.g., through a surgical incision or a body orifice) within tissue section 2, and the anvil shaft 46 of the anvil assembly 40 has been connected to the elongated tubular body 30. The tissue sections 1, 2 are also shown temporarily secured about their respective components by conventional means such as purse string sutures “P”.


Thereafter, the anvil assembly 40 is approximated towards the elongated tubular body 30 (e.g., via advancing member 24 (FIG. 1) of the handle assembly 20) to approximate the tissue sections 1, 2. The surgical stapling apparatus 10 is then actuated (e.g., via movable handle members 22 (FIG. 1) of the handle assembly 20), firing the staples 54 from the staple cartridge assembly 50 and towards the anvil member 42 of the anvil assembly 40 to effect stapling of the tissue sections 1, 2 to one another, as well as the surgical buttresses 60 to the tissue sections 1, 2. The knife blade 59 cuts the now stapled tissue sections 1, 2, as well as any portion of the surgical buttresses 60 extending radially inwardly of the knife 58, to complete the anastomosis. Upon movement of the anvil assembly 40 away from staple cartridge assembly 50 (e.g., via advancing member 24), the surgical buttresses 60, which are now stapled to the tissue sections 1, 2, are pulled away from the anvil and staple cartridge assemblies 40, 50.


The surgical buttresses of the present disclosure are fabricated from biocompatible materials which are bioabsorbable or non-absorbable, natural or synthetic materials. It should be understood that any combination of natural, synthetic, bioabsorbable, and/or non-bioabsorbable materials may be used to form a surgical buttress. The surgical buttresses of the present disclosure may be biodegradable (e.g., formed from bioabsorbable and bioresorable materials) such that the surgical buttresses decompose or are broken down (physically or chemically) under physiological conditions in the body, and the degradation products are excretable or absorbable by the body.


The surgical buttresses may be porous, non-porous, or combinations thereof. Suitable porous structures include, for example, fibrous structures (e.g., knitted structures, woven structures, and non-woven structures) and/or foams (e.g., open or closed cell foams). Suitable non-porous structures include, for example, films. The surgical buttresses may be a single porous or non-porous layer, or include a plurality of layers including any combination of porous and/or non-porous layers.


Porous layer(s) in a surgical buttress may enhance the ability of the surgical buttress to absorb fluid, reduce bleeding, and seal a wound. Also, the porous layer(s) may allow for tissue ingrowth to fix the surgical buttress in place. Non-porous layer(s) in a surgical buttress may enhance the ability of the surgical buttress to resist tears and perforations during the manufacturing, shipping, handling, and stapling processes. Also, non-porous layer(s) may retard or prevent tissue ingrowth from surrounding tissues thereby acting as an adhesion barrier and preventing the formation of unwanted scar tissue. The porosity of the layer(s) of the surgical buttress may allow for and/or determine the rate of infiltration of biological fluids and/or cellular components into the surgical buttress which, in turn, may accelerate or decelerate the release kinetics of therapeutic agent(s) from the surgical buttress and thus, increase or decrease the release rate of the therapeutic agent(s) from the surgical buttress into the surrounding tissue and fluids.


The surgical buttresses of the present disclosure include a therapeutic coating disposed thereon. The therapeutic coating provides treatment in the form of chemotherapy, immunotherapy, targeted therapy, or combinations thereof by local delivery of one or more therapeutic agents or anti-cancer drugs at the site of tumor resection. The therapeutic coating may include one or more therapeutic agents therein having one or more release profiles. The surgical buttresses of the present disclosure may release therapeutic agent(s) therefrom over a period of time from about 12 hours to about 6 weeks, in embodiments, from about 24 hours to about 4 weeks and, in some embodiments, from about 48 hours to about 2 weeks.


The therapeutic agent(s) of the therapeutic coating may include, but are not limited to, drugs (e.g., small molecule drugs), amino acids, peptides, polypeptides, proteins, polysaccharides, muteins, immunoglobulins, antibodies, cytokines (e.g., lymphokines, monokines, chemokines), blood clotting factors, hemopoietic factors, interleukins (1 through 18), interferons (β-IFN, α-IFN and γ-IFN), erythropoietin, nucleases, tumor necrosis factor, colony stimulating factors (e.g., GCSF, GM-CSF, MCSF), insulin, anti-tumor agents, tumor suppressors, blood proteins, fibrin, thrombin, fibrinogen, synthetic thrombin, synthetic fibrin, synthetic fibrinogen, gonadotropins (e.g., FSH, LH, CG, etc.), hormones and hormone analogs (e.g., growth hormone, luteinizing hormone releasing factor), vaccines (e.g., tumoral, bacterial, and viral antigens), somatostatin, antigens, blood coagulation factors, growth factors (e.g., nerve growth factor, insulin-like growth factor), bone morphogenic proteins, TGF-B, protein inhibitors, protein antagonists, protein agonists, nucleic acids, such as antisense molecules, DNA, RNA, RNAi, oligonucleotides, polynucleotides, cells, viruses, and ribozymes.


In embodiments, the therapeutic coating includes an anti-tumor agent and/or tumor suppressor, referred to, in embodiments, as a “chemotherapeutic agent” and/or an “antineoplastic agent.” Suitable chemotherapeutic agents include, for example, paclitaxel and derivatives thereof, docetaxel and derivatives thereof, abraxane, tamoxifen, cyclophosphamide, actinomycin, bleomycin, dactinomycin, daunorubicin, doxorubicin, doxorubicin hydrochloride, epirubicin, mitomycin, methotrexate, fluorouracil, gemcitabine, gemcitabine hydrochloride, carboplatin, carmustine (BCNU), methyl-CCNU, cisplatin, etoposide, camptothecin and derivatives thereof, phenesterine, vinblastine, vincristine, goserelin, leuprolide, interferon alfa, retinoic acid (ATRA), nitrogen mustard alkylating agents, piposulfan, vinorelbine, irinotecan, irinotecan hydrochloride, vinblastine, pemetrexed, sorafenib tosylate, everolimus, erlotinib hydrochloride, sunitinib malate, capecitabine oxaliplatin, leucovorin calcium, bevacizumab, cetuximab, ramucirumab, trastuzumab, combinations thereof, and the like.


In some embodiments, the therapeutic coating includes paclitaxel and/or paclitaxel derivatives as the therapeutic agent. Paclitaxel may have various forms, referred to herein as “polymorphs,” including amorphous paclitaxel, crystalline paclitaxel, sometimes referred to as crystalline paclitaxel dihydrate, and/or anhydrous paclitaxel, or mixtures thereof. The polymorph form of paclitaxel in the therapeutic coating may be adjusted and selected to provide a tailored release of the therapeutic agent from the surgical buttress of the present disclosure as the crystallinity of the paclitaxel impacts its solubility in aqueous systems. Although the drug in any form is hydrophobic, as amorphous paclitaxel it is more soluble in aqueous environments, and crystalline paclitaxel is less soluble in aqueous environments, more than one polymorphic form of paclitaxel may be used, in embodiments, to provide surgical buttresses that have multiple release profiles of paclitaxel.


For example, surgical buttresses of the present disclosure having both amorphous paclitaxel and crystalline paclitaxel dihydrate thereon may release a bolus of therapeutic agent upon implantation (in the form of the amorphous paclitaxel), while also slowly releasing the therapeutic agent (in the form of the crystalline paclitaxel dihydrate). In embodiments, surgical buttresses of the present disclosure may release amorphous paclitaxel over a period of time from about 24 hours to about 168 hours, in some embodiments, from about 48 hours to about 96 hours, and release crystalline paclitaxel dihydrate over a period of time from about 1 week to about 6 weeks, in some embodiments, from about 2 weeks to about 4 weeks.


The therapeutic coating of the surgical buttresses of the present disclosure may include a carrier component formed from, for example, polymeric materials such as, but not limited to, degradable materials such as those prepared from monomers such as glycolide, lactide, trimethylene carbonate, p-dioxanone, epsilon-caprolactone, and combinations thereof.


The therapeutic coating, regardless of whether the therapeutic agent is applied with or without a carrier component, may include excipient(s) to enhance both the ability of the therapeutic agent to adhere to the surgical buttress as well as to modify the elution of the therapeutic agent therefrom. Suitable excipients include, but are not limited to, surfactants (e.g., cyclodextrins or sorbitan fatty acid esters), low molecule weight poly (ethylene glycol)s, salts (e.g., sodium chloride and/or other materials such as urea, oleic acid, citric acid, and ascorbic acid), stabilizers (e.g., butylated hydroxytoluene), polyhydric alcohols (e.g., D-sorbitol or mannitol), combinations thereof, and the like. In some embodiments, excipients which are hydrotropes may be included in the therapeutic coating of the present disclosure. These materials attract water into the therapeutic coating, which may enhance its degradation and resulting release of the therapeutic agent therefrom.


