The present disclosure relates to surgical buttresses that are releasably attached to surgical stapling apparatus and more particularly, to surgical buttresses for local drug delivery.
Surgical stapling apparatus are employed by surgeons to sequentially or simultaneously apply one or more rows of fasteners, e.g., staples or two-part fasteners, to body tissue for the purpose of joining segments of body tissue together and/or creating anastomoses.
Circular surgical stapling apparatus generally include a staple cartridge assembly including circular rows of staples, an anvil assembly operatively associated with the staple cartridge assembly, and a circular blade disposed internal to the circular rows of staples. In use, during an end-to-end circular anastomosis procedure, two ends of hollow tissue sections, e.g., bowels, intestines, or other tubular organs, are clamped between the anvil and staple cartridge assemblies and are joined by driving the circular rows of staples through the clamped hollow tissue sections. During firing of the staples, the circular blade is advanced to cut portions of the tissue sections extending inside the staple lines, thereby establishing a passage through the two stapled tissue sections.
Surgical supports, e.g., meshes or buttress materials, may be used in combination with surgical stapling apparatus to bridge, repair, and/or reinforce tissue defects within a patient. The surgical support reinforces the staple line as well as covers the juncture of the tissue sections to reduce incidents of, for example, tearing, leakage, bleeding, and/or strictures prior to healing.
Circular anastomosis may be utilized during tumor removal. For example, surgical resection of localized endoluminal tumors is part of the standard of care for esophageal, gastric, and colorectal cancers. Once an endoluminal tumor is excised, gastrointestinal conduits are often reconnected by forming a stapled circular anastomosis. Even with surgery, however, each of these cancers is still associated with a high rate of post-surgical local recurrence. These cancers can be further treated with adjuvant systemic chemotherapy or radiotherapy, but each of these treatments can carry toxic side effects and/or be ineffective at reducing local recurrence.
Accordingly, it would be desirable to utilize a drug coated surgical support at the site of a circular anastomosis to locally deliver drugs such as chemotherapeutics, immunotherapies, or targeted therapies to reduce the risk of recurrence near the anastomosis.
The present disclosure is directed to surgical buttresses including one or more drugs patterned on select locations of the surgical buttress for localized drug delivery and treatment while protecting the underlying tissue during anastomotic healing and allowing for normal tissue integration into a majority of the surgical buttress.
A surgical stapling apparatus, in accordance with aspects of the present disclosure, includes a staple cartridge assembly, an anvil assembly operatively associated with the staple cartridge assembly, and a surgical buttress releasably coupled to the staple cartridge assembly or the anvil assembly. The staple cartridge assembly includes a tissue facing surface having staple retaining slots defined therein, each staple retaining slot housing a staple therein, and a circular knife disposed radially inwardly of the tissue facing surface. The anvil assembly includes an anvil member including a tissue facing surface and an anvil shaft extending from the anvil member. The surgical buttress has a circular configuration defining a central aperture therethrough. The surgical buttress includes an inner concentric portion having a therapeutic coating disposed thereon and an outer concentric portion free of the therapeutic coating.
The inner concentric portion of the surgical buttress may include a first concentric region extending radially inwardly of an inner staple line of the surgical buttress, and a second concentric region extending radially outwardly of the inner staple line to a middle staple line of the surgical buttress.
In embodiments, the therapeutic coating is disposed only within the first concentric region of the surgical buttress. In some embodiments, the first concentric region is defined between the inner staple line and a knife cut line of the surgical buttress and, in some other embodiments, the first concentric region is defined between the inner staple line and an inner edge of the surgical buttress. In certain embodiments, the inner edge of the surgical buttress is disposed radially inwardly of the circular knife of the staple cartridge assembly. In embodiments, the therapeutic coating is disposed partially within the second concentric region of the surgical buttress.
The therapeutic coating may include a chemotherapy drug or an immunotherapy drug. The therapeutic coating may be disposed on first and/or second sides of the surgical buttress.
In some embodiments, the surgical buttress is disposed on the tissue facing surface of the anvil assembly or the staple cartridge assembly and, in some embodiments, the surgical buttress is disposed on the anvil shaft of the anvil assembly in spaced relation relative to the tissue facing surfaces of the anvil and staple cartridge assemblies.
A staple cartridge assembly, in accordance with aspects of the present disclosure, includes a staple cartridge and a surgical buttress. The staple cartridge includes a tissue facing surface having staple retaining slots defined therein, each staple retaining slot housing a staple therein, and a circular knife disposed radially inwardly of the tissue facing surface. The surgical buttress is releasably disposed on the tissue facing surface of the staple cartridge. The surgical buttress has a circular configuration defining a central aperture therethrough. The surgical buttress includes an inner concentric portion having a therapeutic coating disposed thereon and an outer concentric portion free of the therapeutic coating.
The inner concentric portion of the surgical buttress may include a first concentric region extending radially inwardly of an inner staple line of the surgical buttress, and a second concentric region extending radially outwardly of the inner staple line to a middle staple line of the surgical buttress.
In embodiments, the therapeutic coating is disposed only within the first concentric region of the surgical buttress. In some embodiments, the first concentric region is defined between the inner staple line and a knife cut line of the surgical buttress and, in some other embodiments, the first concentric region is defined between the inner staple line and an inner edge of the surgical buttress. In certain embodiments, the inner edge of the surgical buttress is disposed radially inwardly of the circular knife of the staple cartridge. In embodiments, the therapeutic coating is disposed partially within the second concentric region of the surgical buttress. In yet other embodiments, the drug can be applied in any number of arrangements or patterns on the buttress to produce the desired effect of drug delivery and tissue integration into portions of the drug loaded buttress.
The therapeutic coating may include a chemotherapy drug or an immunotherapy drug. The therapeutic coating may be disposed on first and/or second sides of the surgical buttress.
Other aspects, features, and advantages will be apparent from the description, drawings, and the claim.
Various aspects of the present disclosure are described herein below with reference to the drawings, which are incorporated in and constitute a part of this specification, wherein:
Various exemplary embodiments of the present disclosure are discussed herein below in terms of surgical buttresses for use with a surgical stapling apparatus. The surgical buttresses described herein may be used in sealing a wound by approximating the edges of tissue between a staple cartridge assembly and an anvil assembly of the surgical stapling apparatus which includes at least one surgical buttress. The surgical buttress is releasably attached to the surgical stapling apparatus such that staples fired from the surgical stapling apparatus attach the surgical buttress to tissue.
While the surgical buttresses are discussed in conjunction with a surgical stapling apparatus, it is envisioned that other surgical apparatus and/or fixation devices, such as tacks, sutures, clips, adhesives, and the like, may be utilized to affix surgical buttresses of the present disclosure to tissue. It should also be appreciated that while the principles of the present disclosure are described with respect to surgical buttresses, the buttressing materials of the present disclosure are suitable for use in a variety of medical devices to mechanically support and/or reinforce tissue such as, for example, hernia meshes, patches, stents, pledgets, and/or scaffolds.
Embodiments of the presently disclosed surgical buttresses will now be described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. Throughout this description, the term “proximal” refers to a portion of a structure, or component thereof, that is closer to a user, and the term “distal” refers to a portion of the structure, or component thereof, that is farther from the user.
Referring now to
The handle assembly 20 includes at least one movable handle member 22 for actuating the firing of staples 54 (
The elongated tubular body 30 may be flexible or rigid, and/or straight or curved along a portion or the entirety thereof. It should be understood that the elongated tubular body 30 may be otherwise configured (e.g., shaped and/or dimensioned) depending on, for example, the surgical application or procedure of use as is within the purview of those skilled in the art. The staple cartridge assembly 50 may be fixedly connected to the distal end portion 32 of the elongated tubular body 30 or may be configured to concentrically fit within, or be otherwise connected to, the distal end portion 32 of the elongated tubular body 30 such that the staple cartridge assembly 50 is removable and replaceable.
As shown in
The anvil shaft 46 of the anvil assembly 40 may be connected to a rod 34 extending through the elongated tubular body 30. The rod 34 can be operably coupled to the advancing member 24 of the handle assembly 20 such that, when the anvil shaft 46 is attached to the rod 34, rotation of the advancing member 24 results in longitudinal movement of the rod 34 which, in turn, results in longitudinal movement of the anvil assembly 40 relative to the elongated tubular body 30. For example, when the advancing member 24 is rotated in a first direction, the anvil assembly 40 is moved away from the elongated tubular body 30, allowing tissue to be placed between the anvil and staple cartridge assemblies 40, 50 and, when the advancing member 24 is rotated in a second direction, the anvil assembly 40 is moved toward the elongated tubular body 30, allowing the tissue to be clamped between the anvil and staple cartridge assemblies 40, 50. It should be understood that other mechanisms for moving the anvil assembly 40 with respect to the elongated tubular body 30 are contemplated and within the purview of those skilled in the art.
As shown in
A staple pusher 56 is disposed in the staple cartridge assembly 50 and has a plurality of fingers or pushers 57 that are aligned with the staple retaining slots 51. The staple pusher 56 is movable in a distal direction to drive the staples 54 out of the staple cartridge assembly 50. A knife 58, substantially in the form of an open cup having a cylindrical shape with a rim thereof defining a knife blade 59, is disposed radially inwardly of the pushers 57. The knife 58 is mounted to a surface of the staple pusher 56 so that, in use, as the staple pusher 56 is advanced distally, the knife 58 is also advanced distally (e.g., axially outward) such that after the staples 54 are driven through tissue captured between the anvil and staple cartridge assemblies 40, 50, the portions of the tissue disposed radially inwardly of the staples 54 are cut by the knife blade 59.
The movable handle members 22 of the handle assembly 20 can be operably coupled to the staple pusher 56 by, for example, a tubular member or pair of bands (not shown) that are attached to the staple pusher 56 by, for example, linkages or the like. In this way, when the movable handle members 22 are actuated, the tubular member or bands are advanced, advancing the staple pusher 56, as described above. It should be understood that other mechanisms for firing the surgical stapling apparatus 10 are contemplated and within the purview of those skilled in the art.
For a detailed description of the structure and function of exemplary surgical stapling apparatus, reference may be made to U.S. Pat. Nos. 4,473,077; 4,576,167; 5,005,749; 5,119,983; 5,588,579; 5,915,616; and 6,053,390, the entire content of each of which is incorporated herein by reference. It should be understood that a variety of circular surgical stapling apparatus may be utilized with the surgical buttresses of the present disclosure. For example, circular staplers, such as, for example, EEA™ and CEEA™ staplers, available through Medtronic (North Haven, Conn.) may be utilized with the surgical buttresses of the present disclosure.