The therapeutic coating or components thereof (e.g., therapeutic agent(s), carrier component(s), and/or excipient(s)) may be in a solution for application to a surgical buttress of the present disclosure. Suitable solvents for forming such a solution include any pharmaceutically acceptable solvent including, but not limited to, saline, water, alcohol, acetone, dimethyl sulfoxide, ethyl acetate, N-methylpyrrolidone, combinations thereof, and the like. Methods for forming such solutions are within the purview of those skilled in the art and include, but are not limited to, mixing, blending, sonication, heating, combinations thereof, and the like. Methods for driving off the solvent after application to the surgical buttress to form the therapeutic coating and leave the therapeutic agent and any carrier component and/or excipient behind are within the purview of those skilled in the art and include, for example, solvent evaporation by heat, gas flow, time, reduced pressure, combinations thereof, and the like. By selecting different solvent systems, different dissolution rates of the therapeutic agent(s) may be achieved due to different therapeutic agent morphologies and degrees of crystallinity that occur based upon the solvent used in forming the solution including the therapeutic agent(s).


The therapeutic coating is disposed over specific areas of the surgical buttress such that the therapeutic agent(s) is deposited on the surgical buttress with high precision, and other areas of the surgical buttress are left uncoated by design to improve the performance of the surgical buttress, for instance, for better tissue healing around staple lines. The therapeutic coating or components thereof may be applied to the surgical buttress of the present disclosure by needle deposition processes, inkjet printing techniques, deposition methods including piezoelectric elements, combinations thereof, and the like.


The application process may include one or more passes of the therapeutic coating or components thereof onto the surgical buttress to ensure the surgical buttress has the desired amount of therapeutic agent for administering a dose of the therapeutic agent. In embodiments, multiple layers of the therapeutic coating is deposited on the surgical buttress resulting in an overall therapeutic coating that is uniform and robust, and adheres well to the buttress material. This is in contrast to other processes, such as dip coating and other similar coating methods, which lack both the robustness and adherence of the coatings/layers produced in accordance with the present disclosure. In some embodiments, different therapeutic agents are applied in different layers of the therapeutic coating. Different therapeutic benefits can thus be combined on one surgical buttress by using the multiple layers. In certain embodiments, different therapeutic agents can be deposited on different areas on the surface of the surgical buttress, e.g., one therapeutic agent can be applied in one region or area of the surgical buttress, and a different therapeutic agent can be applied to a different region or area of the surgical buttress.


With reference now to FIG. 3A, the surgical buttress 60 has a generally circular or annular configuration defining a central aperture 61 therethrough. The central aperture 61 is sized and dimensioned to allow free passage of the anvil shaft 46 of the anvil assembly 40 therethrough. In embodiments, the central aperture 61 has a diameter that is larger than the diameter of the anvil shaft 46 of the anvil assembly 40. In some embodiments, the diameter of the central aperture 61 may be about the same as or smaller than the diameter of the anvil shaft 46.


The surgical buttress 60 includes a body 62 having an outer edge 62a and an inner edge 62b defining the central aperture 61 of the surgical buttress 60. The body 62 is sized and dimensioned to extend over (e.g., completely cover) the tissue facing surface 44, 52 of the anvil or staple cartridge assembly 40, 50, with the outer edge 62a of the body 62 aligned (e.g., radially) and coincident with the outer perimeter 44a, 52a of the anvil or staple cartridge assembly 40, 50 and the inner edge 62b disposed radially inwardly of the knife 58 of the staple cartridge assembly 50. In some embodiments, the outer edge 62a of the body 62 of the surgical buttress 60 extends radially beyond the outer perimeter 44a, 52a of the anvil or staple cartridge assembly 40, 50.


The body 62 of the surgical buttress 60 includes a plurality of concentric regions 64 defined therein. A first or inner concentric region 64a is defined between a knife cut line 66a and a first or inner staple line 66b of the surgical buttress 60, a second concentric region 64b is defined between the first staple line 66b and a second or middle staple line 66c of the surgical buttress 60, a third concentric region 64c is defined between the second staple line 66c and a third or outer staple line 66d of the surgical buttress 60, and a fourth concentric region 64d is defined between the third staple line 66d and the outer edge 62a of the surgical buttress 60. The knife cut line 66a of the surgical buttress 60 is aligned with the knife 58 of the staple cartridge assembly 50, and the first, second, and third staple lines 66b, 66c, 66d of the surgical buttress 60 are aligned with the staple forming recesses 43 or the staple forming slots 51 of the anvil or staple cartridge assembly 40, 50.


A therapeutic coating 68 is disposed on the first concentric region 64a of the surgical buttress 60 such that the therapeutic coating 68 extends between the knife cut line 66a and the first staple line 66b of the surgical buttress 60. The therapeutic coating 68 is applied so that an adequate amount of therapeutic agent(s) is deposited on and robustly attached to the first concentric region 64a of the surgical buttress 60, while the remainder of the surgical buttress 60 (e.g., the second, third, and fourth concentric regions 64b, 64c, 64d) remain free of the therapeutic coating 68 and thus, any therapeutic agent(s). The therapeutic coating 68 may be disposed on one or both sides of the surgical buttress 60 (e.g., one side contacting the tissue facing surface 44, 52 of the anvil or staple cartridge assembly 40, 50 and an opposed side facing away from the tissue facing surface 44, 52).


While the therapeutic coating 68 is shown as a continuous layer covering the entirety of the first concentric region 64a of the surgical buttress 60, it should to be appreciated that the configuration of the therapeutic coating 68 may vary. For example, the therapeutic coating 68 may be a discontinuous or patterned layer disposed on the surgical buttress 60. In some embodiments, the therapeutic coating 68 may be disposed within a portion of the first concentric region 64a of the surgical buttress 60 in spaced relation from, and radially inwardly of, the first staple line 66b.


Upon actuation of the surgical stapling device 10, the portion of the surgical buttress 60 disposed radially inwardly of the knife cut line 66a of the surgical buttress 60 is cut away from the surgical buttress 60 by the knife 58 of the staple cartridge assembly 50. As shown in FIG. 3B, in a final configuration of the surgical buttress 60, the central aperture 61′ is enlarged and defined by an inner edge 62b′ coincident with the knife cut line 66a (FIG. 3A), and staples 54 extend through the surgical buttress 60 in circular staple rows or lines “S1”, “S2”, and “S3” coincident with the first, second, and third staple lines 66b, 66c, 66d (FIG. 3A), respectively, of the surgical buttress 60. The therapeutic coating 68, disposed on the first concentric region 64a of the surgical buttress 60, allows the therapeutic agent(s) of the therapeutic coating 68 to diffuse into the endoluminal space and into local tissue, while not impacting healing over a majority of the circular staple lines “S1”, “S2”, and “S3”. For example, in the case of tumor resection, the therapeutic coating 68 may eradicate any remaining tumor cells, stimulate a host response to destroy tumor cells, and/or block pathways required for tumor growth that may lead to a recurrent cancer. The precise location of the therapeutic coating 68 on the surgical buttress 60 isolates the therapeutic agent to areas where it is intended to be used (e.g., eliminates toxicity associated with systemic chemotherapy), delivers continuous and prolonged local therapy, and/or provides costs savings in terms of the amount of therapeutic agent used (e.g., reduces the drug payload compared to conventional systemic chemotherapy).


While the therapeutic coating 68 is shown disposed only within the first concentric region 64a of the surgical buttress 60, other configurations are envisioned. The therapeutic coating 68 may be disposed on any part of an inner concentric portion 63a of the body 62 of the surgical buttress 60, which includes portions of the surgical buttress 60 disposed radially inwardly of the second staple line 66c. An outer concentric portion 63b of the body 62, which includes portions of the surgical buttress 60 disposed radially outwardly of the second staple line 66c, is to remain free of the therapeutic coating 68.


For example, as shown in FIG. 4A, a surgical buttress 60′ in accordance with another embodiment of the present disclosure is substantially the same as surgical buttress 60 except that the therapeutic coating 68′ extends radially inwardly of the knife cut line 66a towards the inner edge 62b of the surgical buttress 60′. Accordingly, in some embodiments, the first concentric region 64a′ of the surgical buttress 60′ is defined between the inner edge 62b of the surgical buttress and the first staple line 66b, and the therapeutic coating 68′ is disposed over the entirety or portion(s) thereof.


As another example, as shown in FIG. 4B, a surgical buttress 60″ in accordance with another embodiment of the present disclosure is substantially the same as surgical buttress 60 except that the therapeutic coating 68″ extends radially outwardly of the first staple line 66b towards the second staple line 66c. Accordingly, in some embodiments, the therapeutic coating 68″ is disposed on the first concentric region 64a of the surgical buttress 60″ and a portion of the second concentric region 64b of the surgical buttress 60″ in spaced relation from, and radially inwardly of, the second staple line 66c. In certain embodiments, the therapeutic coating 68″ is disposed on a portion or the entirety of the first and/or second concentric regions 64a, 64b of the surgical buttress 60″.