As shown in
The surgical stapling apparatus 10 and detachable anvil assembly 40 are used in an anastomosis procedure to effect joining of tissue sections 1, 2 (e.g., intestinal or other tubular organ sections). The anastomosis procedure is typically performed using minimally invasive surgical techniques including laparoscopic means and instrumentation. At the point in the procedure shown in
Thereafter, the anvil assembly 40 is approximated towards the elongated tubular body 30 (e.g., via advancing member 24 (
The surgical buttresses of the present disclosure are fabricated from biocompatible materials which are bioabsorbable or non-absorbable, natural or synthetic materials. It should be understood that any combination of natural, synthetic, bioabsorbable, and/or non-bioabsorbable materials may be used to form a surgical buttress. The surgical buttresses of the present disclosure may be biodegradable (e.g., formed from bioabsorbable and bioresorable materials) such that the surgical buttresses decompose or are broken down (physically or chemically) under physiological conditions in the body, and the degradation products are excretable or absorbable by the body.
The surgical buttresses may be porous, non-porous, or combinations thereof. Suitable porous structures include, for example, fibrous structures (e.g., knitted structures, woven structures, and non-woven structures) and/or foams (e.g., open or closed cell foams). Suitable non-porous structures include, for example, films. The surgical buttresses may be a single porous or non-porous layer, or include a plurality of layers including any combination of porous and/or non-porous layers.
Porous layer(s) in a surgical buttress may enhance the ability of the surgical buttress to absorb fluid, reduce bleeding, and seal a wound. Also, the porous layer(s) may allow for tissue ingrowth to fix the surgical buttress in place. Non-porous layer(s) in a surgical buttress may enhance the ability of the surgical buttress to resist tears and perforations during the manufacturing, shipping, handling, and stapling processes. Also, non-porous layer(s) may retard or prevent tissue ingrowth from surrounding tissues thereby acting as an adhesion barrier and preventing the formation of unwanted scar tissue. The porosity of the layer(s) of the surgical buttress may allow for and/or determine the rate of infiltration of biological fluids and/or cellular components into the surgical buttress which, in turn, may accelerate or decelerate the release kinetics of therapeutic agent(s) from the surgical buttress and thus, increase or decrease the release rate of the therapeutic agent(s) from the surgical buttress into the surrounding tissue and fluids.
The surgical buttresses of the present disclosure include a therapeutic coating disposed thereon. The therapeutic coating provides treatment in the form of chemotherapy, immunotherapy, targeted therapy, or combinations thereof by local delivery of one or more therapeutic agents or anti-cancer drugs at the site of tumor resection. The therapeutic coating may include one or more therapeutic agents therein having one or more release profiles. The surgical buttresses of the present disclosure may release therapeutic agent(s) therefrom over a period of time from about 12 hours to about 6 weeks, in embodiments, from about 24 hours to about 4 weeks and, in some embodiments, from about 48 hours to about 2 weeks.
The therapeutic agent(s) of the therapeutic coating may include, but are not limited to, drugs (e.g., small molecule drugs), amino acids, peptides, polypeptides, proteins, polysaccharides, muteins, immunoglobulins, antibodies, cytokines (e.g., lymphokines, monokines, chemokines), blood clotting factors, hemopoietic factors, interleukins (1 through 18), interferons (β-IFN, α-IFN and γ-IFN), erythropoietin, nucleases, tumor necrosis factor, colony stimulating factors (e.g., GCSF, GM-CSF, MCSF), insulin, anti-tumor agents, tumor suppressors, blood proteins, fibrin, thrombin, fibrinogen, synthetic thrombin, synthetic fibrin, synthetic fibrinogen, gonadotropins (e.g., FSH, LH, CG, etc.), hormones and hormone analogs (e.g., growth hormone, luteinizing hormone releasing factor), vaccines (e.g., tumoral, bacterial, and viral antigens), somatostatin, antigens, blood coagulation factors, growth factors (e.g., nerve growth factor, insulin-like growth factor), bone morphogenic proteins, TGF-B, protein inhibitors, protein antagonists, protein agonists, nucleic acids, such as antisense molecules, DNA, RNA, RNAi, oligonucleotides, polynucleotides, cells, viruses, and ribozymes.
In embodiments, the therapeutic coating includes an anti-tumor agent and/or tumor suppressor, referred to, in embodiments, as a “chemotherapeutic agent” and/or an “antineoplastic agent.” Suitable chemotherapeutic agents include, for example, paclitaxel and derivatives thereof, docetaxel and derivatives thereof, abraxane, tamoxifen, cyclophosphamide, actinomycin, bleomycin, dactinomycin, daunorubicin, doxorubicin, doxorubicin hydrochloride, epirubicin, mitomycin, methotrexate, fluorouracil, gemcitabine, gemcitabine hydrochloride, carboplatin, carmustine (BCNU), methyl-CCNU, cisplatin, etoposide, camptothecin and derivatives thereof, phenesterine, vinblastine, vincristine, goserelin, leuprolide, interferon alfa, retinoic acid (ATRA), nitrogen mustard alkylating agents, piposulfan, vinorelbine, irinotecan, irinotecan hydrochloride, vinblastine, pemetrexed, sorafenib tosylate, everolimus, erlotinib hydrochloride, sunitinib malate, capecitabine oxaliplatin, leucovorin calcium, bevacizumab, cetuximab, ramucirumab, trastuzumab, combinations thereof, and the like.
In some embodiments, the therapeutic coating includes paclitaxel and/or paclitaxel derivatives as the therapeutic agent. Paclitaxel may have various forms, referred to herein as “polymorphs,” including amorphous paclitaxel, crystalline paclitaxel, sometimes referred to as crystalline paclitaxel dihydrate, and/or anhydrous paclitaxel, or mixtures thereof. The polymorph form of paclitaxel in the therapeutic coating may be adjusted and selected to provide a tailored release of the therapeutic agent from the surgical buttress of the present disclosure as the crystallinity of the paclitaxel impacts its solubility in aqueous systems. Although the drug in any form is hydrophobic, as amorphous paclitaxel it is more soluble in aqueous environments, and crystalline paclitaxel is less soluble in aqueous environments, more than one polymorphic form of paclitaxel may be used, in embodiments, to provide surgical buttresses that have multiple release profiles of paclitaxel.
For example, surgical buttresses of the present disclosure having both amorphous paclitaxel and crystalline paclitaxel dihydrate thereon may release a bolus of therapeutic agent upon implantation (in the form of the amorphous paclitaxel), while also slowly releasing the therapeutic agent (in the form of the crystalline paclitaxel dihydrate). In embodiments, surgical buttresses of the present disclosure may release amorphous paclitaxel over a period of time from about 24 hours to about 168 hours, in some embodiments, from about 48 hours to about 96 hours, and release crystalline paclitaxel dihydrate over a period of time from about 1 week to about 6 weeks, in some embodiments, from about 2 weeks to about 4 weeks.
The therapeutic coating of the surgical buttresses of the present disclosure may include a carrier component formed from, for example, polymeric materials such as, but not limited to, degradable materials such as those prepared from monomers such as glycolide, lactide, trimethylene carbonate, p-dioxanone, epsilon-caprolactone, and combinations thereof.
The therapeutic coating, regardless of whether the therapeutic agent is applied with or without a carrier component, may include excipient(s) to enhance both the ability of the therapeutic agent to adhere to the surgical buttress as well as to modify the elution of the therapeutic agent therefrom. Suitable excipients include, but are not limited to, surfactants (e.g., cyclodextrins or sorbitan fatty acid esters), low molecule weight poly (ethylene glycol)s, salts (e.g., sodium chloride and/or other materials such as urea, oleic acid, citric acid, and ascorbic acid), stabilizers (e.g., butylated hydroxytoluene), polyhydric alcohols (e.g., D-sorbitol or mannitol), combinations thereof, and the like. In some embodiments, excipients which are hydrotropes may be included in the therapeutic coating of the present disclosure. These materials attract water into the therapeutic coating, which may enhance its degradation and resulting release of the therapeutic agent therefrom.
The therapeutic coating or components thereof (e.g., therapeutic agent(s), carrier component(s), and/or excipient(s)) may be in a solution for application to a surgical buttress of the present disclosure. Suitable solvents for forming such a solution include any pharmaceutically acceptable solvent including, but not limited to, saline, water, alcohol, acetone, dimethyl sulfoxide, ethyl acetate, N-methylpyrrolidone, combinations thereof, and the like. Methods for forming such solutions are within the purview of those skilled in the art and include, but are not limited to, mixing, blending, sonication, heating, combinations thereof, and the like. Methods for driving off the solvent after application to the surgical buttress to form the therapeutic coating and leave the therapeutic agent and any carrier component and/or excipient behind are within the purview of those skilled in the art and include, for example, solvent evaporation by heat, gas flow, time, reduced pressure, combinations thereof, and the like. By selecting different solvent systems, different dissolution rates of the therapeutic agent(s) may be achieved due to different therapeutic agent morphologies and degrees of crystallinity that occur based upon the solvent used in forming the solution including the therapeutic agent(s).
The therapeutic coating is disposed over specific areas of the surgical buttress such that the therapeutic agent(s) is deposited on the surgical buttress with high precision, and other areas of the surgical buttress are left uncoated by design to improve the performance of the surgical buttress, for instance, for better tissue healing around staple lines. The therapeutic coating or components thereof may be applied to the surgical buttress of the present disclosure by needle deposition processes, inkjet printing techniques, deposition methods including piezoelectric elements, combinations thereof, and the like.
The application process may include one or more passes of the therapeutic coating or components thereof onto the surgical buttress to ensure the surgical buttress has the desired amount of therapeutic agent for administering a dose of the therapeutic agent. In embodiments, multiple layers of the therapeutic coating is deposited on the surgical buttress resulting in an overall therapeutic coating that is uniform and robust, and adheres well to the buttress material. This is in contrast to other processes, such as dip coating and other similar coating methods, which lack both the robustness and adherence of the coatings/layers produced in accordance with the present disclosure. In some embodiments, different therapeutic agents are applied in different layers of the therapeutic coating. Different therapeutic benefits can thus be combined on one surgical buttress by using the multiple layers. In certain embodiments, different therapeutic agents can be deposited on different areas on the surface of the surgical buttress, e.g., one therapeutic agent can be applied in one region or area of the surgical buttress, and a different therapeutic agent can be applied to a different region or area of the surgical buttress.