With reference now to FIG. 5, a surgical buttress 70 in accordance with another embodiment of the present disclosure is shown. The surgical buttress 70 includes a body portion 72 including an outer edge 72a and an inner edge 72b, the inner edge 72b defining a central aperture 71 of the surgical buttress 70. The surgical buttress 70 is sized and dimensioned such that the body portion 72 extend over the tissue facing surface 44, 52 of the anvil or staple cartridge assembly 40, 50 to which the surgical buttress 70 is releasably secured. The outer edge 72a of the body 72 is radially aligned or coincident with the outer perimeter 44a, 52a of the anvil or staple cartridge assembly 40, 50 and the inner edge 72a is radially aligned or coincident with the inner perimeter 44b, 52b of the anvil or staple cartridge assembly 40, 50 such that the inner edge 72b is disposed radially inwardly of the staple forming recesses 43 or the staple retaining slots 51 of the anvil or staple cartridge assembly 40, 50, and radially outwardly of the knife 58.


A therapeutic coating 78 is disposed on a first concentric region 74a of the surgical buttress 70 that is defined between the inner edge 72b of the surgical buttress 70 and a first or inner staple line 76a of the surgical buttress 70. It should be understood that the therapeutic coating 78 may extend partially or completely through the first concentric region 74a and, in some embodiments, may extend completely or partially into a second concentric region 74b of the surgical buttress 70 that is defined between the first staple line 76a and a second or middle staple line 76b of the surgical buttress 70.


Upon actuation of the surgical stapling apparatus 10, the surgical buttress 70 remains intact and is not cut by the knife 58 which, for example, may reduce the firing force required to cut through the stapled tissue and the surgical buttress 70. Accordingly, the size of the central aperture 71 does not change between initial and final configurations of the surgical buttress 70. The body 72 of the surgical buttress 70 is attached to tissue via staples 54 (FIG. 3B) as described above with respect to the surgical buttress 60.


It should be understood that while the surgical stapling apparatus is shown including surgical buttresses disposed on both the anvil and the staple cartridge assemblies, the surgical stapling apparatus may include only one surgical buttress disposed on either the anvil assembly or the staple cartridge assembly. It should be further understood that any of the surgical buttresses of the present disclosure may be disposed on the anvil and/or staple cartridge assemblies depending on, for example, the surgical application and/or desired placement of the buttress material relative to tissue as should be understood by those skilled in the art.


The surgical buttress(es) of the present disclosure may be pre-loaded (e.g., by the manufacturer) onto the anvil assembly and/or the staple cartridge assembly. Additional or replacement surgical buttresses may be secured to the respective anvil and/or staple cartridge assemblies as needed or desired.


It is envisioned that the surgical buttress may be, additionally or alternatively, positioned on the anvil shaft of the anvil assembly following the connection of the anvil assembly to the respective tissue section such that the surgical buttress is stapled between the tissue sections following actuation of the surgical stapling apparatus.


With reference now to FIGS. 6 and 7, a surgical buttress 80 is releasably attached to the anvil assembly 40 by positioning the anvil shaft 46 through a central aperture 81 of the surgical buttress 80 such that the surgical buttress 80 engages the anvil shaft 46 (e.g., frictional engagement) and a body 82 of the surgical buttress 80 is disposed in axially spaced relation relative to the tissue facing surfaces 44, 52 of the anvil and/or staple cartridge assemblies 40, 50. At the point of a surgical procedure shown in FIG. 6, after a diseased tissue section has been removed and the anvil and staple cartridge assemblies 40, 50 have been positioned within the respective tissue sections 1, 2 and temporarily secured thereabout with purse string sutures “P”, the surgical buttress 80 is placed on the anvil shaft 46 of the anvil assembly 40 and then the anvil shaft 46 is connected to the elongated tubular body 30. Thereafter, the anvil assembly 40 is approximated towards the elongated tubular body 30 to capture the surgical buttress 80 between the tissue sections 1, 2, and the surgical stapling apparatus 10 is fired, as discussed above, thereby stapling the tissue sections 1, 2 and surgical buttress 80 to each another and cutting the portions of the tissue and the surgical buttress 80 disposed radially inward of the knife 58 to complete the anastomosis.


The surgical buttress 80 includes a body portion 82 including an outer edge 82a and an inner edge 82b, the inner edge 82b defining a central aperture 81 of the surgical buttress 80. The diameter of the central aperture 81 is about the same as or smaller than the diameter of the anvil shaft 46. The outer edge 82a of the body 82 is radially aligned or coincident with the outer perimeter 44a, 52a of the anvil or staple cartridge assembly 40, 50, and the inner edge 72a is engagable with the anvil shaft 46, as discussed above, such that the inner edge 72b is disposed radially inwardly of the knife 58.


A therapeutic coating 88 is disposed on a first concentric region 84a of the surgical buttress 80 that is defined between a knife cut line 86a of the surgical buttress 80 and a first or inner staple line 86b of the surgical buttress 80. It should be understood that the therapeutic coating 88 may extend partially or completely through the first concentric region 84a and, in some embodiments, may extend completely or partially into a second concentric region 84b of the surgical buttress 80 that is defined between the first staple line 86b and a second or middle staple line 86c of the surgical buttress 70. Moreover, while the therapeutic coating 88 is shown disposed on first and second sides 80a, 80b of the surgical buttress 80, it should be understood that the therapeutic coating 88 may disposed on only one of the first or second sides 80a, 80b.


Although the surgical stapling apparatus discussed above has a manually operated, manually driven handle, any of the embodiments disclosed herein can include a surgical stapling apparatus having a hand-held powered handle having a motor, or a stapling unit that is attachable to a motorized drive, or a stapling unit arranged for use in a robotic surgical system. The surgical buttresses described herein may also be configured for use with other surgical apparatus, such as electromechanical surgical devices as described, for example, in U.S. Patent Appl. Pub. Nos. 2015/0157320 and 2015/0157321, the entire contents of each of which are incorporated herein by reference.


Persons skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying figures are non-limiting exemplary embodiments, and that the description, disclosure, and figures should be construed merely exemplary of particular embodiments. It is to be understood, therefore, that the present disclosure is not limited to the precise embodiments described, and that various other changes and modifications may be affected by one skilled in the art without departing from the scope or spirit of the disclosure. Additionally, it is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another exemplary embodiment without departing from the scope of the present disclosure, and that such modifications and variations are also intended to be included within the scope of the present disclosure. Accordingly, the subject matter of the present disclosure is not to be limited by what has been particularly shown and described.