With reference now to
The surgical buttress 60 includes a body 62 having an outer edge 62a and an inner edge 62b defining the central aperture 61 of the surgical buttress 60. The body 62 is sized and dimensioned to extend over (e.g., completely cover) the tissue facing surface 44, 52 of the anvil or staple cartridge assembly 40, 50, with the outer edge 62a of the body 62 aligned (e.g., radially) and coincident with the outer perimeter 44a, 52a of the anvil or staple cartridge assembly 40, 50 and the inner edge 62b disposed radially inwardly of the knife 58 of the staple cartridge assembly 50. In some embodiments, the outer edge 62a of the body 62 of the surgical buttress 60 extends radially beyond the outer perimeter 44a, 52a of the anvil or staple cartridge assembly 40, 50.
The body 62 of the surgical buttress 60 includes a plurality of concentric regions 64 defined therein. A first or inner concentric region 64a is defined between a knife cut line 66a and a first or inner staple line 66b of the surgical buttress 60, a second concentric region 64b is defined between the first staple line 66b and a second or middle staple line 66c of the surgical buttress 60, a third concentric region 64c is defined between the second staple line 66c and a third or outer staple line 66d of the surgical buttress 60, and a fourth concentric region 64d is defined between the third staple line 66d and the outer edge 62a of the surgical buttress 60. The knife cut line 66a of the surgical buttress 60 is aligned with the knife 58 of the staple cartridge assembly 50, and the first, second, and third staple lines 66b, 66c, 66d of the surgical buttress 60 are aligned with the staple forming recesses 43 or the staple forming slots 51 of the anvil or staple cartridge assembly 40, 50.
A therapeutic coating 68 is disposed on the first concentric region 64a of the surgical buttress 60 such that the therapeutic coating 68 extends between the knife cut line 66a and the first staple line 66b of the surgical buttress 60. The therapeutic coating 68 is applied so that an adequate amount of therapeutic agent(s) is deposited on and robustly attached to the first concentric region 64a of the surgical buttress 60, while the remainder of the surgical buttress 60 (e.g., the second, third, and fourth concentric regions 64b, 64c, 64d) remain free of the therapeutic coating 68 and thus, any therapeutic agent(s). The therapeutic coating 68 may be disposed on one or both sides of the surgical buttress 60 (e.g., one side contacting the tissue facing surface 44, 52 of the anvil or staple cartridge assembly 40, 50 and an opposed side facing away from the tissue facing surface 44, 52).
While the therapeutic coating 68 is shown as a continuous layer covering the entirety of the first concentric region 64a of the surgical buttress 60, it should to be appreciated that the configuration of the therapeutic coating 68 may vary. For example, the therapeutic coating 68 may be a discontinuous or patterned layer disposed on the surgical buttress 60. In some embodiments, the therapeutic coating 68 may be disposed within a portion of the first concentric region 64a of the surgical buttress 60 in spaced relation from, and radially inwardly of, the first staple line 66b.
Upon actuation of the surgical stapling device 10, the portion of the surgical buttress 60 disposed radially inwardly of the knife cut line 66a of the surgical buttress 60 is cut away from the surgical buttress 60 by the knife 58 of the staple cartridge assembly 50. As shown in
While the therapeutic coating 68 is shown disposed only within the first concentric region 64a of the surgical buttress 60, other configurations are envisioned. The therapeutic coating 68 may be disposed on any part of an inner concentric portion 63a of the body 62 of the surgical buttress 60, which includes portions of the surgical buttress 60 disposed radially inwardly of the second staple line 66c. An outer concentric portion 63b of the body 62, which includes portions of the surgical buttress 60 disposed radially outwardly of the second staple line 66c, is to remain free of the therapeutic coating 68.
For example, as shown in
As another example, as shown in
With reference now to
A therapeutic coating 78 is disposed on a first concentric region 74a of the surgical buttress 70 that is defined between the inner edge 72b of the surgical buttress 70 and a first or inner staple line 76a of the surgical buttress 70. It should be understood that the therapeutic coating 78 may extend partially or completely through the first concentric region 74a and, in some embodiments, may extend completely or partially into a second concentric region 74b of the surgical buttress 70 that is defined between the first staple line 76a and a second or middle staple line 76b of the surgical buttress 70.
Upon actuation of the surgical stapling apparatus 10, the surgical buttress 70 remains intact and is not cut by the knife 58 which, for example, may reduce the firing force required to cut through the stapled tissue and the surgical buttress 70. Accordingly, the size of the central aperture 71 does not change between initial and final configurations of the surgical buttress 70. The body 72 of the surgical buttress 70 is attached to tissue via staples 54 (
It should be understood that while the surgical stapling apparatus is shown including surgical buttresses disposed on both the anvil and the staple cartridge assemblies, the surgical stapling apparatus may include only one surgical buttress disposed on either the anvil assembly or the staple cartridge assembly. It should be further understood that any of the surgical buttresses of the present disclosure may be disposed on the anvil and/or staple cartridge assemblies depending on, for example, the surgical application and/or desired placement of the buttress material relative to tissue as should be understood by those skilled in the art.
The surgical buttress(es) of the present disclosure may be pre-loaded (e.g., by the manufacturer) onto the anvil assembly and/or the staple cartridge assembly. Additional or replacement surgical buttresses may be secured to the respective anvil and/or staple cartridge assemblies as needed or desired.
It is envisioned that the surgical buttress may be, additionally or alternatively, positioned on the anvil shaft of the anvil assembly following the connection of the anvil assembly to the respective tissue section such that the surgical buttress is stapled between the tissue sections following actuation of the surgical stapling apparatus.
With reference now to
The surgical buttress 80 includes a body portion 82 including an outer edge 82a and an inner edge 82b, the inner edge 82b defining a central aperture 81 of the surgical buttress 80. The diameter of the central aperture 81 is about the same as or smaller than the diameter of the anvil shaft 46. The outer edge 82a of the body 82 is radially aligned or coincident with the outer perimeter 44a, 52a of the anvil or staple cartridge assembly 40, 50, and the inner edge 72a is engagable with the anvil shaft 46, as discussed above, such that the inner edge 72b is disposed radially inwardly of the knife 58.
A therapeutic coating 88 is disposed on a first concentric region 84a of the surgical buttress 80 that is defined between a knife cut line 86a of the surgical buttress 80 and a first or inner staple line 86b of the surgical buttress 80. It should be understood that the therapeutic coating 88 may extend partially or completely through the first concentric region 84a and, in some embodiments, may extend completely or partially into a second concentric region 84b of the surgical buttress 80 that is defined between the first staple line 86b and a second or middle staple line 86c of the surgical buttress 70. Moreover, while the therapeutic coating 88 is shown disposed on first and second sides 80a, 80b of the surgical buttress 80, it should be understood that the therapeutic coating 88 may disposed on only one of the first or second sides 80a, 80b.
Although the surgical stapling apparatus discussed above has a manually operated, manually driven handle, any of the embodiments disclosed herein can include a surgical stapling apparatus having a hand-held powered handle having a motor, or a stapling unit that is attachable to a motorized drive, or a stapling unit arranged for use in a robotic surgical system. The surgical buttresses described herein may also be configured for use with other surgical apparatus, such as electromechanical surgical devices as described, for example, in U.S. Patent Appl. Pub. Nos. 2015/0157320 and 2015/0157321, the entire contents of each of which are incorporated herein by reference.
Persons skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying figures are non-limiting exemplary embodiments, and that the description, disclosure, and figures should be construed merely exemplary of particular embodiments. It is to be understood, therefore, that the present disclosure is not limited to the precise embodiments described, and that various other changes and modifications may be affected by one skilled in the art without departing from the scope or spirit of the disclosure. Additionally, it is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another exemplary embodiment without departing from the scope of the present disclosure, and that such modifications and variations are also intended to be included within the scope of the present disclosure. Accordingly, the subject matter of the present disclosure is not to be limited by what has been particularly shown and described.
Number | Name | Date | Kind |
---|---|---|---|
3054406 | Usher | Sep 1962 | A |
3079606 | Bobrov et al. | Mar 1963 | A |
3124136 | Usher | Mar 1964 | A |
3364200 | Ashton et al. | Jan 1968 | A |
3490675 | Green et al. | Jan 1970 | A |
3499591 | Green | Mar 1970 | A |
3797494 | Zaffaroni | Mar 1974 | A |
3939068 | Wendt et al. | Feb 1976 | A |
3948666 | Kitanishi et al. | Apr 1976 | A |
4064062 | Yurko | Dec 1977 | A |
4166800 | Fong | Sep 1979 | A |
4282236 | Broom | Aug 1981 | A |
4347847 | Usher | Sep 1982 | A |
4354628 | Green | Oct 1982 | A |
4416698 | McCorsley, III | Nov 1983 | A |
4429695 | Green | Feb 1984 | A |
4452245 | Usher | Jun 1984 | A |
4473077 | Noiles et al. | Sep 1984 | A |
4576167 | Noiles | Mar 1986 | A |
4605730 | Shalaby et al. | Aug 1986 | A |
4626253 | Broadnax, Jr. | Dec 1986 | A |
4655221 | Devereux | Apr 1987 | A |
4834090 | Moore | May 1989 | A |
4838884 | Dumican et al. | Jun 1989 | A |
4927640 | Dahlinder et al. | May 1990 | A |
4930674 | Barak | Jun 1990 | A |
5002551 | Linsky et al. | Mar 1991 | A |
5005749 | Aranyi | Apr 1991 | A |
5014899 | Presty et al. | May 1991 | A |
5040715 | Green et al. | Aug 1991 | A |
5057334 | Vail | Oct 1991 | A |
5065929 | Schulze et al. | Nov 1991 | A |
5112496 | Dhawan et al. | May 1992 | A |
5119983 | Green et al. | Jun 1992 | A |
5162430 | Rhee et al. | Nov 1992 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5263629 | Trumbull et al. | Nov 1993 | A |
5281197 | Arias et al. | Jan 1994 | A |
5307976 | Olson et al. | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5314471 | Brauker et al. | May 1994 | A |
5318221 | Green et al. | Jun 1994 | A |
5324775 | Rhee et al. | Jun 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5332142 | Robinson et al. | Jul 1994 | A |
5344454 | Clarke et al. | Sep 1994 | A |
5392979 | Green et al. | Feb 1995 | A |
5397324 | Carroll et al. | Mar 1995 | A |
5405072 | Zlock et al. | Apr 1995 | A |
5410016 | Hubbell et al. | Apr 1995 | A |
5425745 | Green et al. | Jun 1995 | A |
5441193 | Gravener | Aug 1995 | A |
5441507 | Wilk | Aug 1995 | A |
5443198 | Viola et al. | Aug 1995 | A |
5468253 | Bezwada et al. | Nov 1995 | A |
5484913 | Stilwell et al. | Jan 1996 | A |
5503638 | Cooper et al. | Apr 1996 | A |
5514379 | Weissleder et al. | May 1996 | A |
5542594 | McKean et al. | Aug 1996 | A |
5543441 | Rhee et al. | Aug 1996 | A |
5549628 | Cooper et al. | Aug 1996 | A |
5550187 | Rhee et al. | Aug 1996 | A |
5575803 | Cooper et al. | Nov 1996 | A |
5588579 | Schnut et al. | Dec 1996 | A |
5645915 | Kranzler et al. | Jul 1997 | A |
5653756 | Clarke et al. | Aug 1997 | A |
5683809 | Freeman et al. | Nov 1997 | A |
5690675 | Sawyer et al. | Nov 1997 | A |
5702409 | Rayburn et al. | Dec 1997 | A |
5752965 | Francis et al. | May 1998 | A |
5752974 | Rhee et al. | May 1998 | A |
5762256 | Mastri et al. | Jun 1998 | A |
5766188 | Igaki | Jun 1998 | A |
5769892 | Kingwell | Jun 1998 | A |
5782396 | Mastri et al. | Jul 1998 | A |
5799857 | Robertson et al. | Sep 1998 | A |
5810855 | Raybum et al. | Sep 1998 | A |
5814057 | Oi et al. | Sep 1998 | A |
5819350 | Wang | Oct 1998 | A |
5833695 | Yoon | Nov 1998 | A |
5843096 | Igaki et al. | Dec 1998 | A |
5871135 | Williamson, IV et al. | Feb 1999 | A |
5874500 | Rhee et al. | Feb 1999 | A |
5895412 | Tucker | Apr 1999 | A |
5895415 | Chow et al. | Apr 1999 | A |
5902312 | Frater et al. | May 1999 | A |
5908427 | McKean et al. | Jun 1999 | A |
5915616 | Viola et al. | Jun 1999 | A |
5931847 | Bittner et al. | Aug 1999 | A |
5957363 | Heck | Sep 1999 | A |
5964774 | McKean et al. | Oct 1999 | A |
5997895 | Narotam et al. | Dec 1999 | A |
6019791 | Wood | Feb 2000 | A |
6030392 | Dakov | Feb 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6045560 | McKean et al. | Apr 2000 | A |
6053390 | Green et al. | Apr 2000 | A |
6063097 | Oi et al. | May 2000 | A |
6080169 | Turtel | Jun 2000 | A |
6093557 | Pui et al. | Jul 2000 | A |
6099551 | Gabbay | Aug 2000 | A |
6142933 | Longo et al. | Nov 2000 | A |
6149667 | Hovland et al. | Nov 2000 | A |
6152943 | Sawhney | Nov 2000 | A |
6155265 | Hammerslag | Dec 2000 | A |
6156677 | Brown Reed et al. | Dec 2000 | A |
6165201 | Sawhney et al. | Dec 2000 | A |
6179862 | Sawhney | Jan 2001 | B1 |
6210439 | Firmin et al. | Apr 2001 | B1 |
6214020 | Mulhauser et al. | Apr 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6258107 | Balazs et al. | Jul 2001 | B1 |
6267772 | Mulhauser et al. | Jul 2001 | B1 |
6270530 | Eldridge et al. | Aug 2001 | B1 |
6273897 | Dalessandro et al. | Aug 2001 | B1 |
6280453 | Kugel et al. | Aug 2001 | B1 |
6299631 | Shalaby | Oct 2001 | B1 |
6309569 | Farrar et al. | Oct 2001 | B1 |
6312457 | DiMatteo et al. | Nov 2001 | B1 |
6312474 | Francis et al. | Nov 2001 | B1 |
6325810 | Hamilton et al. | Dec 2001 | B1 |
6330965 | Milliman et al. | Dec 2001 | B1 |
6399362 | Pui et al. | Jun 2002 | B1 |
6436030 | Rehil | Aug 2002 | B2 |
6454780 | Wallace | Sep 2002 | B1 |
6461368 | Fogarty et al. | Oct 2002 | B2 |
6500777 | Wiseman et al. | Dec 2002 | B1 |
6503257 | Grant et al. | Jan 2003 | B2 |
6514283 | DiMatteo et al. | Feb 2003 | B2 |
6514534 | Sawhney | Feb 2003 | B1 |
6517566 | Hovland et al. | Feb 2003 | B1 |
6551356 | Rousseau | Apr 2003 | B2 |
6566406 | Pathak et al. | May 2003 | B1 |
6568398 | Cohen | May 2003 | B2 |
6590095 | Schleicher et al. | Jul 2003 | B1 |
6592597 | Grant et al. | Jul 2003 | B2 |
6605294 | Sawhney | Aug 2003 | B2 |
6610006 | Amid et al. | Aug 2003 | B1 |
6627749 | Kumar | Sep 2003 | B1 |
6638285 | Gabbay | Oct 2003 | B2 |
6652594 | Francis et al. | Nov 2003 | B2 |
6656193 | Grant et al. | Dec 2003 | B2 |
6656200 | Li et al. | Dec 2003 | B2 |
6669735 | Pelissier | Dec 2003 | B1 |
6673093 | Sawhney | Jan 2004 | B1 |
6677258 | Carroll et al. | Jan 2004 | B2 |
6685714 | Rousseau | Feb 2004 | B2 |
6702828 | Whayne | Mar 2004 | B2 |
6703047 | Sawhney et al. | Mar 2004 | B2 |
6704210 | Myers | Mar 2004 | B1 |
6723114 | Shalaby | Apr 2004 | B2 |
6726706 | Dominguez | Apr 2004 | B2 |
6736823 | Darois et al. | May 2004 | B2 |
6736854 | Vadurro et al. | May 2004 | B2 |
6746458 | Cloud | Jun 2004 | B1 |
6746869 | Pui et al. | Jun 2004 | B2 |
6764720 | Pui et al. | Jul 2004 | B2 |
6773458 | Brauker et al. | Aug 2004 | B1 |
6818018 | Sawhney | Nov 2004 | B1 |
6843252 | Harrison et al. | Jan 2005 | B2 |
6896684 | Monassevitch et al. | May 2005 | B2 |
6927315 | Heinecke et al. | Aug 2005 | B1 |
6939358 | Palacios et al. | Sep 2005 | B2 |
6946196 | Foss | Sep 2005 | B2 |
6953139 | Milliman et al. | Oct 2005 | B2 |
6959851 | Heinrich | Nov 2005 | B2 |
7009034 | Pathak et al. | Mar 2006 | B2 |
7025772 | Gellman et al. | Apr 2006 | B2 |
7060087 | DiMatteo et al. | Jun 2006 | B2 |
7087065 | Ulmsten et al. | Aug 2006 | B2 |
7108701 | Evens et al. | Sep 2006 | B2 |
7128253 | Mastri et al. | Oct 2006 | B2 |
7128748 | Mooradian et al. | Oct 2006 | B2 |
7134438 | Makower et al. | Nov 2006 | B2 |
7141055 | Abrams et al. | Nov 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7160299 | Baily | Jan 2007 | B2 |
7179268 | Roy et al. | Feb 2007 | B2 |
7210810 | Iversen et al. | May 2007 | B1 |
7214727 | Kwon et al. | May 2007 | B2 |
7232449 | Sharkawy et al. | Jun 2007 | B2 |
7241300 | Sharkawy et al. | Jul 2007 | B2 |
7247338 | Pui et al. | Jul 2007 | B2 |
7279322 | Pui et al. | Oct 2007 | B2 |
7307031 | Carroll et al. | Dec 2007 | B2 |
7308998 | Mastri et al. | Dec 2007 | B2 |
7311720 | Mueller et al. | Dec 2007 | B2 |
7328829 | Arad et al. | Feb 2008 | B2 |
7334717 | Rethy et al. | Feb 2008 | B2 |
7347850 | Sawhney | Mar 2008 | B2 |
7377928 | Zubik et al. | May 2008 | B2 |
7434717 | Shelton, IV et al. | Oct 2008 | B2 |
7438209 | Hess et al. | Oct 2008 | B1 |
7464849 | Shelton, IV et al. | Dec 2008 | B2 |
7498063 | Pui et al. | Mar 2009 | B2 |
7547312 | Bauman et al. | Jun 2009 | B2 |
7559937 | de la Torre et al. | Jul 2009 | B2 |
7571845 | Viola | Aug 2009 | B2 |
7592418 | Pathak et al. | Sep 2009 | B2 |
7594921 | Browning | Sep 2009 | B2 |
7595392 | Kumar et al. | Sep 2009 | B2 |
7604151 | Hess et al. | Oct 2009 | B2 |
7611494 | Campbell et al. | Nov 2009 | B2 |
7635073 | Heinrich | Dec 2009 | B2 |
7645874 | Saferstein et al. | Jan 2010 | B2 |