Claims
  • 1. A surgical stapling apparatus comprising: a staple cartridge assembly including a tissue facing surface having staple retaining slots defined therein, each staple retaining slot housing a staple therein, and a circular knife disposed radially inwardly of the tissue facing surface;an anvil assembly operatively associated with the staple cartridge assembly, the anvil assembly including an anvil member including a tissue facing surface and an anvil shaft extending from the anvil member; anda surgical buttress releasably coupled to the staple cartridge assembly or the anvil assembly, the surgical buttress having a circular configuration defining a central aperture therethrough, the surgical buttress including an inner concentric portion having a therapeutic coating disposed thereon and an outer concentric portion free of the therapeutic coating, the inner concentric portion including a first concentric region extending radially inwardly of an inner staple line of the surgical buttress and a second concentric region extending radially outwardly of the inner staple line to a middle staple line of the surgical buttress, and the therapeutic coating is disposed only within the first concentric region of the surgical buttress.
  • 2. The surgical stapling apparatus according to claim 1, wherein the first concentric region is defined between the inner staple line and a knife cut line of the surgical buttress.
  • 3. The surgical stapling apparatus according to claim 1, wherein the first concentric region is defined between the inner staple line and an inner edge of the surgical buttress.
  • 4. The surgical stapling apparatus according to claim 3, wherein the inner edge of the surgical buttress is disposed radially inwardly of the circular knife of the staple cartridge assembly.
  • 5. The surgical stapling apparatus according to claim 1, wherein the therapeutic coating includes a chemotherapy drug or an immunotherapy drug.
  • 6. The surgical stapling apparatus according to claim 1, wherein the surgical buttress is disposed on the tissue facing surface of the anvil assembly or the staple cartridge assembly.
  • 7. The surgical stapling apparatus according to claim 1, wherein the surgical buttress is disposed on the anvil shaft of the anvil assembly in spaced relation relative to the tissue facing surfaces of the anvil and staple cartridge assemblies.
  • 8. The surgical stapling apparatus according to claim 1, wherein the therapeutic coating is disposed on first and second sides of the surgical buttress.
  • 9. A staple cartridge assembly comprising: a staple cartridge including a tissue facing surface having staple retaining slots defined therein, each staple retaining slot housing a staple therein, and a circular knife disposed radially inwardly of the tissue facing surface; anda surgical buttress releasably disposed on the tissue facing surface of the staple cartridge, the surgical buttress having a circular configuration defining a central aperture therethrough, the surgical buttress including an inner concentric portion having a therapeutic coating disposed thereon and an outer concentric portion free of the therapeutic coating, the inner concentric portion including a first concentric region extending radially inwardly of an inner staple line of the surgical buttress and a second concentric region extending radially outwardly of the inner staple line to a middle staple line of the surgical buttress, and the therapeutic coating is disposed only within the first concentric region of the surgical buttress.
  • 10. The staple cartridge assembly according to claim 9, wherein the first concentric region is defined between the inner staple line and a knife cut line of the surgical buttress.
  • 11. The staple cartridge assembly according to claim 9, wherein the first concentric region is defined between the inner staple line and an inner edge of the surgical buttress.
  • 12. The staple cartridge assembly according to claim 11, wherein the inner edge of the surgical buttress is disposed radially inwardly of the circular knife of the staple cartridge.
  • 13. The staple cartridge assembly according to claim 9, wherein the therapeutic coating includes a chemotherapy drug or an immunotherapy drug.
  • 14. The staple cartridge assembly according to claim 9, wherein the therapeutic coating is disposed on first and second sides of the surgical buttress.
US Referenced Citations (556)
Number Name Date Kind
3054406 Usher Sep 1962 A
3079606 Bobrov et al. Mar 1963 A
3124136 Usher Mar 1964 A
3364200 Ashton et al. Jan 1968 A
3490675 Green et al. Jan 1970 A
3499591 Green Mar 1970 A
3797494 Zaffaroni Mar 1974 A
3939068 Wendt et al. Feb 1976 A
3948666 Kitanishi et al. Apr 1976 A
4064062 Yurko Dec 1977 A
4166800 Fong Sep 1979 A
4282236 Broom Aug 1981 A
4347847 Usher Sep 1982 A
4354628 Green Oct 1982 A
4416698 McCorsley, III Nov 1983 A
4429695 Green Feb 1984 A
4452245 Usher Jun 1984 A
4473077 Noiles et al. Sep 1984 A
4576167 Noiles Mar 1986 A
4605730 Shalaby et al. Aug 1986 A
4626253 Broadnax, Jr. Dec 1986 A
4655221 Devereux Apr 1987 A
4834090 Moore May 1989 A
4838884 Dumican et al. Jun 1989 A
4927640 Dahlinder et al. May 1990 A
4930674 Barak Jun 1990 A
5002551 Linsky et al. Mar 1991 A
5005749 Aranyi Apr 1991 A
5014899 Presty et al. May 1991 A
5040715 Green et al. Aug 1991 A
5057334 Vail Oct 1991 A
5065929 Schulze et al. Nov 1991 A
5112496 Dhawan et al. May 1992 A
5119983 Green et al. Jun 1992 A
5162430 Rhee et al. Nov 1992 A
5205459 Brinkerhoff et al. Apr 1993 A
5263629 Trumbull et al. Nov 1993 A
5281197 Arias et al. Jan 1994 A
5307976 Olson et al. May 1994 A
5312023 Green et al. May 1994 A
5314471 Brauker et al. May 1994 A
5318221 Green et al. Jun 1994 A
5324775 Rhee et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5332142 Robinson et al. Jul 1994 A
5344454 Clarke et al. Sep 1994 A
5392979 Green et al. Feb 1995 A
5397324 Carroll et al. Mar 1995 A
5405072 Zlock et al. Apr 1995 A
5410016 Hubbell et al. Apr 1995 A
5425745 Green et al. Jun 1995 A
5441193 Gravener Aug 1995 A
5441507 Wilk Aug 1995 A
5443198 Viola et al. Aug 1995 A
5468253 Bezwada et al. Nov 1995 A
5484913 Stilwell et al. Jan 1996 A
5503638 Cooper et al. Apr 1996 A
5514379 Weissleder et al. May 1996 A
5542594 McKean et al. Aug 1996 A
5543441 Rhee et al. Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5550187 Rhee et al. Aug 1996 A
5575803 Cooper et al. Nov 1996 A
5588579 Schnut et al. Dec 1996 A
5645915 Kranzler et al. Jul 1997 A
5653756 Clarke et al. Aug 1997 A
5683809 Freeman et al. Nov 1997 A
5690675 Sawyer et al. Nov 1997 A
5702409 Rayburn et al. Dec 1997 A
5752965 Francis et al. May 1998 A
5752974 Rhee et al. May 1998 A
5762256 Mastri et al. Jun 1998 A
5766188 Igaki Jun 1998 A
5769892 Kingwell Jun 1998 A
5782396 Mastri et al. Jul 1998 A
5799857 Robertson et al. Sep 1998 A
5810855 Raybum et al. Sep 1998 A
5814057 Oi et al. Sep 1998 A
5819350 Wang Oct 1998 A
5833695 Yoon Nov 1998 A
5843096 Igaki et al. Dec 1998 A
5871135 Williamson, IV et al. Feb 1999 A
5874500 Rhee et al. Feb 1999 A
5895412 Tucker Apr 1999 A
5895415 Chow et al. Apr 1999 A
5902312 Frater et al. May 1999 A
5908427 McKean et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5931847 Bittner et al. Aug 1999 A
5957363 Heck Sep 1999 A
5964774 McKean et al. Oct 1999 A
5997895 Narotam et al. Dec 1999 A
6019791 Wood Feb 2000 A
6030392 Dakov Feb 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6053390 Green et al. Apr 2000 A
6063097 Oi et al. May 2000 A
6080169 Turtel Jun 2000 A
6093557 Pui et al. Jul 2000 A
6099551 Gabbay Aug 2000 A
6142933 Longo et al. Nov 2000 A
6149667 Hovland et al. Nov 2000 A
6152943 Sawhney Nov 2000 A
6155265 Hammerslag Dec 2000 A
6156677 Brown Reed et al. Dec 2000 A
6165201 Sawhney et al. Dec 2000 A
6179862 Sawhney Jan 2001 B1
6210439 Firmin et al. Apr 2001 B1
6214020 Mulhauser et al. Apr 2001 B1
6241139 Milliman et al. Jun 2001 B1
6258107 Balazs et al. Jul 2001 B1
6267772 Mulhauser et al. Jul 2001 B1
6270530 Eldridge et al. Aug 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6280453 Kugel et al. Aug 2001 B1