7649089 | Kumar et al. | Jan 2010 | B2 |
7655288 | Bauman et al. | Feb 2010 | B2 |
7662409 | Masters | Feb 2010 | B2 |
7662801 | Kumar et al. | Feb 2010 | B2 |
7665646 | Prommersberger | Feb 2010 | B2 |
7666198 | Suyker et al. | Feb 2010 | B2 |
7669747 | Weisenburgh, II et al. | Mar 2010 | B2 |
7673782 | Hess et al. | Mar 2010 | B2 |
7708180 | Murray et al. | May 2010 | B2 |
7709631 | Harris et al. | May 2010 | B2 |
7717313 | Criscuolo et al. | May 2010 | B2 |
7722642 | Williamson, IV et al. | May 2010 | B2 |
7735703 | Morgan et al. | Jun 2010 | B2 |
7744627 | Orban, III et al. | Jun 2010 | B2 |
7754002 | Maase et al. | Jul 2010 | B2 |
7776060 | Mooradian et al. | Aug 2010 | B2 |
7789889 | Zubik et al. | Sep 2010 | B2 |
7793813 | Bettuchi | Sep 2010 | B2 |
7799026 | Schechter et al. | Sep 2010 | B2 |
7819896 | Racenet | Oct 2010 | B2 |
7823592 | Bettuchi et al. | Nov 2010 | B2 |
7824420 | Eldridge et al. | Nov 2010 | B2 |
7845533 | Marczyk et al. | Dec 2010 | B2 |
7845536 | Viola et al. | Dec 2010 | B2 |
7846149 | Jankowski | Dec 2010 | B2 |
7892247 | Conston et al. | Feb 2011 | B2 |
7909224 | Prommersberger | Mar 2011 | B2 |
7909837 | Crews et al. | Mar 2011 | B2 |
7938307 | Bettuchi | May 2011 | B2 |
7942890 | D'Agostino et al. | May 2011 | B2 |
7950561 | Aranyi | May 2011 | B2 |
7951166 | Orban, III et al. | May 2011 | B2 |
7951248 | Fallis et al. | May 2011 | B1 |
7967179 | Olson et al. | Jun 2011 | B2 |
7988027 | Olson et al. | Aug 2011 | B2 |
8011550 | Aranyi et al. | Sep 2011 | B2 |
8011555 | Tarinelli et al. | Sep 2011 | B2 |
8016177 | Bettuchi et al. | Sep 2011 | B2 |
8016178 | Olson et al. | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8028883 | Stopek | Oct 2011 | B2 |
8033483 | Fortier et al. | Oct 2011 | B2 |
8033983 | Chu et al. | Oct 2011 | B2 |
8038045 | Bettuchi et al. | Oct 2011 | B2 |
8062330 | Prommersberger et al. | Nov 2011 | B2 |
8062673 | Figuly et al. | Nov 2011 | B2 |
8083119 | Prommersberger | Dec 2011 | B2 |
8091756 | Viola | Jan 2012 | B2 |
8123766 | Bauman et al. | Feb 2012 | B2 |
8123767 | Bauman et al. | Feb 2012 | B2 |
8127975 | Olson et al. | Mar 2012 | B2 |
8133336 | Kettlewell et al. | Mar 2012 | B2 |
8133559 | Lee et al. | Mar 2012 | B2 |
8146791 | Bettuchi et al. | Apr 2012 | B2 |
8152777 | Campbell et al. | Apr 2012 | B2 |
8157149 | Olson et al. | Apr 2012 | B2 |
8157151 | Ingmanson et al. | Apr 2012 | B2 |
8167895 | D'Agostino et al. | May 2012 | B2 |
8177797 | Shimoji et al. | May 2012 | B2 |
8178746 | Hildeberg et al. | May 2012 | B2 |
8192460 | Orban, III et al. | Jun 2012 | B2 |
8201720 | Hessler | Jun 2012 | B2 |
8210414 | Bettuchi et al. | Jul 2012 | B2 |
8210453 | Hull et al. | Jul 2012 | B2 |
8225799 | Bettuchi | Jul 2012 | B2 |
8225981 | Criscuolo et al. | Jul 2012 | B2 |
8231043 | Tarinelli et al. | Jul 2012 | B2 |
8235273 | Olson et al. | Aug 2012 | B2 |
8245901 | Stopek | Aug 2012 | B2 |
8252339 | Figuly et al. | Aug 2012 | B2 |
8252921 | Vignon et al. | Aug 2012 | B2 |
8256654 | Bettuchi et al. | Sep 2012 | B2 |
8257391 | Orban, III et al. | Sep 2012 | B2 |
8276800 | Bettuchi | Oct 2012 | B2 |
8286849 | Bettuchi | Oct 2012 | B2 |
8308042 | Aranyi | Nov 2012 | B2 |
8308045 | Bettuchi et al. | Nov 2012 | B2 |
8308046 | Prommersberger | Nov 2012 | B2 |
8312885 | Bettuchi et al. | Nov 2012 | B2 |
8313014 | Bettuchi | Nov 2012 | B2 |
8317790 | Bell et al. | Nov 2012 | B2 |
8322590 | Patel et al. | Dec 2012 | B2 |
8348126 | Olson et al. | Jan 2013 | B2 |
8348130 | Shah et al. | Jan 2013 | B2 |
8365972 | Aranyi et al. | Feb 2013 | B2 |
8367089 | Wan et al. | Feb 2013 | B2 |
8371491 | Huitema et al. | Feb 2013 | B2 |
8371492 | Aranyi et al. | Feb 2013 | B2 |
8371493 | Aranyi et al. | Feb 2013 | B2 |
8372094 | Bettuchi et al. | Feb 2013 | B2 |
8393514 | Shelton, IV et al. | Mar 2013 | B2 |
8393517 | Milo | Mar 2013 | B2 |
8408440 | Olson et al. | Apr 2013 | B2 |
8408480 | Hull et al. | Apr 2013 | B2 |
8413869 | Heinrich | Apr 2013 | B2 |
8413871 | Racenet et al. | Apr 2013 | B2 |
8418909 | Kostrzewski | Apr 2013 | B2 |
8424742 | Bettuchi | Apr 2013 | B2 |
8453652 | Stopek | Jun 2013 | B2 |
8453904 | Eskaros et al. | Jun 2013 | B2 |
8453909 | Olson et al. | Jun 2013 | B2 |
8453910 | Bettuchi et al. | Jun 2013 | B2 |
8464925 | Hull et al. | Jun 2013 | B2 |
8470360 | McKay | Jun 2013 | B2 |
8474677 | Woodard, Jr. et al. | Jul 2013 | B2 |
8479968 | Hodgkinson et al. | Jul 2013 | B2 |
8485414 | Criscuolo et al. | Jul 2013 | B2 |
8496683 | Prommersberger et al. | Jul 2013 | B2 |
8511533 | Viola et al. | Aug 2013 | B2 |
8512402 | Marczyk et al. | Aug 2013 | B2 |
8518440 | Blaskovich et al. | Aug 2013 | B2 |
8529600 | Woodard, Jr. et al. | Sep 2013 | B2 |
8540128 | Shelton, IV et al. | Sep 2013 | B2 |
8540131 | Swayze | Sep 2013 | B2 |
8551138 | Orban, III et al. | Oct 2013 | B2 |
8556918 | Bauman et al. | Oct 2013 | B2 |
8561873 | Ingmanson et al. | Oct 2013 | B2 |
8579990 | Priewe | Nov 2013 | B2 |
8584920 | Hodgkinson | Nov 2013 | B2 |
8590762 | Hess et al. | Nov 2013 | B2 |
8616430 | (Prommersberger) Stopek et al. | Dec 2013 | B2 |
8617132 | Golzarian et al. | Dec 2013 | B2 |
8631989 | Aranyi et al. | Jan 2014 | B2 |
8646674 | Schulte et al. | Feb 2014 | B2 |
8668129 | Olson | Mar 2014 | B2 |
8678263 | Viola | Mar 2014 | B2 |
8679137 | Bauman et al. | Mar 2014 | B2 |
8684250 | Bettuchi et al. | Apr 2014 | B2 |
8701958 | Shelton, IV et al. | Apr 2014 | B2 |
8721703 | Fowler | May 2014 | B2 |
8727197 | Hess et al. | May 2014 | B2 |
8757466 | Olson et al. | Jun 2014 | B2 |
8789737 | Hodgkinson et al. | Jul 2014 | B2 |
8814888 | Sgro | Aug 2014 | B2 |
8820606 | Hodgkinson | Sep 2014 | B2 |
8827133 | Shelton, IV et al. | Sep 2014 | B2 |
8857694 | Shelton, IV et al. | Oct 2014 | B2 |
8864009 | Shelton, IV et al. | Oct 2014 | B2 |
8870050 | Hodgkinson | Oct 2014 | B2 |
8920443 | Hiles et al. | Dec 2014 | B2 |
8920444 | Hiles et al. | Dec 2014 | B2 |
8939344 | Olson et al. | Jan 2015 | B2 |
8956390 | Shah et al. | Feb 2015 | B2 |
8967448 | Carter et al. | Mar 2015 | B2 |
9005243 | Stopek et al. | Apr 2015 | B2 |
9010606 | Aranyi et al. | Apr 2015 | B2 |
9010608 | Casasanta, Jr. et al. | Apr 2015 | B2 |
9010609 | Carter et al. | Apr 2015 | B2 |
9010610 | Hodgkinson | Apr 2015 | B2 |
9010612 | Stevenson et al. | Apr 2015 | B2 |
9016543 | (Prommersberger) Stopek et al. | Apr 2015 | B2 |
9016544 | Hodgkinson et al. | Apr 2015 | B2 |
9027817 | Milliman et al. | May 2015 | B2 |
9044227 | Shelton, IV et al. | Jun 2015 | B2 |
9055944 | Hodgkinson et al. | Jun 2015 | B2 |
9084602 | Gleiman | Jul 2015 | B2 |
9107665 | Hodgkinson et al. | Aug 2015 | B2 |
9107667 | Hodgkinson | Aug 2015 | B2 |
9113871 | Milliman et al. | Aug 2015 | B2 |
9113873 | Marczyk et al. | Aug 2015 | B2 |
9113885 | Hodgkinson et al. | Aug 2015 | B2 |
9113893 | Sorrentino et al. | Aug 2015 | B2 |
9161753 | Prior | Oct 2015 | B2 |
9161757 | Bettuchi | Oct 2015 | B2 |
9186140 | Hiles et al. | Nov 2015 | B2 |
9186144 | Stevenson et al. | Nov 2015 | B2 |
9192378 | Aranyi et al. | Nov 2015 | B2 |
9192379 | Aranyi et al. | Nov 2015 | B2 |
9192380 | (Tarinelli) Racenet et al. | Nov 2015 | B2 |
9192383 | Milliman | Nov 2015 | B2 |
9192384 | Bettuchi | Nov 2015 | B2 |
9198660 | Hodgkinson | Dec 2015 | B2 |
9198663 | Marczyk et al. | Dec 2015 | B1 |
9204881 | Penna | Dec 2015 | B2 |
9220504 | Viola et al. | Dec 2015 | B2 |
9226754 | D'Agostino et al. | Jan 2016 | B2 |
9237892 | Hodgkinson | Jan 2016 | B2 |
9237893 | Carter et al. | Jan 2016 | B2 |
9277922 | Carter et al. | Mar 2016 | B2 |
9295466 | Hodgkinson et al. | Mar 2016 | B2 |
9326768 | Shelton, IV | May 2016 | B2 |
9326773 | Casasanta, Jr. et al. | May 2016 | B2 |
9328111 | Zhou et al. | May 2016 | B2 |
9345479 | (Tarinelli) Racenet et al. | May 2016 | B2 |
9351729 | Orban, III et al. | May 2016 | B2 |
9351731 | Carter et al. | May 2016 | B2 |
9351732 | Hodgkinson | May 2016 | B2 |
9358005 | Shelton, IV et al. | Jun 2016 | B2 |
9364229 | D'Agostino et al. | Jun 2016 | B2 |
9364234 | (Prommersberger) Stopek et al. | Jun 2016 | B2 |
9386988 | Baxter, III et al. | Jul 2016 | B2 |
9402627 | Stevenson et al. | Aug 2016 | B2 |
9414839 | Penna | Aug 2016 | B2 |
9433412 | Bettuchi et al. | Sep 2016 | B2 |
9433413 | Stopek | Sep 2016 | B2 |
9433420 | Hodgkinson | Sep 2016 | B2 |
9445812 | Olson et al. | Sep 2016 | B2 |
9445817 | Bettuchi | Sep 2016 | B2 |
9463260 | Stopek | Oct 2016 | B2 |
9486215 | Olson et al. | Nov 2016 | B2 |
9492170 | Bear et al. | Nov 2016 | B2 |
9504470 | Milliman | Nov 2016 | B2 |
9517164 | Vitaris et al. | Dec 2016 | B2 |
9572576 | Hodgkinson et al. | Feb 2017 | B2 |
9585657 | Shelton, IV et al. | Mar 2017 | B2 |
9597077 | Hodgkinson | Mar 2017 | B2 |
9610080 | Whitfield et al. | Apr 2017 | B2 |
9622745 | Ingmanson et al. | Apr 2017 | B2 |
9629626 | Soltz et al. | Apr 2017 | B2 |
9636850 | Stopek (nee Prommersberger) et al. | May 2017 | B2 |
9655620 | Prescott et al. | May 2017 | B2 |
9675351 | Hodgkinson et al. | Jun 2017 | B2 |
9681936 | Hodgkinson et al. | Jun 2017 | B2 |
9687262 | Rousseau et al. | Jun 2017 | B2 |
9693772 | Ingmanson et al. | Jul 2017 | B2 |
9708184 | Chan et al. | Jul 2017 | B2 |
9770245 | Swayze et al. | Sep 2017 | B2 |
9775617 | Carter et al. | Oct 2017 | B2 |
9775618 | Bettuchi et al. | Oct 2017 | B2 |
9782173 | Mozdzierz | Oct 2017 | B2 |
9844378 | Casasanta et al. | Dec 2017 | B2 |
9918713 | Zergiebel et al. | Mar 2018 | B2 |
9931116 | Racenet et al. | Apr 2018 | B2 |
10022125 | (Prommersberger) Stopek et al. | Jul 2018 | B2 |
10098639 | Hodgkinson | Oct 2018 | B2 |
10111659 | Racenet et al. | Oct 2018 | B2 |
10154840 | Viola et al. | Dec 2018 | B2 |
20020091397 | Chen | Jul 2002 | A1 |
20020151911 | Gabbay | Oct 2002 | A1 |
20030065345 | Weadock | Apr 2003 | A1 |
20030078209 | Schmidt | Apr 2003 | A1 |
20030083676 | Wallace | May 2003 | A1 |
20030125676 | Swenson et al. | Jul 2003 | A1 |
20030181927 | Wallace | Sep 2003 | A1 |
20030208231 | Williamson et al. | Nov 2003 | A1 |
20040092912 | Jinno et al. | May 2004 | A1 |
20040107006 | Francis et al. | Jun 2004 | A1 |
20040131418 | Budde et al. | Jul 2004 | A1 |
20040254590 | Hoffman et al. | Dec 2004 | A1 |
20040260315 | Dell et al. | Dec 2004 | A1 |
20050002981 | Lahtinen et al. | Jan 2005 | A1 |
20050021085 | Abrams et al. | Jan 2005 | A1 |
20050059996 | Bauman et al. | Mar 2005 | A1 |
20050059997 | Bauman et al. | Mar 2005 | A1 |
20050070929 | Dalessandro et al. | Mar 2005 | A1 |
20050118435 | DeLucia et al. | Jun 2005 | A1 |
20050149073 | Arani et al. | Jul 2005 | A1 |
20050283256 | Sommerich et al. | Dec 2005 | A1 |
20060008505 | Brandon | Jan 2006 | A1 |
20060121266 | Fandel et al. | Jun 2006 | A1 |
20060173470 | Oray et al. | Aug 2006 | A1 |
20060190027 | Downey | Aug 2006 | A1 |
20070034669 | de la Torre et al. | Feb 2007 | A1 |
20070203510 | Bettuchi | Aug 2007 | A1 |
20070243227 | Gertner | Oct 2007 | A1 |
20070246505 | Pace-Floridia et al. | Oct 2007 | A1 |
20080009811 | Cantor | Jan 2008 | A1 |
20080029570 | Shelton et al. | Feb 2008 | A1 |
20080082126 | Murray et al. | Apr 2008 | A1 |
20080140115 | Stopek | Jun 2008 | A1 |
20080169328 | Shelton | Jul 2008 | A1 |
20080169332 | Shelton et al. | Jul 2008 | A1 |
20080169333 | Shelton et al. | Jul 2008 | A1 |
20080216855 | Nasca | Sep 2008 | A1 |
20080220047 | Sawhney et al. | Sep 2008 | A1 |
20080290134 | Bettuchi et al. | Nov 2008 | A1 |
20090001121 | Hess et al. | Jan 2009 | A1 |
20090001130 | Hess et al. | Jan 2009 | A1 |
20090031842 | Kawai et al. | Feb 2009 | A1 |
20090206125 | Huitema et al. | Aug 2009 | A1 |
20090206126 | Huitema et al. | Aug 2009 | A1 |
20090206139 | Hall et al. | Aug 2009 | A1 |
20090206141 | Huitema et al. | Aug 2009 | A1 |
20090206142 | Huitema et al. | Aug 2009 | A1 |
20090218384 | Aranyi | Sep 2009 | A1 |
20090277944 | Dalessandro et al. | Nov 2009 | A9 |
20100016855 | Ramstein et al. | Jan 2010 | A1 |
20100016888 | Calabrese | Jan 2010 | A1 |
20100087840 | Ebersole et al. | Apr 2010 | A1 |
20100127039 | Hessler | May 2010 | A1 |
20100147921 | Olson | Jun 2010 | A1 |
20100147922 | Olson | Jun 2010 | A1 |
20100174253 | Cline et al. | Jul 2010 | A1 |
20100203151 | Hiraoka | Aug 2010 | A1 |
20100243707 | Olson et al. | Sep 2010 | A1 |
20100331859 | Omori | Dec 2010 | A1 |
20110034910 | Ross et al. | Feb 2011 | A1 |
20110089220 | Ingmanson et al. | Apr 2011 | A1 |
20110125138 | Malinouskas et al. | May 2011 | A1 |
20110166673 | Patel et al. | Jul 2011 | A1 |
20110282446 | Schulte | Nov 2011 | A1 |
20110293690 | Griffin et al. | Dec 2011 | A1 |
20120080336 | Shelton, IV et al. | Apr 2012 | A1 |
20120197272 | Oray et al. | Aug 2012 | A1 |
20120241491 | Aldridge | Sep 2012 | A1 |
20120241493 | Baxter, III et al. | Sep 2012 | A1 |
20120241505 | Alexander, III et al. | Sep 2012 | A1 |
20120253298 | Henderson et al. | Oct 2012 | A1 |
20130153636 | Shelton, IV et al. | Jun 2013 | A1 |
20130153641 | Shelton, IV et al. | Jun 2013 | A1 |
20130256380 | Schmid et al. | Oct 2013 | A1 |
20140048580 | Merchant et al. | Feb 2014 | A1 |
20140131418 | Kostrzewski | May 2014 | A1 |
20140224686 | Aronhalt et al. | Aug 2014 | A1 |
20140239047 | Hodgkinson et al. | Aug 2014 | A1 |
20150041347 | Hodgkinson | Feb 2015 | A1 |
20150133995 | Shelton, IV et al. | May 2015 | A1 |
20150157320 | Zergiebel et al. | Jun 2015 | A1 |
20150157321 | Zergiebel et al. | Jun 2015 | A1 |
20150209045 | Hodgkinson et al. | Jul 2015 | A1 |
20150231409 | Racenet et al. | Aug 2015 | A1 |
20150327864 | Hodgkinson et al. | Nov 2015 | A1 |
20160022268 | Prior | Jan 2016 | A1 |
20160045200 | Milliman | Feb 2016 | A1 |
20160100834 | Viola et al. | Apr 2016 | A1 |
20160106430 | Carter et al. | Apr 2016 | A1 |
20160128694 | Baxter, III et al. | May 2016 | A1 |
20160157857 | Hodgkinson et al. | Jun 2016 | A1 |
20160174988 | D'Agostino et al. | Jun 2016 | A1 |
20160206315 | Olson | Jul 2016 | A1 |
20160220257 | Casasanta et al. | Aug 2016 | A1 |
20160249923 | Hodgkinson et al. | Sep 2016 | A1 |
20160270793 | Carter et al. | Sep 2016 | A1 |
20160310143 | Bettuchi | Oct 2016 | A1 |
20160338704 | Penna | Nov 2016 | A1 |
20160367252 | Olson et al. | Dec 2016 | A1 |
20160367253 | Hodgkinson | Dec 2016 | A1 |
20160367257 | Stevenson et al. | Dec 2016 | A1 |
20170042540 | Olson et al. | Feb 2017 | A1 |
20170049452 | Milliman | Feb 2017 | A1 |
20170056044 | Vendely et al. | Mar 2017 | A1 |
20170119390 | Schellin et al. | May 2017 | A1 |
20170150967 | Hodgkinson et al. | Jun 2017 | A1 |
20170172575 | Hodgkinson | Jun 2017 | A1 |
20170231629 | Stopek et al. | Aug 2017 | A1 |
20170238931 | Prescott et al. | Aug 2017 | A1 |
20170281328 | Hodgkinson et al. | Oct 2017 | A1 |
20170296188 | Ingmanson et al. | Oct 2017 | A1 |
20170354415 | Casasanta, Jr. et al. | Dec 2017 | A1 |
20180125491 | Aranyi | May 2018 | A1 |
20180140301 | Milliman | May 2018 | A1 |
20180168654 | Hodgkinson et al. | Jun 2018 | A1 |
20180214147 | Merchant et al. | Aug 2018 | A1 |
20180229054 | Racenet et al. | Aug 2018 | A1 |
20180250000 | Hodgkinson et al. | Sep 2018 | A1 |
20180256164 | Aranyi | Sep 2018 | A1 |
20180296214 | Hodgkinson et al. | Oct 2018 | A1 |
20180310937 | (Prommersberger) Stopek et al. | Nov 2018 | A1 |
20190021734 | Hodgkinson | Jan 2019 | A1 |
20190059878 | (Tarinelli) Racenet et al. | Feb 2019 | A1 |
20190083087 | Viola et al. | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
2282761 | Sep 1998 | CA |
1602563 | Mar 1950 | DE |
19924311 | Nov 2000 | DE |
0327022 | Aug 1989 | EP |
0594148 | Apr 1994 | EP |
2491867 | Aug 2012 | EP |
2000166933 | Jun 2000 | JP |
2002202213 | Jul 2002 | JP |
2007124166 | May 2007 | JP |
2010214132 | Sep 2010 | JP |
9005489 | May 1990 | WO |
9516221 | Jun 1995 | WO |
9838923 | Sep 1998 | WO |
9926826 | Jun 1999 | WO |
0010456 | Mar 2000 | WO |
0016684 | Mar 2000 | WO |
2010075298 | Jul 2010 | WO |
Entry |
---|
Australian Examination Report No. 1 corresponding to AU 2013234418 dated Jul. 14, 2017. |
Extended European Search Report corresponding to EP 14 15 3610.2 dated Jul. 17, 2017. |
Australian Examination Report No. 1 corresponding to AU 2014200109 dated Jul. 20, 2017. |
Australian Examination Report No. 1 corresponding to AU 2014200074 dated Jul. 20, 2017. |
Japanese Office Action corresponding to JP 2013-250857 dated Aug. 17, 2017. |
Japanese Office Action corresponding to JP 2013-229471 dated Aug. 17, 2017. |
Australian Examination Report No. 1 corresponding to AU 2014200793 dated Sep. 2, 2017. |