6299631 Shalaby Oct 2001 B1
6309569 Farrar et al. Oct 2001 B1
6312457 DiMatteo et al. Nov 2001 B1
6312474 Francis et al. Nov 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6399362 Pui et al. Jun 2002 B1
6436030 Rehil Aug 2002 B2
6454780 Wallace Sep 2002 B1
6461368 Fogarty et al. Oct 2002 B2
6500777 Wiseman et al. Dec 2002 B1
6503257 Grant et al. Jan 2003 B2
6514283 DiMatteo et al. Feb 2003 B2
6514534 Sawhney Feb 2003 B1
6517566 Hovland et al. Feb 2003 B1
6551356 Rousseau Apr 2003 B2
6566406 Pathak et al. May 2003 B1
6568398 Cohen May 2003 B2
6590095 Schleicher et al. Jul 2003 B1
6592597 Grant et al. Jul 2003 B2
6605294 Sawhney Aug 2003 B2
6610006 Amid et al. Aug 2003 B1
6627749 Kumar Sep 2003 B1
6638285 Gabbay Oct 2003 B2
6652594 Francis et al. Nov 2003 B2
6656193 Grant et al. Dec 2003 B2
6656200 Li et al. Dec 2003 B2
6669735 Pelissier Dec 2003 B1
6673093 Sawhney Jan 2004 B1
6677258 Carroll et al. Jan 2004 B2
6685714 Rousseau Feb 2004 B2
6702828 Whayne Mar 2004 B2
6703047 Sawhney et al. Mar 2004 B2
6704210 Myers Mar 2004 B1
6723114 Shalaby Apr 2004 B2
6726706 Dominguez Apr 2004 B2
6736823 Darois et al. May 2004 B2
6736854 Vadurro et al. May 2004 B2
6746458 Cloud Jun 2004 B1
6746869 Pui et al. Jun 2004 B2
6764720 Pui et al. Jul 2004 B2
6773458 Brauker et al. Aug 2004 B1
6818018 Sawhney Nov 2004 B1
6843252 Harrison et al. Jan 2005 B2
6896684 Monassevitch et al. May 2005 B2
6927315 Heinecke et al. Aug 2005 B1
6939358 Palacios et al. Sep 2005 B2
6946196 Foss Sep 2005 B2
6953139 Milliman et al. Oct 2005 B2
6959851 Heinrich Nov 2005 B2
7009034 Pathak et al. Mar 2006 B2
7025772 Gellman et al. Apr 2006 B2
7060087 DiMatteo et al. Jun 2006 B2
7087065 Ulmsten et al. Aug 2006 B2
7108701 Evens et al. Sep 2006 B2
7128253 Mastri et al. Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7134438 Makower et al. Nov 2006 B2
7141055 Abrams et al. Nov 2006 B2
7147138 Shelton, IV Dec 2006 B2
7160299 Baily Jan 2007 B2
7179268 Roy et al. Feb 2007 B2
7210810 Iversen et al. May 2007 B1
7214727 Kwon et al. May 2007 B2
7232449 Sharkawy et al. Jun 2007 B2
7241300 Sharkawy et al. Jul 2007 B2
7247338 Pui et al. Jul 2007 B2
7279322 Pui et al. Oct 2007 B2
7307031 Carroll et al. Dec 2007 B2
7308998 Mastri et al. Dec 2007 B2
7311720 Mueller et al. Dec 2007 B2
7328829 Arad et al. Feb 2008 B2
7334717 Rethy et al. Feb 2008 B2
7347850 Sawhney Mar 2008 B2
7377928 Zubik et al. May 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7464849 Shelton, IV et al. Dec 2008 B2
7498063 Pui et al. Mar 2009 B2
7547312 Bauman et al. Jun 2009 B2
7559937 de la Torre et al. Jul 2009 B2
7571845 Viola Aug 2009 B2
7592418 Pathak et al. Sep 2009 B2
7594921 Browning Sep 2009 B2
7595392 Kumar et al. Sep 2009 B2
7604151 Hess et al. Oct 2009 B2
7611494 Campbell et al. Nov 2009 B2
7635073 Heinrich Dec 2009 B2
7645874 Saferstein et al. Jan 2010 B2
7649089 Kumar et al. Jan 2010 B2
7655288 Bauman et al. Feb 2010 B2
7662409 Masters Feb 2010 B2
7662801 Kumar et al. Feb 2010 B2
7665646 Prommersberger Feb 2010 B2
7666198 Suyker et al. Feb 2010 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7673782 Hess et al. Mar 2010 B2
7708180 Murray et al. May 2010 B2
7709631 Harris et al. May 2010 B2
7717313 Criscuolo et al. May 2010 B2
7722642 Williamson, IV et al. May 2010 B2
7735703 Morgan et al. Jun 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7754002 Maase et al. Jul 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7789889 Zubik et al. Sep 2010 B2
7793813 Bettuchi Sep 2010 B2
7799026 Schechter et al. Sep 2010 B2
7819896 Racenet Oct 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7824420 Eldridge et al. Nov 2010 B2
7845533 Marczyk et al. Dec 2010 B2
7845536 Viola et al. Dec 2010 B2
7846149 Jankowski Dec 2010 B2
7892247 Conston et al. Feb 2011 B2
7909224 Prommersberger Mar 2011 B2
7909837 Crews et al. Mar 2011 B2
7938307 Bettuchi May 2011 B2
7942890 D'Agostino et al. May 2011 B2
7950561 Aranyi May 2011 B2
7951166 Orban, III et al. May 2011 B2
7951248 Fallis et al. May 2011 B1
7967179 Olson et al. Jun 2011 B2
7988027 Olson et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011555 Tarinelli et al. Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8028883 Stopek Oct 2011 B2
8033483 Fortier et al. Oct 2011 B2
8033983 Chu et al. Oct 2011 B2
8038045 Bettuchi et al. Oct 2011 B2
8062330 Prommersberger et al. Nov 2011 B2
8062673 Figuly et al. Nov 2011 B2
8083119 Prommersberger Dec 2011 B2
8091756 Viola Jan 2012 B2
8123766 Bauman et al. Feb 2012 B2
8123767 Bauman et al. Feb 2012 B2
8127975 Olson et al. Mar 2012 B2
8133336 Kettlewell et al. Mar 2012 B2
8133559 Lee et al. Mar 2012 B2
8146791 Bettuchi et al. Apr 2012 B2
8152777 Campbell et al. Apr 2012 B2
8157149 Olson et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8167895 D'Agostino et al. May 2012 B2
8177797 Shimoji et al. May 2012 B2
8178746 Hildeberg et al. May 2012 B2
8192460 Orban, III et al. Jun 2012 B2
8201720 Hessler Jun 2012 B2
8210414 Bettuchi et al. Jul 2012 B2
8210453 Hull et al. Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8225981 Criscuolo et al. Jul 2012 B2
8231043 Tarinelli et al. Jul 2012 B2
8235273 Olson et al. Aug 2012 B2
8245901 Stopek Aug 2012 B2
8252339 Figuly et al. Aug 2012 B2
8252921 Vignon et al. Aug 2012 B2
8256654 Bettuchi et al. Sep 2012 B2
8257391 Orban, III et al. Sep 2012 B2
8276800 Bettuchi Oct 2012 B2
8286849 Bettuchi Oct 2012 B2
8308042 Aranyi Nov 2012 B2
8308045 Bettuchi et al. Nov 2012 B2
8308046 Prommersberger Nov 2012 B2
8312885 Bettuchi et al. Nov 2012 B2
8313014 Bettuchi Nov 2012 B2
8317790 Bell et al. Nov 2012 B2
8322590 Patel et al. Dec 2012 B2
8348126 Olson et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8367089 Wan et al. Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8371493 Aranyi et al. Feb 2013 B2
8372094 Bettuchi et al. Feb 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8393517 Milo Mar 2013 B2
8408440 Olson et al. Apr 2013 B2
8408480 Hull et al. Apr 2013 B2
8413869 Heinrich Apr 2013 B2
8413871 Racenet et al. Apr 2013 B2
8418909 Kostrzewski Apr 2013 B2
8424742 Bettuchi Apr 2013 B2
8453652 Stopek Jun 2013 B2
8453904 Eskaros et al. Jun 2013 B2
8453909 Olson et al. Jun 2013 B2
8453910 Bettuchi et al. Jun 2013 B2
8464925 Hull et al. Jun 2013 B2
8470360 McKay Jun 2013 B2
8474677 Woodard, Jr. et al. Jul 2013 B2
8479968 Hodgkinson et al. Jul 2013 B2
8485414 Criscuolo et al. Jul 2013 B2
8496683 Prommersberger et al. Jul 2013 B2
8511533 Viola et al. Aug 2013 B2
8512402 Marczyk et al. Aug 2013 B2
8518440 Blaskovich et al. Aug 2013 B2
8529600 Woodard, Jr. et al. Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8540131 Swayze Sep 2013 B2
8551138 Orban, III et al. Oct 2013 B2
8556918 Bauman et al. Oct 2013 B2
8561873 Ingmanson et al. Oct 2013 B2
8579990 Priewe Nov 2013 B2
8584920 Hodgkinson Nov 2013 B2
8590762 Hess et al. Nov 2013 B2
8616430 (Prommersberger) Stopek et al. Dec 2013 B2
8617132 Golzarian et al. Dec 2013 B2
8631989 Aranyi et al. Jan 2014 B2
8646674 Schulte et al. Feb 2014 B2
8668129 Olson Mar 2014 B2
8678263 Viola Mar 2014 B2
8679137 Bauman et al. Mar 2014 B2
8684250 Bettuchi et al. Apr 2014 B2
8701958 Shelton, IV et al. Apr 2014 B2
8721703 Fowler May 2014 B2
8727197 Hess et al. May 2014 B2
8757466 Olson et al. Jun 2014 B2
8789737 Hodgkinson et al. Jul 2014 B2
8814888 Sgro Aug 2014 B2
8820606 Hodgkinson Sep 2014 B2
8827133 Shelton, IV et al. Sep 2014 B2
8857694 Shelton, IV et al. Oct 2014 B2
8864009 Shelton, IV et al. Oct 2014 B2
8870050 Hodgkinson Oct 2014 B2
8920443 Hiles et al. Dec 2014 B2
8920444 Hiles et al. Dec 2014 B2
8939344 Olson et al. Jan 2015 B2
8956390 Shah et al. Feb 2015 B2
8967448 Carter et al. Mar 2015 B2
9005243 Stopek et al. Apr 2015 B2
9010606 Aranyi et al. Apr 2015 B2
9010608 Casasanta, Jr. et al. Apr 2015 B2
9010609 Carter et al. Apr 2015 B2
9010610 Hodgkinson Apr 2015 B2
9010612 Stevenson et al. Apr 2015 B2
9016543 (Prommersberger) Stopek et al. Apr 2015 B2
9016544 Hodgkinson et al. Apr 2015 B2