Extended European Search Report corresponding to EP 17 17 8528.0 dated Oct. 13, 2017. |
Australian Examination Report No. 1 corresponding to AU 2013234420 dated Oct. 24, 2017. |
Japanese Office Action corresponding to JP 2013-175379 dated Oct. 20, 2017. |
Japanese Office Action corresponding to JP 2013-147701 dated Oct. 27, 2017. |
Extended European Search Report corresponding to EP 17 17 5656.2 dated Nov. 7, 2017. |
Japanese Office Action corresponding to JP 2014-009738 dated Nov. 14, 2017. |
European Office Action corresponding to EP 13 17 3986.4 dated Nov. 29, 2017. |
Japanese Office Action corresponding to JP 2017-075975 dated Dec. 4, 2017. |
European Office Action corresponding to EP 13 19 7958.5 dated Dec. 11, 2017. |
Chinese First Office Action corresponding to Patent Application CN 201410588811.8 dated Dec. 5, 2017. |
European Office Action corresponding to Patent Application EP 16 16 6367.9 dated Dec. 11, 2017. |
Chinese First Office Action corresponding to Patent Application CN 201610279682.3 dated Jan. 10, 2018. |
Japanese Office Action corresponding to Patent Application JP 2013-154561 dated Jan. 15, 2018. |
Australian Examination Report No. 1 corresponding to Patent Application AU 2017225037 dated Jan. 23, 2018. |
Japanese Office Action corresponding to Patent Application JP 2013-229471 dated May 1, 2018. |
Canadian Office Action corresponding to Patent Application CA 2,790,743 dated May 14, 2018. |
European Office Action corresponding to Patent Application EP 14 15 7195.0 dated Jun. 12, 2018. |
Extended European Search Report corresponding to EP 13 19 5019.8, completed Mar. 14, 2014 and dated Mar. 24, 2014; (7 pp). |
Extended European Search Report corresponding to EP 13 19 6816.6, completed Mar. 28, 2014 and dated Apr. 9, 2014; (9 pp). |
Extended European Search Report corresponding to EP 13 19 7958.5, completed Apr. 4, 2014 and dated Apr. 15, 2014; (8 pp). |
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and dated Jun. 16, 2014; (5 pp). |
Extended European Search Report corresponding to EP 14 15 7195.0, completed Jun. 5, 2014 and dated Jun. 18, 2014; (9 pp). |
Extended European Search Report corresponding to EP 14 15 6342.9, completed Jul. 22, 2014 and dated Jul. 29, 2014; (8 pp). |
Extended European Search Report corresponding to EP 14 16 9739.1, completed Aug. 19, 2014 and Aug. 29, 2014; (7 pp). |
Extended European Search Report corresponding to EP 14 15 7997.9, completed Sep. 9, 2014 and dated Sep. 17, 2014; (8 pp). |
Extended European Search Report corresponding to EP 14 16 8904.2, completed Sep. 10, 2014 and dated Sep. 18, 2014; (8 pp). |
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and dated Oct. 13, 2014; (10 pp). |
Extended European Search Report corresponding to EP 13 15 4571.7, completed Oct. 10, 2014 and dated Oct. 20, 2014; (8 pp). |
Extended European Search Report corresponding to EP 14 18 1125.7, completed Oct. 16, 2014 and dated Oct. 24, 2014; (7 pp). |
Extended European Search Report corresponding to EP 14 18 1127.3, completed Oct. 16, 2014 and dated Nov. 10, 2014; (8 pp). |
Extended European Search Report corresponding to EP 14 19 0419.3, completed Mar. 24, 2015 and dated Mar. 30, 2015; (6 pp). |
European Office Action corresponding to EP 12 198 776.2 dated Apr. 7, 2015. |
European Office Action corresponding to EP 13 156 297.7 dated Apr. 10, 2015. |
Australian Examination Report No. 1 corresponding to AU 2011250822 dated May 18, 2015. |
European Office Action corresponding to EP 12 186 175.1 dated Jun. 1, 2015. |
Chinese Office Action corresponding to CN 201010517292.8 dated Jun. 2, 2015. |
Extended European Search Report corresponding to EP 14 17 4814.5 dated Jun. 9, 2015. |
Australian Examination Report No. 1 corresponding to AU 2014200584 dated Jun. 15, 2015. |
European Office Action corresponding to EP 13 180 881.8 dated Jun. 19, 2015. |
European Office Action corresponding to EP 14 157 195.0 dated Jul. 2, 2015. |
Extended European Search Report corresponding to EP 12 19 6902.6 dated Aug. 6, 2015. |
Extended European Search Report corresponding to EP 14 15 2060.1 dated Aug. 14, 2015. |
Chinese Office Action corresponding to CN 201210129787.2 dated Aug. 24, 2015. |
Canadian Office Action corresponding to CA 2,665,206 dated Nov. 19, 2013. |
Chinese Notification of Reexamination corresponding to CN 201010517292.8 dated Jun. 2, 2015. |
Japanese Office Action corresponding to JP 2014-216989 dated Sep. 11, 2015. |
Canadian First Office Action corresponding to CA 2,686,105 dated Sep. 17, 2015. |
Japanese Office Action corresponding to JP 2012-040188 dated Oct. 21, 2015. |
European Communication corresponding to EP 13 17 6895.4 dated Nov. 5, 2015. |
Chinese First Office Action corresponding to CN 201210544552 dated Nov. 23, 2015. |
Chinese First Office Action corresponding to CN 201210545228 dated Nov. 30, 2015. |
Extended European Search Report corresponding to EP 15 18 0491.1 dated Dec. 9, 2015. |
Extended European Search Report corresponding to EP 15 18 3819.0 dated Dec. 11, 2015. |
Canadian Office Action corresponding to CA 2,697,819 dated Jan. 6, 2016. |
Canadian Office Action corresponding to CA 2,696,419 dated Jan. 14, 2016. |
European Office Action corresponding to EP 12 19 8776.2 dated Jan. 19, 2016. |
Extended European Search Report corresponding to EP 15 17 4146.9 dated Jan. 20, 2016. |
Chinese First Office Action corresponding to CN 201310353628.5 dated Jan. 25, 2016. |
Extended European Search Report corresponding to EP 12 19 6912.5 dated Feb. 1, 2016. |
Japanese Office Action corresponding to JP 2012-098903 dated Feb. 22, 2016. |
Extended European Search Report corresponding to EP 12 19 8753.1 dated Feb. 24, 2016. |
Chinese First Office Action corresponding to CN 201410449019.4 dated Mar. 30, 2016. |
Extended European Search Report corresponding to EP 16 15 0232.3 dated Apr. 12, 2016. |
European Office Action corresponding to EP 11 18 3256.4 dated Apr. 20, 2016. |
Australian Examination Report No. 1 corresponding to AU 2012244169 dated May 10, 2016. |
European Office Action corresponding to EP 10 25 0715.9 dated May 12, 2016. |
Extended European Search Report corresponding to Patent Application EP 12196912.5 dated Feb. 1, 2016. |
Chinese Second Office Action corresponding to Patent Application CN 201610279682.3 dated Aug. 8, 2018. |
Chinese Second Office Action corresponding to Patent Application CN 201410588811.8 dated Aug. 27, 2018. |
Extended European Search Report corresponding to Patent Application EP 18160809.2 dated Sep. 18, 2018. |
Extended European Search Report corresponding to Patent Application EP 18192317.8 dated Dec. 20, 2018. |
Extended European Search Report corresponding to Patent Application EP 18190154.7 dated Feb. 4, 2019. |
European Search Report corresponding to EP 06 00 4598, completed Jun. 22, 2006; (2 pp). |
European Search Report corresponding to EP 06 01 6962.0, completed Jan. 3, 2007 and dated Jan. 11, 2007; (10 pp). |
International Search Report corresponding to International Application No. PCT/US2005/036740, completed Feb. 20, 2007 and dated Mar. 23, 2007; (8 pp). |
International Search Report corresponding to International Application No. PCT/US2007/022713, completed Apr. 21, 2008 and dated May 15, 2008; (1 p). |
International Search Report corresponding to International Application No. PCT/US2008/002981, completed Jun. 9, 2008 and dated Jun. 26, 2008; (2 pp). |
European Search Report corresponding to EP 08 25 1779, completed Jul. 14, 2008 and dated Jul. 23, 2008; (5 pp). |
European Search Report corresponding to EP 08 25 1989.3, completed Mar. 11, 2010 and dated Mar. 24, 2010; (6 pp). |
European Search Report corresponding to EP 10 25 0639.1, completed Jun. 17, 2010 and dated Jun. 28, 2010; (7 pp). |
European Search Report corresponding to EP 10 25 0715.9, completed Jun. 30, 2010 and dated Jul. 20, 2010; (3 pp). |
European Search Report corresponding to EP 05 80 4382.9, completed Oct. 5, 2010 and dated Oct. 12, 2010; (3 pp). |
European Search Report corresponding to EP 09 25 2897.5, completed Feb. 7, 2011 and dated Feb. 15, 2011; (3 pp). |
European Search Report corresponding to EP 10 25 0642.5, completed Mar. 25, 2011 and dated Apr. 4, 2011; (4 pp). |