9027817 Milliman et al. May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9055944 Hodgkinson et al. Jun 2015 B2
9084602 Gleiman Jul 2015 B2
9107665 Hodgkinson et al. Aug 2015 B2
9107667 Hodgkinson Aug 2015 B2
9113871 Milliman et al. Aug 2015 B2
9113873 Marczyk et al. Aug 2015 B2
9113885 Hodgkinson et al. Aug 2015 B2
9113893 Sorrentino et al. Aug 2015 B2
9161753 Prior Oct 2015 B2
9161757 Bettuchi Oct 2015 B2
9186140 Hiles et al. Nov 2015 B2
9186144 Stevenson et al. Nov 2015 B2
9192378 Aranyi et al. Nov 2015 B2
9192379 Aranyi et al. Nov 2015 B2
9192380 (Tarinelli) Racenet et al. Nov 2015 B2
9192383 Milliman Nov 2015 B2
9192384 Bettuchi Nov 2015 B2
9198660 Hodgkinson Dec 2015 B2
9198663 Marczyk et al. Dec 2015 B1
9204881 Penna Dec 2015 B2
9220504 Viola et al. Dec 2015 B2
9226754 D'Agostino et al. Jan 2016 B2
9237892 Hodgkinson Jan 2016 B2
9237893 Carter et al. Jan 2016 B2
9277922 Carter et al. Mar 2016 B2
9295466 Hodgkinson et al. Mar 2016 B2
9326768 Shelton, IV May 2016 B2
9326773 Casasanta, Jr. et al. May 2016 B2
9328111 Zhou et al. May 2016 B2
9345479 (Tarinelli) Racenet et al. May 2016 B2
9351729 Orban, III et al. May 2016 B2
9351731 Carter et al. May 2016 B2
9351732 Hodgkinson May 2016 B2
9358005 Shelton, IV et al. Jun 2016 B2
9364229 D'Agostino et al. Jun 2016 B2
9364234 (Prommersberger) Stopek et al. Jun 2016 B2
9386988 Baxter, III et al. Jul 2016 B2
9402627 Stevenson et al. Aug 2016 B2
9414839 Penna Aug 2016 B2
9433412 Bettuchi et al. Sep 2016 B2
9433413 Stopek Sep 2016 B2
9433420 Hodgkinson Sep 2016 B2
9445812 Olson et al. Sep 2016 B2
9445817 Bettuchi Sep 2016 B2
9463260 Stopek Oct 2016 B2
9486215 Olson et al. Nov 2016 B2
9492170 Bear et al. Nov 2016 B2
9504470 Milliman Nov 2016 B2
9517164 Vitaris et al. Dec 2016 B2
9572576 Hodgkinson et al. Feb 2017 B2
9585657 Shelton, IV et al. Mar 2017 B2
9597077 Hodgkinson Mar 2017 B2
9610080 Whitfield et al. Apr 2017 B2
9622745 Ingmanson et al. Apr 2017 B2
9629626 Soltz et al. Apr 2017 B2
9636850 Stopek (nee Prommersberger) et al. May 2017 B2
9655620 Prescott et al. May 2017 B2
9675351 Hodgkinson et al. Jun 2017 B2
9681936 Hodgkinson et al. Jun 2017 B2
9687262 Rousseau et al. Jun 2017 B2
9693772 Ingmanson et al. Jul 2017 B2
9708184 Chan et al. Jul 2017 B2
9770245 Swayze et al. Sep 2017 B2
9775617 Carter et al. Oct 2017 B2
9775618 Bettuchi et al. Oct 2017 B2
9782173 Mozdzierz Oct 2017 B2
9844378 Casasanta et al. Dec 2017 B2
9918713 Zergiebel et al. Mar 2018 B2
9931116 Racenet et al. Apr 2018 B2
10022125 (Prommersberger) Stopek et al. Jul 2018 B2
10098639 Hodgkinson Oct 2018 B2
10111659 Racenet et al. Oct 2018 B2
10154840 Viola et al. Dec 2018 B2
20020091397 Chen Jul 2002 A1
20020151911 Gabbay Oct 2002 A1
20030065345 Weadock Apr 2003 A1
20030078209 Schmidt Apr 2003 A1
20030083676 Wallace May 2003 A1
20030125676 Swenson et al. Jul 2003 A1
20030181927 Wallace Sep 2003 A1
20030208231 Williamson et al. Nov 2003 A1
20040092912 Jinno et al. May 2004 A1
20040107006 Francis et al. Jun 2004 A1
20040131418 Budde et al. Jul 2004 A1
20040254590 Hoffman et al. Dec 2004 A1
20040260315 Dell et al. Dec 2004 A1
20050002981 Lahtinen et al. Jan 2005 A1
20050021085 Abrams et al. Jan 2005 A1
20050059996 Bauman et al. Mar 2005 A1
20050059997 Bauman et al. Mar 2005 A1
20050070929 Dalessandro et al. Mar 2005 A1
20050118435 DeLucia et al. Jun 2005 A1
20050149073 Arani et al. Jul 2005 A1
20050283256 Sommerich et al. Dec 2005 A1
20060008505 Brandon Jan 2006 A1
20060121266 Fandel et al. Jun 2006 A1
20060173470 Oray et al. Aug 2006 A1
20060190027 Downey Aug 2006 A1
20070034669 de la Torre et al. Feb 2007 A1
20070203510 Bettuchi Aug 2007 A1
20070243227 Gertner Oct 2007 A1
20070246505 Pace-Floridia et al. Oct 2007 A1
20080009811 Cantor Jan 2008 A1
20080029570 Shelton et al. Feb 2008 A1
20080082126 Murray et al. Apr 2008 A1
20080140115 Stopek Jun 2008 A1
20080169328 Shelton Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080216855 Nasca Sep 2008 A1
20080220047 Sawhney et al. Sep 2008 A1
20080290134 Bettuchi et al. Nov 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090031842 Kawai et al. Feb 2009 A1
20090206125 Huitema et al. Aug 2009 A1
20090206126 Huitema et al. Aug 2009 A1
20090206139 Hall et al. Aug 2009 A1
20090206141 Huitema et al. Aug 2009 A1
20090206142 Huitema et al. Aug 2009 A1
20090218384 Aranyi Sep 2009 A1
20090277944 Dalessandro et al. Nov 2009 A9
20100016855 Ramstein et al. Jan 2010 A1
20100016888 Calabrese Jan 2010 A1
20100087840 Ebersole et al. Apr 2010 A1
20100127039 Hessler May 2010 A1
20100147921 Olson Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100174253 Cline et al. Jul 2010 A1
20100203151 Hiraoka Aug 2010 A1
20100243707 Olson et al. Sep 2010 A1
20100331859 Omori Dec 2010 A1
20110034910 Ross et al. Feb 2011 A1
20110089220 Ingmanson et al. Apr 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110166673 Patel et al. Jul 2011 A1
20110282446 Schulte Nov 2011 A1
20110293690 Griffin et al. Dec 2011 A1
20120080336 Shelton, IV et al. Apr 2012 A1
20120197272 Oray et al. Aug 2012 A1
20120241491 Aldridge Sep 2012 A1
20120241493 Baxter, III et al. Sep 2012 A1
20120241505 Alexander, III et al. Sep 2012 A1
20120253298 Henderson et al. Oct 2012 A1
20130153636 Shelton, IV et al. Jun 2013 A1
20130153641 Shelton, IV et al. Jun 2013 A1
20130256380 Schmid et al. Oct 2013 A1
20140048580 Merchant et al. Feb 2014 A1
20140131418 Kostrzewski May 2014 A1
20140224686 Aronhalt et al. Aug 2014 A1
20140239047 Hodgkinson et al. Aug 2014 A1
20150041347 Hodgkinson Feb 2015 A1
20150133995 Shelton, IV et al. May 2015 A1
20150157320 Zergiebel et al. Jun 2015 A1
20150157321 Zergiebel et al. Jun 2015 A1
20150209045 Hodgkinson et al. Jul 2015 A1
20150231409 Racenet et al. Aug 2015 A1
20150327864 Hodgkinson et al. Nov 2015 A1
20160022268 Prior Jan 2016 A1
20160045200 Milliman Feb 2016 A1
20160100834 Viola et al. Apr 2016 A1
20160106430 Carter et al. Apr 2016 A1
20160128694 Baxter, III et al. May 2016 A1
20160157857 Hodgkinson et al. Jun 2016 A1
20160174988 D'Agostino et al. Jun 2016 A1
20160206315 Olson Jul 2016 A1
20160220257 Casasanta et al. Aug 2016 A1
20160249923 Hodgkinson et al. Sep 2016 A1
20160270793 Carter et al. Sep 2016 A1
20160310143 Bettuchi Oct 2016 A1
20160338704 Penna Nov 2016 A1
20160367252 Olson et al. Dec 2016 A1
20160367253 Hodgkinson Dec 2016 A1
20160367257 Stevenson et al. Dec 2016 A1
20170042540 Olson et al. Feb 2017 A1
20170049452 Milliman Feb 2017 A1
20170056044 Vendely et al. Mar 2017 A1
20170119390 Schellin et al. May 2017 A1
20170150967 Hodgkinson et al. Jun 2017 A1
20170172575 Hodgkinson Jun 2017 A1
20170231629 Stopek et al. Aug 2017 A1
20170238931 Prescott et al. Aug 2017 A1
20170281328 Hodgkinson et al. Oct 2017 A1
20170296188 Ingmanson et al. Oct 2017 A1
20170354415 Casasanta, Jr. et al. Dec 2017 A1
20180125491 Aranyi May 2018 A1
20180140301 Milliman May 2018 A1
20180168654 Hodgkinson et al. Jun 2018 A1
20180214147 Merchant et al. Aug 2018 A1
20180229054 Racenet et al. Aug 2018 A1
20180250000 Hodgkinson et al. Sep 2018 A1
20180256164 Aranyi Sep 2018 A1
20180296214 Hodgkinson et al. Oct 2018 A1
20180310937 (Prommersberger) Stopek et al. Nov 2018 A1
20190021734 Hodgkinson Jan 2019 A1
20190059878 (Tarinelli) Racenet et al. Feb 2019 A1
20190083087 Viola et al. Mar 2019 A1
Foreign Referenced Citations (17)
Number Date Country
2282761 Sep 1998 CA
1602563 Mar 1950 DE
19924311 Nov 2000 DE
0327022 Aug 1989 EP
0594148 Apr 1994 EP
2491867 Aug 2012 EP
2000166933 Jun 2000 JP
2002202213 Jul 2002 JP
2007124166 May 2007 JP
2010214132 Sep 2010 JP
9005489 May 1990 WO
9516221 Jun 1995 WO
9838923 Sep 1998 WO
9926826 Jun 1999 WO
0010456 Mar 2000 WO
0016684 Mar 2000 WO
2010075298 Jul 2010 WO
Non-Patent Literature Citations (174)
Entry
Australian Examination Report No. 1 corresponding to AU 2013234418 dated Jul. 14, 2017.
Extended European Search Report corresponding to EP 14 15 3610.2 dated Jul. 17, 2017.
Australian Examination Report No. 1 corresponding to AU 2014200109 dated Jul. 20, 2017.
Australian Examination Report No. 1 corresponding to AU 2014200074 dated Jul. 20, 2017.
Japanese Office Action corresponding to JP 2013-250857 dated Aug. 17, 2017.
Japanese Office Action corresponding to JP 2013-229471 dated Aug. 17, 2017.
Australian Examination Report No. 1 corresponding to AU 2014200793 dated Sep. 2, 2017.
Extended European Search Report corresponding to EP 17 17 8528.0 dated Oct. 13, 2017.
Australian Examination Report No. 1 corresponding to AU 2013234420 dated Oct. 24, 2017.
Japanese Office Action corresponding to JP 2013-175379 dated Oct. 20, 2017.
Japanese Office Action corresponding to JP 2013-147701 dated Oct. 27, 2017.
Extended European Search Report corresponding to EP 17 17 5656.2 dated Nov. 7, 2017.
Japanese Office Action corresponding to JP 2014-009738 dated Nov. 14, 2017.
European Office Action corresponding to EP 13 17 3986.4 dated Nov. 29, 2017.
Japanese Office Action corresponding to JP 2017-075975 dated Dec. 4, 2017.
European Office Action corresponding to EP 13 19 7958.5 dated Dec. 11, 2017.
Chinese First Office Action corresponding to Patent Application CN 201410588811.8 dated Dec. 5, 2017.
European Office Action corresponding to Patent Application EP 16 16 6367.9 dated Dec. 11, 2017.
Chinese First Office Action corresponding to Patent Application CN 201610279682.3 dated Jan. 10, 2018.
Japanese Office Action corresponding to Patent Application JP 2013-154561 dated Jan. 15, 2018.
Australian Examination Report No. 1 corresponding to Patent Application AU 2017225037 dated Jan. 23, 2018.
Japanese Office Action corresponding to Patent Application JP 2013-229471 dated May 1, 2018.
Canadian Office Action corresponding to Patent Application CA 2,790,743 dated May 14, 2018.
European Office Action corresponding to Patent Application EP 14 15 7195.0 dated Jun. 12, 2018.
Extended European Search Report corresponding to EP 13 19 5019.8, completed Mar. 14, 2014 and dated Mar. 24, 2014; (7 pp).
Extended European Search Report corresponding to EP 13 19 6816.6, completed Mar. 28, 2014 and dated Apr. 9, 2014; (9 pp).
Extended European Search Report corresponding to EP 13 19 7958.5, completed Apr. 4, 2014 and dated Apr. 15, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and dated Jun. 16, 2014; (5 pp).
Extended European Search Report corresponding to EP 14 15 7195.0, completed Jun. 5, 2014 and dated Jun. 18, 2014; (9 pp).
Extended European Search Report corresponding to EP 14 15 6342.9, completed Jul. 22, 2014 and dated Jul. 29, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 16 9739.1, completed Aug. 19, 2014 and Aug. 29, 2014; (7 pp).
Extended European Search Report corresponding to EP 14 15 7997.9, completed Sep. 9, 2014 and dated Sep. 17, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 16 8904.2, completed Sep. 10, 2014 and dated Sep. 18, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and dated Oct. 13, 2014; (10 pp).
Extended European Search Report corresponding to EP 13 15 4571.7, completed Oct. 10, 2014 and dated Oct. 20, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 18 1125.7, completed Oct. 16, 2014 and dated Oct. 24, 2014; (7 pp).
Extended European Search Report corresponding to EP 14 18 1127.3, completed Oct. 16, 2014 and dated Nov. 10, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 19 0419.3, completed Mar. 24, 2015 and dated Mar. 30, 2015; (6 pp).
European Office Action corresponding to EP 12 198 776.2 dated Apr. 7, 2015.
European Office Action corresponding to EP 13 156 297.7 dated Apr. 10, 2015.
Australian Examination Report No. 1 corresponding to AU 2011250822 dated May 18, 2015.
European Office Action corresponding to EP 12 186 175.1 dated Jun. 1, 2015.
Chinese Office Action corresponding to CN 201010517292.8 dated Jun. 2, 2015.
Extended European Search Report corresponding to EP 14 17 4814.5 dated Jun. 9, 2015.
Australian Examination Report No. 1 corresponding to AU 2014200584 dated Jun. 15, 2015.
European Office Action corresponding to EP 13 180 881.8 dated Jun. 19, 2015.
European Office Action corresponding to EP 14 157 195.0 dated Jul. 2, 2015.
Extended European Search Report corresponding to EP 12 19 6902.6 dated Aug. 6, 2015.
Extended European Search Report corresponding to EP 14 15 2060.1 dated Aug. 14, 2015.
Chinese Office Action corresponding to CN 201210129787.2 dated Aug. 24, 2015.
Canadian Office Action corresponding to CA 2,665,206 dated Nov. 19, 2013.
Chinese Notification of Reexamination corresponding to CN 201010517292.8 dated Jun. 2, 2015.
Japanese Office Action corresponding to JP 2014-216989 dated Sep. 11, 2015.
Canadian First Office Action corresponding to CA 2,686,105 dated Sep. 17, 2015.
Japanese Office Action corresponding to JP 2012-040188 dated Oct. 21, 2015.
European Communication corresponding to EP 13 17 6895.4 dated Nov. 5, 2015.
Chinese First Office Action corresponding to CN 201210544552 dated Nov. 23, 2015.
Chinese First Office Action corresponding to CN 201210545228 dated Nov. 30, 2015.
Extended European Search Report corresponding to EP 15 18 0491.1 dated Dec. 9, 2015.
Extended European Search Report corresponding to EP 15 18 3819.0 dated Dec. 11, 2015.
Canadian Office Action corresponding to CA 2,697,819 dated Jan. 6, 2016.
Canadian Office Action corresponding to CA 2,696,419 dated Jan. 14, 2016.
European Office Action corresponding to EP 12 19 8776.2 dated Jan. 19, 2016.
Extended European Search Report corresponding to EP 15 17 4146.9 dated Jan. 20, 2016.
Chinese First Office Action corresponding to CN 201310353628.5 dated Jan. 25, 2016.
Extended European Search Report corresponding to EP 12 19 6912.5 dated Feb. 1, 2016.
Japanese Office Action corresponding to JP 2012-098903 dated Feb. 22, 2016.
Extended European Search Report corresponding to EP 12 19 8753.1 dated Feb. 24, 2016.
Chinese First Office Action corresponding to CN 201410449019.4 dated Mar. 30, 2016.
Extended European Search Report corresponding to EP 16 15 0232.3 dated Apr. 12, 2016.
European Office Action corresponding to EP 11 18 3256.4 dated Apr. 20, 2016.
Australian Examination Report No. 1 corresponding to AU 2012244169 dated May 10, 2016.
European Office Action corresponding to EP 10 25 0715.9 dated May 12, 2016.
Extended European Search Report corresponding to Patent Application EP 12196912.5 dated Feb. 1, 2016.
Chinese Second Office Action corresponding to Patent Application CN 201610279682.3 dated Aug. 8, 2018.
Chinese Second Office Action corresponding to Patent Application CN 201410588811.8 dated Aug. 27, 2018.
Extended European Search Report corresponding to Patent Application EP 18160809.2 dated Sep. 18, 2018.
Extended European Search Report corresponding to Patent Application EP 18192317.8 dated Dec. 20, 2018.
Extended European Search Report corresponding to Patent Application EP 18190154.7 dated Feb. 4, 2019.
European Search Report corresponding to EP 06 00 4598, completed Jun. 22, 2006; (2 pp).
European Search Report corresponding to EP 06 01 6962.0, completed Jan. 3, 2007 and dated Jan. 11, 2007; (10 pp).
International Search Report corresponding to International Application No. PCT/US2005/036740, completed Feb. 20, 2007 and dated Mar. 23, 2007; (8 pp).
International Search Report corresponding to International Application No. PCT/US2007/022713, completed Apr. 21, 2008 and dated May 15, 2008; (1 p).
International Search Report corresponding to International Application No. PCT/US2008/002981, completed Jun. 9, 2008 and dated Jun. 26, 2008; (2 pp).
European Search Report corresponding to EP 08 25 1779, completed Jul. 14, 2008 and dated Jul. 23, 2008; (5 pp).
European Search Report corresponding to EP 08 25 1989.3, completed Mar. 11, 2010 and dated Mar. 24, 2010; (6 pp).
European Search Report corresponding to EP 10 25 0639.1, completed Jun. 17, 2010 and dated Jun. 28, 2010; (7 pp).
European Search Report corresponding to EP 10 25 0715.9, completed Jun. 30, 2010 and dated Jul. 20, 2010; (3 pp).
European Search Report corresponding to EP 05 80 4382.9, completed Oct. 5, 2010 and dated Oct. 12, 2010; (3 pp).
European Search Report corresponding to EP 09 25 2897.5, completed Feb. 7, 2011 and dated Feb. 15, 2011; (3 pp).
European Search Report corresponding to EP 10 25 0642.5, completed Mar. 25, 2011 and dated Apr. 4, 2011; (4 pp).