European Search Report corresponding to EP 12 15 2229.6, completed Feb. 23, 2012 and dated Mar. 1, 2012; (4 pp). |
European Search Report corresponding to EP 12 15 0511.9, completed Apr. 16, 2012 and dated Apr. 24, 2012; (7 pp). |
European Search Report corresponding to EP 12 15 2541.4, completed Apr. 23, 2012 and dated May 3, 2012; (10 pp). |
European Search Report corresponding to EP 12 16 5609.4, completed Jul. 5, 2012 and dated Jul. 13, 2012; (8 pp). |
European Search Report corresponding to EP 12 15 8861.0, completed Jul. 17, 2012 and dated Jul. 24, 2012; (9 pp). |
European Search Report corresponding to EP 12 16 5878.5, completed Jul. 24, 2012 and dated Aug. 6, 2012; (8 pp). |
Extended European Search Report corresponding to EP 12 19 1035.0, completed Jan. 11, 2013 and dated Jan. 18, 2013; (7 pp). |
Extended European Search Report corresponding to EP 12 18 6175.1, completed Jan. 15, 2013 and dated Jan. 23, 2013; (7 pp). |
Extended European Search Report corresponding to EP 12 19 1114.3, completed Jan. 23, 2013 and dated Jan. 31, 2013; (10 pp). |
Extended European Search Report corresponding to EP 12 19 2224.9, completed Mar. 14, 2013 and dated Mar. 26, 2013; (8 pp). |
Extended European Search Report corresponding to EP 12 19 6904.2, completed Mar. 28, 2013 and dated Jul. 26, 2013; (8 pp). |
Extended European Search Report corresponding to EP 12 19 6911.7, completed Apr. 18, 2013 and dated Apr. 24, 2013; (8 pp). |
Extended European Search Report corresponding to EP 07 00 5842.5, completed May 13, 2013 and dated May 29, 2013; (7 pp). |
Extended European Search Report corresponding to EP 12 19 8776.2, completed May 16, 2013 and dated May 27, 2013; (8 pp). |
Extended European Search Report corresponding to EP 12 19 8749.9, completed May 21, 2013 and dated May 31, 2013; (8 pp). |
Extended European Search Report corresponding to EP 13 15 6297.7, completed Jun. 4, 2013 and dated Jun. 13, 2013; (7 pp). |
Extended European Search Report corresponding to EP 13 17 3985.6, completed Aug. 19, 2013 and dated Aug. 28, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 17 3986.4, completed Aug. 20, 2013 and dated Aug. 29, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 17 7437.4, completed Sep. 11, 2013 and dated Sep. 19, 2013; 6 pages. |
Extended European Search Report corresponding to EP 13 17 7441.6, completed Sep. 11, 2013 and dated Sep. 19, 2013; (6 pp). |
Extended European Search Report corresponding to EP 07 86 1534.1, completed Sep. 20, 2013 and dated Sep. 30, 2013; (5 pp). |
Extended European Search Report corresponding to EP 13 18 3876.5, completed Oct. 14, 2013 and dated Oct. 24, 2013; (5 pp). |
Extended European Search Report corresponding to EP 13 17 1856.1, completed Oct. 29, 2013 and dated Nov. 7, 2013; (8 pp). |
Extended European Search Report corresponding to EP 13 18 0373.6, completed Oct. 31, 2013 and dated Nov. 13, 2013; (7 pp). |
Extended European Search Report corresponding to EP 13 18 0881.8, completed Nov. 5, 2013 and dated Nov. 14, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 17 6895.4, completed Nov. 29, 2013 and dated Dec. 12, 2013; (5 pp). |
Extended European Search Report corresponding to EP 13 18 2911.1, completed Dec. 2, 2013 and dated Dec. 16, 2013; (8 pp). |
Extended European Search Report corresponding to EP 10 25 1795.0, completed Dec. 11, 2013 and dated Dec. 20, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 18 7911.6, completed Jan. 22, 2014 and dated Jan. 31, 2014; (8 pp). |
Extended European Search Report corresponding to EP 13 19 2111.6, completed Feb. 13, 2014 and dated Feb. 27, 2014; (10 pp). |
Extended European Search Report corresponding to EP 13 19 5919.9, completed Feb. 10, 2014 and dated Mar. 3, 2014; (7 pp). |
Extended European Search Report corresponding to EP 08 72 6500.5, completed Feb. 20, 2014 and dated Mar. 3, 2014; (7 pp). |
Chinese First Office Action corresponding to CN 201410778512.0 dated May 13, 2016. |
Australian Examination Report No. 1 corresponding to AU 2012227358 dated May 16, 2016. |
Japanese Office Action corresponding to JP 2012-040188 dated May 17, 2016. |
Australian Examination Report No. 1 corresponding to AU 2012244380 dated May 20, 2016. |
Australian Examination Report No. 1 corresponding to AU 2014227480 dated May 21, 2016. |
Australian Examination Report No. 1 corresponding to AU 2012254977 dated May 30, 2016. |
European Office Action corresponding to EP 14 17 2681.0 dated May 13, 2016. |
Extended European Search Report corresponding to EP 16 15 3647.9 dated Jun. 3, 2016. |
Chinese Office Action corresponding to CN 201210545228 dated Jun. 29, 2016. |
Japanese Office Action corresponding to JP 2012-250058 dated Jun. 29, 2016. |
European Office Action corresponding to EP 14 15 7997.9 dated Jun. 29, 2016. |
Canadian Office Action corresponding to CA 2,712,617 dated Jun. 30, 2016. |
Chinese First Office Action corresponding to CN 2013103036903 dated Jun. 30, 2016. |
Australian Patent Examination Report No. 1 corresponding to AU 2012250278 dated Jul. 10, 2016. |
Australian Patent Examination Report No. 1 corresponding to AU 2012244382 dated Jul. 10, 2016. |
Japanese Office Action corresponding to 2012-255242 dated Jul. 26, 2016. |
Japanese Office Action corresponding to JP 2012-268668 dated Jul. 27, 2016. |
European Office Action corresponding to EP 14 15 2060.1 dated Aug. 4, 2016. |
European Office Action corresponding to EP 12 16 5609.4 dated Aug. 5, 2016. |
European Office Action corresponding to EP 15 15 2392.5 dated Aug. 8, 2016. |
Japanese Office Action corresponding to JP 2013-003624 dated Aug. 25, 2016. |
Australian Patent Examination Report No. 1 corresponding to AU 2012261752 dated Sep. 6, 2016. |
Japanese Office Action corresponding to JP 2014-252703 dated Sep. 26, 2016. |
European Office Action corresponding to EP 12 19 8776.2 dated Sep. 12, 2016. |
Japanese Office Action corresponding to JP 2013-000321 dated Sep. 13, 2016. |
Chinese Second Office Action corresponding to CN 201310353628.5 dated Sep. 26, 2016. |
European Office Action corresponding to EP 12 15 2541.4 dated Sep. 27, 2016. |
Australian Patent Examination Report No. 1 corresponding to AU 2012268923 dated Sep. 28, 2016. |
Chinese First Office Action corresponding to CN 2013107068710 dated Dec. 16, 2016. |
Chinese First Office Action corresponding to CN 201310646606.8 dated Dec. 23, 2016. |
Japanese Office Action corresponding to JP 2013-000321 dated Jan. 4, 2017. |
Extended European Search Report corresponding to EP 16 16 6367.9 dated Jan. 16, 2017. |
Australian Examination Report No. 1 corresponding to AU 2013206777 dated Feb. 1, 2017. |
Chinese Second Office Action corresponding to CN 2013103036903 dated Feb. 23, 2017. |
Japanese Office Action corresponding to JP 2013-175379 dated Mar. 1, 2017. |
Chinese First Office Action corresponding to CN 201410028462.4 dated Mar. 2, 2017. |
Chinese First Office Action corresponding to CN 201410084070 dated Mar. 13, 2017. |
Extended European Search Report corresponding to EP 16 19 6549.6 dated Mar. 17, 2017. |
Japanese Office Action corresponding to JP 2013-147701 dated Mar. 21, 2017. |
Australian Examination Report No. 1 corresponding to AU 2013206804 dated Mar. 21, 2017. |
Australian Examination Report No. 1 corresponding to AU 2013211499 dated May 4, 2017. |
Australian Examination Report No. 1 corresponding to AU 2014201008 dated May 23, 2017. |
European Office Action corresponding to EP 15 17 4146.9 dated May 15, 2017. |
Japanese Office Action corresponding to JP 2013-154561 dated May 23, 2017. |
European Office Action corresponding to EP 12 19 4784.0 dated May 29, 2017. |
Japanese Office Action corresponding to JP 2013-169083 dated May 31, 2017. |
Australian Examination Report No. 1 corresponding to AU 2013213767 dated Jun. 29, 2017. |
Australian Examination Report No. 2 corresponding to AU 2012261752 dated Jul. 7, 2017. |
Australian Examination Report No. 1 corresponding to AU 2013266989 dated Jul. 10, 2017. |
Extended European Search Report corresponding to EP 14 15 3609.4 dated Jul. 14, 2017. |
Extended European Search Report dated Jan. 27, 2020 corresponding to counterpart Patent Application EP 19197179.5. |
Number | Date | Country | |
---|---|---|---|
20200085440 A1 | Mar 2020 | US |