European Search Report corresponding to EP 12 15 2229.6, completed Feb. 23, 2012 and dated Mar. 1, 2012; (4 pp).
European Search Report corresponding to EP 12 15 0511.9, completed Apr. 16, 2012 and dated Apr. 24, 2012; (7 pp).
European Search Report corresponding to EP 12 15 2541.4, completed Apr. 23, 2012 and dated May 3, 2012; (10 pp).
European Search Report corresponding to EP 12 16 5609.4, completed Jul. 5, 2012 and dated Jul. 13, 2012; (8 pp).
European Search Report corresponding to EP 12 15 8861.0, completed Jul. 17, 2012 and dated Jul. 24, 2012; (9 pp).
European Search Report corresponding to EP 12 16 5878.5, completed Jul. 24, 2012 and dated Aug. 6, 2012; (8 pp).
Extended European Search Report corresponding to EP 12 19 1035.0, completed Jan. 11, 2013 and dated Jan. 18, 2013; (7 pp).
Extended European Search Report corresponding to EP 12 18 6175.1, completed Jan. 15, 2013 and dated Jan. 23, 2013; (7 pp).
Extended European Search Report corresponding to EP 12 19 1114.3, completed Jan. 23, 2013 and dated Jan. 31, 2013; (10 pp).
Extended European Search Report corresponding to EP 12 19 2224.9, completed Mar. 14, 2013 and dated Mar. 26, 2013; (8 pp).
Extended European Search Report corresponding to EP 12 19 6904.2, completed Mar. 28, 2013 and dated Jul. 26, 2013; (8 pp).
Extended European Search Report corresponding to EP 12 19 6911.7, completed Apr. 18, 2013 and dated Apr. 24, 2013; (8 pp).
Extended European Search Report corresponding to EP 07 00 5842.5, completed May 13, 2013 and dated May 29, 2013; (7 pp).
Extended European Search Report corresponding to EP 12 19 8776.2, completed May 16, 2013 and dated May 27, 2013; (8 pp).
Extended European Search Report corresponding to EP 12 19 8749.9, completed May 21, 2013 and dated May 31, 2013; (8 pp).
Extended European Search Report corresponding to EP 13 15 6297.7, completed Jun. 4, 2013 and dated Jun. 13, 2013; (7 pp).
Extended European Search Report corresponding to EP 13 17 3985.6, completed Aug. 19, 2013 and dated Aug. 28, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 3986.4, completed Aug. 20, 2013 and dated Aug. 29, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 7437.4, completed Sep. 11, 2013 and dated Sep. 19, 2013; 6 pages.
Extended European Search Report corresponding to EP 13 17 7441.6, completed Sep. 11, 2013 and dated Sep. 19, 2013; (6 pp).
Extended European Search Report corresponding to EP 07 86 1534.1, completed Sep. 20, 2013 and dated Sep. 30, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 18 3876.5, completed Oct. 14, 2013 and dated Oct. 24, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 17 1856.1, completed Oct. 29, 2013 and dated Nov. 7, 2013; (8 pp).
Extended European Search Report corresponding to EP 13 18 0373.6, completed Oct. 31, 2013 and dated Nov. 13, 2013; (7 pp).
Extended European Search Report corresponding to EP 13 18 0881.8, completed Nov. 5, 2013 and dated Nov. 14, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 6895.4, completed Nov. 29, 2013 and dated Dec. 12, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 18 2911.1, completed Dec. 2, 2013 and dated Dec. 16, 2013; (8 pp).
Extended European Search Report corresponding to EP 10 25 1795.0, completed Dec. 11, 2013 and dated Dec. 20, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 18 7911.6, completed Jan. 22, 2014 and dated Jan. 31, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 19 2111.6, completed Feb. 13, 2014 and dated Feb. 27, 2014; (10 pp).
Extended European Search Report corresponding to EP 13 19 5919.9, completed Feb. 10, 2014 and dated Mar. 3, 2014; (7 pp).
Extended European Search Report corresponding to EP 08 72 6500.5, completed Feb. 20, 2014 and dated Mar. 3, 2014; (7 pp).
Chinese First Office Action corresponding to CN 201410778512.0 dated May 13, 2016.
Australian Examination Report No. 1 corresponding to AU 2012227358 dated May 16, 2016.
Japanese Office Action corresponding to JP 2012-040188 dated May 17, 2016.
Australian Examination Report No. 1 corresponding to AU 2012244380 dated May 20, 2016.
Australian Examination Report No. 1 corresponding to AU 2014227480 dated May 21, 2016.
Australian Examination Report No. 1 corresponding to AU 2012254977 dated May 30, 2016.
European Office Action corresponding to EP 14 17 2681.0 dated May 13, 2016.
Extended European Search Report corresponding to EP 16 15 3647.9 dated Jun. 3, 2016.
Chinese Office Action corresponding to CN 201210545228 dated Jun. 29, 2016.
Japanese Office Action corresponding to JP 2012-250058 dated Jun. 29, 2016.
European Office Action corresponding to EP 14 15 7997.9 dated Jun. 29, 2016.
Canadian Office Action corresponding to CA 2,712,617 dated Jun. 30, 2016.
Chinese First Office Action corresponding to CN 2013103036903 dated Jun. 30, 2016.
Australian Patent Examination Report No. 1 corresponding to AU 2012250278 dated Jul. 10, 2016.
Australian Patent Examination Report No. 1 corresponding to AU 2012244382 dated Jul. 10, 2016.
Japanese Office Action corresponding to 2012-255242 dated Jul. 26, 2016.
Japanese Office Action corresponding to JP 2012-268668 dated Jul. 27, 2016.
European Office Action corresponding to EP 14 15 2060.1 dated Aug. 4, 2016.
European Office Action corresponding to EP 12 16 5609.4 dated Aug. 5, 2016.
European Office Action corresponding to EP 15 15 2392.5 dated Aug. 8, 2016.
Japanese Office Action corresponding to JP 2013-003624 dated Aug. 25, 2016.
Australian Patent Examination Report No. 1 corresponding to AU 2012261752 dated Sep. 6, 2016.
Japanese Office Action corresponding to JP 2014-252703 dated Sep. 26, 2016.
European Office Action corresponding to EP 12 19 8776.2 dated Sep. 12, 2016.
Japanese Office Action corresponding to JP 2013-000321 dated Sep. 13, 2016.
Chinese Second Office Action corresponding to CN 201310353628.5 dated Sep. 26, 2016.
European Office Action corresponding to EP 12 15 2541.4 dated Sep. 27, 2016.
Australian Patent Examination Report No. 1 corresponding to AU 2012268923 dated Sep. 28, 2016.
Chinese First Office Action corresponding to CN 2013107068710 dated Dec. 16, 2016.
Chinese First Office Action corresponding to CN 201310646606.8 dated Dec. 23, 2016.
Japanese Office Action corresponding to JP 2013-000321 dated Jan. 4, 2017.
Extended European Search Report corresponding to EP 16 16 6367.9 dated Jan. 16, 2017.
Australian Examination Report No. 1 corresponding to AU 2013206777 dated Feb. 1, 2017.
Chinese Second Office Action corresponding to CN 2013103036903 dated Feb. 23, 2017.
Japanese Office Action corresponding to JP 2013-175379 dated Mar. 1, 2017.
Chinese First Office Action corresponding to CN 201410028462.4 dated Mar. 2, 2017.
Chinese First Office Action corresponding to CN 201410084070 dated Mar. 13, 2017.
Extended European Search Report corresponding to EP 16 19 6549.6 dated Mar. 17, 2017.
Japanese Office Action corresponding to JP 2013-147701 dated Mar. 21, 2017.
Australian Examination Report No. 1 corresponding to AU 2013206804 dated Mar. 21, 2017.
Australian Examination Report No. 1 corresponding to AU 2013211499 dated May 4, 2017.
Australian Examination Report No. 1 corresponding to AU 2014201008 dated May 23, 2017.
European Office Action corresponding to EP 15 17 4146.9 dated May 15, 2017.
Japanese Office Action corresponding to JP 2013-154561 dated May 23, 2017.
European Office Action corresponding to EP 12 19 4784.0 dated May 29, 2017.
Japanese Office Action corresponding to JP 2013-169083 dated May 31, 2017.
Australian Examination Report No. 1 corresponding to AU 2013213767 dated Jun. 29, 2017.
Australian Examination Report No. 2 corresponding to AU 2012261752 dated Jul. 7, 2017.
Australian Examination Report No. 1 corresponding to AU 2013266989 dated Jul. 10, 2017.
Extended European Search Report corresponding to EP 14 15 3609.4 dated Jul. 14, 2017.
Extended European Search Report dated Jan. 27, 2020 corresponding to counterpart Patent Application EP 19197179.5.
Related Publications (1)
Number Date Country
20200085440 A1 Mar 2020 US